Добірка наукової літератури з теми "Radiation theray"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Radiation theray".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Radiation theray"

1

Kim, Sung-Kyu. "Quality Assurance in Intensity Modulated Radiation Theray." Yeungnam University Journal of Medicine 25, no. 2 (2008): 85. http://dx.doi.org/10.12701/yujm.2008.25.2.85.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Muñoz-Neira, Milton, Jorge Cruz-Duarte, and Rodrigo Correa. "Calentamiento simultáneo microondas-radiación térmica." Revista UIS Ingenierías 19, no. 2 (March 5, 2020): 33–41. http://dx.doi.org/10.18273/revuin.v19n2-2020004.

Повний текст джерела
Анотація:
En este artículo se presentan resultados de la simulación del tratamiento térmico híbrido de materiales, utilizando ondas electromagnéticas en el rango de las microondas y el calor por radiación térmica generado por una resistencia eléctrica. La resistencia se ubicó de tal forma que solo la mitad del sólido (una esfera de dos capas) recibela energía generada por ésta. Además, la resistenciase controló de tal forma que generó energía térmicadeforma uniforme y constante. Igualmente,se definieronmateriales con propiedades termofísicas diferentes en cada capa, pero invariantes tantocon la posicióncomo con la temperatura. El flujo de calor volumétrico se consideró constante con el tiempo. Los perfiles de temperatura para cada capa mostraron variaciones en el tiempo y la posición, observándose que elcalentamiento simultáneo facilita lamanipulación de estos perfiles, de acuerdo con las necesidades del tratamiento térmico. Así, se evidenció la ventaja de éste tipo decalentamiento híbrido.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Reddya, U. Umamaheswara, and Panduranganath . "Comparison of Volumetric Modulated ARC Therapy (VMAT) to Conventional Intensity Modulated Radiation Therapy for Carcinoma Cervix." Indian Journal of Cancer Education and Research 5, no. 2 (2017): 113–25. http://dx.doi.org/10.21088/ijcer.2321.9815.5217.10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Surzhikov, A. P. "PHASE TRANSFORMATIONS IN FERRITES DURING RADIATION-THERMAL SINTERING." Eurasian Physical Technical Journal 17, no. 1 (June 2020): 26–34. http://dx.doi.org/10.31489/2020no1/26-34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cruz, Marli. "Stroke-Like Migraine Attacks After Radiation Therapy (SMART): Um Caso Clínico." Medicina Interna 26, no. 4 (December 11, 2019): 308–11. http://dx.doi.org/10.24950/rspmi/cc/20/19/4/2019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rebeca, Steve. "Metastatic Brain Tumors: Current Therapeutic Options through Surgery and Radiation Therapy." Neuroscience and Neurological Surgery 1, no. 2 (March 20, 2017): 01–03. http://dx.doi.org/10.31579/2578-8868/055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chiang, Ren-Tai. "Analysis of Radiation Interactions and Biological Effects for Boron Neutron Capture Therapy." ASEAN Journal on Science and Technology for Development 35, no. 3 (December 24, 2018): 203–7. http://dx.doi.org/10.29037/ajstd.535.

