Добірка наукової літератури з теми "Radiative simulation"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Radiative simulation".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Radiative simulation"
Guseva, A. A., and I. S. Grigor’Ev. "Mathematical simulation of aircraft engine jet exhausts radiation." Journal of «Almaz – Antey» Air and Space Defence Corporation, no. 4 (December 30, 2018): 30–36. http://dx.doi.org/10.38013/2542-0542-2018-4-30-36.
Повний текст джерелаHenrion, Lucca, Michael C. Gross, Sebastian Ferreryo Fernandez, Chandan Paul, Samuel Kazmouz, Volker Sick, and Daniel C. Haworth. "Characterization of radiative heat transfer in a spark-ignition engine through high-speed experiments and simulations." Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 74 (2019): 61. http://dx.doi.org/10.2516/ogst/2019030.
Повний текст джерелаShi, Xiangjun, Chunhan Li, Lijuan Li, Wentao Zhang, and Jiaojiao Liu. "Estimating the CMIP6 Anthropogenic Aerosol Radiative Effects with the Advantage of Prescribed Aerosol Forcing." Atmosphere 12, no. 3 (March 21, 2021): 406. http://dx.doi.org/10.3390/atmos12030406.
Повний текст джерелаMashayekhi, R., P. Irannejad, J. Feichter, and A. A. Bidokhti. "Implementation of a new aerosol HAM model within the Weather Research and Forecasting (WRF) modeling system." Geoscientific Model Development Discussions 2, no. 2 (July 1, 2009): 681–707. http://dx.doi.org/10.5194/gmdd-2-681-2009.
Повний текст джерелаMarkowski, Paul M., and Jerry Y. Harrington. "A Simulation of a Supercell Thunderstorm with Emulated Radiative Cooling beneath the Anvil." Journal of the Atmospheric Sciences 62, no. 7 (July 1, 2005): 2607–17. http://dx.doi.org/10.1175/jas3497.1.
Повний текст джерелаMechem, David B., Yefim L. Kogan, Mikhail Ovtchinnikov, Anthony B. Davis, K. Franklin Evans, and Robert G. Ellingson. "Multidimensional Longwave Forcing of Boundary Layer Cloud Systems." Journal of the Atmospheric Sciences 65, no. 12 (December 1, 2008): 3963–77. http://dx.doi.org/10.1175/2008jas2733.1.
Повний текст джерелаBaró, Rocío, Laura Palacios-Peña, Alexander Baklanov, Alessandra Balzarini, Dominik Brunner, Renate Forkel, Marcus Hirtl, et al. "Regional effects of atmospheric aerosols on temperature: an evaluation of an ensemble of online coupled models." Atmospheric Chemistry and Physics 17, no. 15 (August 11, 2017): 9677–96. http://dx.doi.org/10.5194/acp-17-9677-2017.
Повний текст джерелаMa, Xu, Tiejun Wang, and Lei Lu. "A Refined Four-Stream Radiative Transfer Model for Row-Planted Crops." Remote Sensing 12, no. 8 (April 18, 2020): 1290. http://dx.doi.org/10.3390/rs12081290.
Повний текст джерелаYamaguchi, Takanobu, and David A. Randall. "Cooling of Entrained Parcels in a Large-Eddy Simulation." Journal of the Atmospheric Sciences 69, no. 3 (March 1, 2012): 1118–36. http://dx.doi.org/10.1175/jas-d-11-080.1.
Повний текст джерелаShang, J. S., and S. T. Surzhikov. "Nonequilibrium radiative hypersonic flow simulation." Progress in Aerospace Sciences 53 (August 2012): 46–65. http://dx.doi.org/10.1016/j.paerosci.2012.02.003.
Повний текст джерелаДисертації з теми "Radiative simulation"
Ramamoorthy, Babila. "Numerical simulation of radiative heat transfer." Birmingham, Ala. : University of Alabama at Birmingham, 2008. https://www.mhsl.uab.edu/dt/2009r/ramamoorthy.pdf.
Повний текст джерелаGonzales, Matthias. "Contribution à l'étude numérique de l'hydrodynamique radiative : Des expériences de chocs radiatifs aux jets astrophysiques." Paris 11, 2006. https://tel.archives-ouvertes.fr/tel-00110290.
Повний текст джерелаRadiation-hydrodynamics deals with the dynamical interaction between gas and radiation. Its applications lie from astrophysics to inertial confinement fusion. During this thesis, a 3D parallel radiation-hydrodynamics code called HERACLES has been developed. It relies upon the M1 model which can deal with anisotropic radiation field. Various tests have validated HERACLES upon a large variety of physical conditions, including semi-transparent regime and photon diffusion, its results being similar to those of Monte-Carlo codes. It has then been applied to two domains. The first one dealt with radiative shocks, astrophysical phenomena reproduced on Earth thanks to high-power lasers. HERACLES has shown the influence of different parameters upon the radiative shock evolution: ratio propagation canal width over photon mean free path, walls albedo… Then, it has contributed to analyze an experiment conducted at the PALS laser facility. It has reproduced the observed precursor slowdown and the transmission of the transverse diagnostic. The second domain dealt with the jets generated by forming stars and interacting with their ambient molecular cloud. Since the interstellar medium opacities imply that a significant part of radiation is absorbed, we conducted the first jets simulations including radiation-hydrodynamics. They showed that the jets can be highly compressed and that radiative transfer could then play an important role in the jets propagation
Schäfer, Matthias. "Moment methods for radiative transfer modeling, simulation and optimization." München Verl. Dr. Hut, 2008. http://d-nb.info/988229439/04.
Повний текст джерелаVadez, Vincent. "Simplification géométrique pour la simulation thermique radiative de satellites." Thesis, Université Côte d'Azur, 2022. http://www.theses.fr/2022COAZ4035.
Повний текст джерелаThe life cycle of a satellite includes the launch phase, the positioning on the desiredorbit, different maneuvers (deployment of solar panels and safety position), and finallyplacing the satellite on the junk orbit. The satellite gravitates in a hostile environment,exposed to thermal variations of very large amplitude, alternating sun exposure andeclipse phases. The survival of the satellite depends on the temperature of its components, the variation of which must be monitored within safety intervals. In this context, the thermal simulation of the satellite for its design is crucial to anticipate the reality of its operation. Radiative thermal simulation is essential for anticipating the generation of energy from solar and albedo radiation, and for regulating temperatures of on-board equipments. Ideal operation consists in providing appropriate cooling for components exposed to radiation, and conversely, heating of unexposed components. As an order of magnitude, the external temperature ranges from -150 to +150 degrees Celsius, and the internal electronic equipment has a safe range between -50 and +50, with a safety margin of 10 degrees. In the eclipse phase where the radiation is significantly lower, heating is provided by the energy accumulated during the exposed phase, combined with heat pipes for thermal regulation.In this thesis, the objective is to advance the knowledge on radiative thermal simulation calculation methods for satellites. To this end, two approaches are considered. Thefirst approach consists in establishing a reference calculation of a quantity governing radiative thermal simulation: view factors. Being subject to time constraints, this methodis based on a hierarchical data structure enabling progressive computation of view factors, in order to offer a satisfactory tradeoff between time dedicated to computationsand desired accuracy. For the sake of accuracy, a prediction step is added to guaranteea better convergence towards the reference value.The second approach, also motivated by time constraints, aims at reducing the geometric model of a mechanical part or a spacecraft while being faithful to the numericalsimulation. In order to render the decimation physics-informed, a preprocessing step relying on a sensitivity analysis is carried out. To better preserve the physical simulation,the geometric cost of a simplification operator is coupled to a factor deduced from thesimulation deviation between the reference model and the reduced model
Goncalves, Dos santos Rogério. "Large Eddy simulations of turbulent combustion including radiative heat transfer." Châtenay-Malabry, Ecole centrale de Paris, 2008. http://www.theses.fr/2008ECAP1052.
Повний текст джерелаThe combustion is one of the principal ways to produced energy used nowadays, it is also a complex phenomenon, where the turbulent flow, chemical reactions, different phases and different heat transfer phenomena can interact. Better understanding of these interactions is essential to improve the actual combustion system and to developed the new ones. The goal of this thesis is to study the interaction of the turbulent combustion with the thermal radiation by the use of three-dimensional numerical simulation. For that, using a computational tool named CORBA, a code for the combustion Large Eddy Simulation (LES) was coupled with a radiative heat transfer code. This technique allows the exchange of information between the two codes without big changes in their structure, then it is possible to take advantages of the different characteristic time from each phenomenon in a high performance parallel computational environment. In a first time, two-dimensional simulation of a turbulent propane/air premixed flame stabilized downstream a triangular flame holder has been realised. After the changing of the twodimensional radiation code for another three-dimensional one, the same configuration was simulated in 3D. A mesh with more than 4. 7 millions cells for the combustion code (AVBP) and more than 3. 3 millions cells for the radiation code (DOMASIUM) are used. Results show a changing in the temperature and species fields, as well as in the flame dynamics when the thermal radiation was taken into account, with a minor intensity in the three-dimensional simulations. This method, also, shows that it is possible to perform 3D complex simulations in a industrial acceptable time
Sjöström, Stina. "Numerical exploration of radiative-dynamic interactions in cirrus." Thesis, Uppsala University, Department of Earth Sciences, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8201.
Повний текст джерелаAn important factor in forecast models today is cirrus clouds, but not much are known about their dynamics which makes them hard to parameterize. In this study a new theory was derived to enable a more correct way to describe the interplay between radiative heating and dynamical motions in these clouds. This hypothesis was tested by performing three dimensional simulations of cirrus clouds, using the University of Utah Large Eddy Simulator (UULES). Eleven clouds of varying initial radius and ice water mixing ratio were examined, with the aim of finding a pattern in their dynamical features. The model was set up without short wave radiation from the sun, and without any precipitation affecting the clouds, leaving only terrestrial heating and atmospheric cooling to create motions in the clouds. Two categories of initial dynamics could be seen:
• Isentropic adjustment: The isentropes within the cloud are adjusting to the environment due to rising of the cloud. Causes horizontal spreading through continuity.
• Density current: A dominating initial feature is spreading in small mixed layers at the cloud top and bottom. Caused by the density difference between the cloud and its environment.
An interesting phenomenon showing up in the simulations was mammatus clouds, which were visible in two of the cases. The only instability available to create these clouds was the radiative heating difference, which does not agree with present theories for how they form.
Two dimensionless numbers S and C were derived to describe the nature of the spreading motions and convection in the cloud. Both these numbers agreed with results.
Cirrusmoln har en viktig roll i dagens prognosmodeller, men är svåra att parametrisera på ett bra sätt eftersom man inte har tillräcklig kunskap om deras dynamik och utveckling. I denna studie togs en ny teori fram för att göra det möjligt att på ett mer korrekt sätt beskriva samspelet mellan strålningsuppvärmning och dynamiska rörelser i dessa moln. Hypotesen testades sedan genom att utföra tredimensionella simuleringar av cirrus moln med hjälp av University of Utah Large Eddy Simulator (UULES). Elva moln med varierande initiella radier och isvatteninnehåll undersöktes, med målet att finna ett mönster i dynamik och utveckling. UULES ställdes in så att miljön där molnen simulerades varken innehöll kortvågsstrålning från solen eller nederbörd. Således fanns det bara en resterande faktor för att skapa rörelser i molnen; skillnaden i den infraröda strålningsuppvärmningen mellan molntopp och molnbas. Två kategorier av initiella rörelser uppstod i molnen:
• Justering av isotroper: Molnen stiger i höjd vilket gör att isotroperna inuti dem justeras till omgivningen. Detta orsakar horisontell spridning genom kontinuitet.
• Densitets ström: Horisontell spridning av molnen koncentrerad till mixade skikt i de övre och undre delarna. Orsakas av skillnad i densitet mellan moln och omgivning.
Ett intressant fenomen som visade sig i två av simuleringarna var mammatusmoln. Den enda instabiliteten tillgänglig för att skapa dessa moln var skillnaden i strålningsuppvärmning mellan molntopp och -bas. Detta stämmer inte överrens med nuvarande teorier för hur dessa moln skapas.
Två dimensionslösa tal, S och C togs fram för att indikera vilken av de initiella rörelserna som dominerar i molnet, samt vilken typ av konvektion som dominerar. Båda dessa tal stämde väl överrens med resultat.
Gung, Tza-Jing. "Radar range profile simulation of isolated trees with radiative transfer theory." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/36572.
Повний текст джерелаZhang, Jin. "Radiation Monte Carlo approcah dedicated to the coupling with LES reactive simulation." Phd thesis, Ecole Centrale Paris, 2011. http://tel.archives-ouvertes.fr/tel-00594229.
Повний текст джерелаChapman, David D. "A Monte-Carlo-based simulation of jet exhaust nozzle thermal radiative signatures." Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-10062009-020132/.
Повний текст джерелаWu, Yi 1960. "A MONTE CARLO SIMULATION OF NEAR INFRARED RADIATION TRANSFER IN CLOUDS." Thesis, The University of Arizona, 1986. http://hdl.handle.net/10150/276367.
Повний текст джерелаКниги з теми "Radiative simulation"
Norman, John M. Final report on research on NASA grant entitled plant architecture, growth and radiative transfer for terrestrial and space environments, Feb. 1, 1989 - Jan. 31, 1993. [Washington, DC: National Aeronautics and Space Administration, 1993.
Знайти повний текст джерелаNong tian fu she chuan shu ji li yu yao gan cheng xiang mo ni. Beijing Shi: Qi xiang chu ban she, 2012.
Знайти повний текст джерелаRodgers, Scheller Rhonda, and Deye James A, eds. Radiation therapy simulation workbook. Oxford: Pergamon Press, 1986.
Знайти повний текст джерелаBuckalew, William H. Cobalt-60 simulation of LOCA radiation effects. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1989.
Знайти повний текст джерелаBuckalew, William H. Cobalt-60 simulation of LOCA radiation effects. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1989.
Знайти повний текст джерелаRandall, David A. Analysis of the diurnal cycle of precipitation and its relation to cloud radiative forcing using TRMM products: Annual progress report, for the period 7/1/97 through 6/30/98 : grant #NAG5-4749. [Washington, DC: National Aeronautics and Space Administration, 1998.
Знайти повний текст джерелаEckstein, Wolfgang. Computer simulation of ion-solid interactions. Berlin: Springer-Verlag, 1991.
Знайти повний текст джерелаLiu, J. Radiative interactions in chemically reacting compressible nozzle flows using Monte Carlo simulations. Norfolk, Va: Institute for Computational and Applied Mechanics, Old Dominion University, 1994.
Знайти повний текст джерелаNieves, L. A. The economic costs of radiation-induced health effects: Estimation and simulation. Washington, DC: Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, 1988.
Знайти повний текст джерелаKling, Andreas, Fernando J. C. Baräo, Masayuki Nakagawa, Luis Távora, and Pedro Vaz, eds. Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2.
Повний текст джерелаЧастини книг з теми "Radiative simulation"
Beckers, Pierre, and Benoit Beckers. "Radiative Simulation Methods." In Solar Energy at Urban Scale, 205–36. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118562062.ch10.
Повний текст джерелаKersch, Alfred, and William J. Morokoff. "Modeling of Radiative Heat Transfer." In Transport Simulation in Microelectronics, 145–73. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9080-9_5.
Повний текст джерелаFouquart, Y. "Radiative Transfer in Climate Models." In Physically-Based Modelling and Simulation of Climate and Climatic Change, 223–83. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3041-4_5.
Повний текст джерелаKersch, A., and W. Morokoff. "Radiative Heat Transfer with Quasi Monte Carlo Methods." In Simulation of Semiconductor Devices and Processes, 373–76. Vienna: Springer Vienna, 1993. http://dx.doi.org/10.1007/978-3-7091-6657-4_92.
Повний текст джерелаPereira, E. J. N., J. M. G. Martinho, and M. N. Berberan-Santos. "Radiative Transport in Multiple Scattering Media." In Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, 577–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_92.
Повний текст джерелаGokhale, Maya, Janette Frigo, Christine Ahrens, Justin L. Tripp, and Ron Minnich. "Monte Carlo Radiative Heat Transfer Simulation on a Reconfigurable Computer." In Field Programmable Logic and Application, 95–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30117-2_12.
Повний текст джерелаJun, Kong, and Ding Yihui. "Numerical Simulation of the Effect of Radiative Processes on the Development of Tropical Cyclones." In Atmospheric Radiation, 250–58. Boston, MA: American Meteorological Society, 1987. http://dx.doi.org/10.1007/978-1-935704-18-8_39.
Повний текст джерелаGreffet, J. J., J. B. Thibaud, L. Roux, P. Mareschal, and N. Vukadinovic. "Scattering by a Thin Slab: Comparison Between Radiative Transfer and Electromagnetic Simulation." In Waves and Imaging through Complex Media, 299–305. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0975-1_16.
Повний текст джерелаYuejuan, Chen, and H. L. Kuo. "Calculated Distribution of the Radiative Heating Rate Over the Qinghai-Xizang Plateau in a Numerical Simulation." In Atmospheric Radiation, 92–98. Boston, MA: American Meteorological Society, 1987. http://dx.doi.org/10.1007/978-1-935704-18-8_17.
Повний текст джерелаZarco-Tejada, Pablo J., John R. Miller, and Gina H. Mohammed. "Remote Sensing of Solar-Induced Chlorophyll Fluorescence from Vegetation Hyperspectral Reflectance and Radiative Transfer Simulation." In From Laboratory Spectroscopy to Remotely Sensed Spectra of Terrestrial Ecosystems, 233–69. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-1620-8_11.
Повний текст джерелаТези доповідей конференцій з теми "Radiative simulation"
Selcuk, Nevin, Ahmet B. Uygur, Isil Ayranci, and Tanil Tarhan. "TRANSIENT SIMULATION OF RADIATING FLOWS." In RADIATIVE TRANSFER - IV. Fourth International Symposium on Radiative Transfer. New York: Begellhouse, 2004. http://dx.doi.org/10.1615/ichmt.2004.rad-4.320.
Повний текст джерелаPerez, P., A. de Lataillade, Mouna El Hafi, and R. Fournier. "OPTIMIZED NET EXCHANGE MONTE CARLO SIMULATION OF FLAMES RADIATION." In RADIATION III. ICHMT Third International Symposium on Radiative Transfer. Connecticut: Begellhouse, 2001. http://dx.doi.org/10.1615/ichmt.2001.radiationsymp.120.
Повний текст джерелаQuan, Haiyong, and Zhixiong Guo. "SIMULATION OF WHISPERING-GALLERY-MODE RESONANCE FOR OPTICAL MINIATURE BIOSENSOR." In RADIATIVE TRANSFER - IV. Fourth International Symposium on Radiative Transfer. New York: Begellhouse, 2004. http://dx.doi.org/10.1615/ichmt.2004.rad-4.290.
Повний текст джерелаYan, Zhenghua, Bengt Sunden, and Michael A. Delichatsios. "Analysis of Flame Radiative Heat Transfer Using Large Eddy Simulation." In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88202.
Повний текст джерелаRen, Tao, Michael F. Modest, and Somesh Roy. "Monte Carlo Simulation for Radiative Transfer in a High-Pressure Industrial Gas Turbine Combustion Chamber." In ASME 2017 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/ht2017-4819.
Повний текст джерелаGuo, Zhixiong, Janice Aber, Bruce Garetz, and Sunil Kumar. "PULSE LASER RADIATION TRANSFER: MONTE CARLO SIMULATION AND COMPARISON WITH EXPERIMENT." In RADIATION III. ICHMT Third International Symposium on Radiative Transfer. Connecticut: Begellhouse, 2001. http://dx.doi.org/10.1615/ichmt.2001.radiationsymp.40.
Повний текст джерелаFalcitelli, M., Sauro Pasini, and Leonardo Tognotti. "THERMOFLUIDODYNAMIC SIMULATION OF PRACTICAL COMBUSTION SYSTEMS AND PREDICTION OF NOX BY REACTOR NETWORK ANALYSIS." In RADIATION III. ICHMT Third International Symposium on Radiative Transfer. Connecticut: Begellhouse, 2001. http://dx.doi.org/10.1615/ichmt.2001.radiationsymp.590.
Повний текст джерелаTomic, Stanko. "Radiative and non-radiative processes in intermediate band solar cells." In 2012 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). IEEE, 2012. http://dx.doi.org/10.1109/nusod.2012.6316542.
Повний текст джерелаAnderson, Gail P., Alexander Berk, Prabhat K. Acharya, Michael W. Matthew, Lawrence S. Bernstein, James H. Chetwynd, Jr., H. Dothe, et al. "MODTRAN4 version 2: radiative transfer modeling." In Aerospace/Defense Sensing, Simulation, and Controls, edited by Sylvia S. Shen and Michael R. Descour. SPIE, 2001. http://dx.doi.org/10.1117/12.437035.
Повний текст джерелаPoitou, Damien, Jorge Amaya, Mouna El Hafi, and Benedicte Cuenot. "COUPLING RADIATION MODELLING WITH TURBULENT COMBUSTION IN LARGE EDDY SIMULATION." In RADIATIVE TRANSFER - VI. Proceedings of the 6th International Symposium on Radiative Transfer. New York: Begellhouse, 2010. http://dx.doi.org/10.1615/ichmt.2010.rad-6.520.
Повний текст джерелаЗвіти організацій з теми "Radiative simulation"
Arvo, James. Analysis and Simulation of Radiative Transfer in the Presence of Non-Lambertian Surfaces. Fort Belvoir, VA: Defense Technical Information Center, October 2000. http://dx.doi.org/10.21236/ada384770.
Повний текст джерелаGuler, Hayg. Contribution to the G0 violation of parity experience: calculation and simulation of radiative corrections and the background noise study; Contribution a l'experience G0 de violation de la parite : calcul et simulation des corrections radiatives et etude du bruit de fond. Office of Scientific and Technical Information (OSTI), December 2003. http://dx.doi.org/10.2172/955403.
Повний текст джерелаParks, Don, Randall Ingemanson, Eric Salberta, Paul Steen, and John Thompson. Advanced Simulator Power Flow Technology/Advanced Radiation Simulation. Fort Belvoir, VA: Defense Technical Information Center, March 1996. http://dx.doi.org/10.21236/ada305391.
Повний текст джерелаFan, Jianhua, Zhiyong Tian, Simon Furbo, Weiqiang Kong, and Daniel Tschopp. Simulation and design of collector array units within large systems. IEA SHC Task 55, October 2019. http://dx.doi.org/10.18777/ieashc-task55-2019-0004.
Повний текст джерелаKollman, Craig. Rare event simulation in radiation transport. Office of Scientific and Technical Information (OSTI), October 1993. http://dx.doi.org/10.2172/10172053.
Повний текст джерелаKiv, A. E., T. I. Maximova, and V. N. Soloviov. MD Simulation of the Ion-Stimulated Relaxation in Silicon Surface Layers. [б. в.], June 2000. http://dx.doi.org/10.31812/0564/1278.
Повний текст джерелаParks, Donal, Phil Coleman, Randy Ingermanson, Paul Steen, and John Thompson. Advanced Simulator Power Flow Technology/Advanced Radiation Simulation Volume 2: MHD Modeling of POS and Power Flow. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada377780.
Повний текст джерелаJacobs, Patrick W. M., Арнольд Юхимович Ків, Володимир Миколайович Соловйов, and Tatyana N. Maximova. Radiation-stimulated processes in Si surface layers. Transport and Telecommunication Institute, 1999. http://dx.doi.org/10.31812/0564/1023.
Повний текст джерелаSullivan, John P. GPS Radiation Instrument Modeling and Simulation (Project w14_gpsradiation). Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1188181.
Повний текст джерелаBoyd, Lain D. Monte Carlo Simulation of Radiation in Hypersonic Flows. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada414031.
Повний текст джерела