Повний текст джерела
Анотація:
The direct and indirect ionizing radiation sources for boron neutron capture therapy (BNCT)are identi?ed. The mechanisms of physical, chemical and biological radiation interactions for BNCT are systematically described and analyzed. The relationship between the effect of biological radiation and radiation dose are illustrated and analyzed for BNCT. If the DNAs in chromosomes are damaged by ion- izing radiations, the instructions that control the cell function and reproduction are also damaged. This radiation damage may be reparable, irreparable, or incorrectly repaired. The irreparable damage can result in cell death at next mitosis while incorrectly repaired damage can result in mutation. Cell death leads to variable degrees of tissue dysfunction, which can affect the whole organism’s functions. Can- cer cells cannot live without oxygen and nutrients via the blood supply. A cancer tumor can be shrunk by damaging angiogenic factors and/or capillaries via ionizing radiations to decrease blood supply into the cancer tumor. The collisions between ionizing radiations and the target nuclei and the absorption of the ultraviolet, visible light, infrared and microwaves from bremsstrahlung in the tumor can heat up and damage cancer cells and function as thermotherapy. The cancer cells are more chemically and biologically sensitive at the BNCT-induced higher temperatures since free-radical-induced chemical re- actions are more random and vigorous at higher temperatures after irradiation, and consequently the cancer cells are harder to divide or even survive due to more cell DNA damage. BNCT is demonstrated via a recent clinical trial that it is quite effective in treating recurrent nasopharyngeal cancer.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Malyshev A.V., A. V. "RELATIONSHIP BETWEEN MAGNETIC PROPERTIES AND MICROSTRUCTURE OF FERRITES DURING SINTERING IN RADIATION AND RADIATION-THERMAL CONDITIONS." Eurasian Physical Technical Journal 18, no. 1 (March 30, 2021): 3–8. http://dx.doi.org/10.31489/2021no1/3-8.

Повний текст джерела
Анотація:
The studies of correlation between magnetic properties and microstructure were conducted on samples of lithium-substituted ferrite, sintered in radiation and radiation-thermal conditions. Radiation-thermal sintering was performed for compacts irradiated with a pulsed electron beam with energy of (1.5–2.0) MeV, beam current per pulse of (0.5-0.9) A, irradiation pulse duration of 500 μs, pulse repetition rate of (5–50) Hz, and compact heating rate of 1000 C/min. Sintering in thermal furnaces (T-sintering) was carried out in a preheated chamber electric furnace. The paper shows that magnetic induction does not depend on the ferrite grain size. In this case, the coercive force is inversely proportional to the grain size and depends on the intragranular porosity of ferrite samples. In contrast to thermal sintering, radiation-thermal sintering does not cause capturing of intergranular voids by growing grains and enhances coagulation of intragranular pores.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Castela, A. S., A. M. Simões, G. Davies, and M. G. S. Ferreira. "Weathering of coil-coatings: UV radiation and thermal effects." Revista de Metalurgia 39, Extra (December 17, 2003): 167–73. http://dx.doi.org/10.3989/revmetalm.2003.v39.iextra.1115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Oyelami, Funmilayo H., Ebenezer O. Ige, Bidemi O. Falodun, Olaide Y. Saka-Balogun, and Oluwaseyi A. Adeyemo. "Magneto-Hemodynamics Fluid Hyperthermia in a Tumor with Blood Perfusion." Mathematical Modelling of Engineering Problems 9, no. 5 (December 13, 2022): 1210–16. http://dx.doi.org/10.18280/mmep.090507.

Повний текст джерела
Анотація:
In order to increase the drug potency and cancer treatment effectiveness, hyperthermia therapy is an adjuvant procedure in which perfused bodily tissues are heated to extreme temperatures. While certain types of hyperthermia treatments rely on thermal radiations from single-sourced electro-radiation measures, conjugating dual radiation field sources is being discussed in an effort to enhance the delivery of therapy. The thermal efficiency of a combined infrared hyperemia with nanoparticle recirculation near an applied magnetic field on subcutaneous strata of a model lesion as an ablation technique is investigated computationally in this research. To tackle the equation of linked momentum and thermal equilibrium in the blood-perfused tissue domain of a spongy fibrous tissue, an intricate Spectral relaxation method (SRM) was developed. The well-known Roseland diffusion approximation was used to define thermal diffusion regimes in the presence of external magnetic field imposition and to outline the effects of radiative flux inside the computational domain. Utilizing pore-scale porosity mechanics, the contribution of tissue sponginess was studied in a number of clinically relevant circumstances. Our findings demonstrated that magnetic field architecture could govern hemodynamic regimes at the blood-tissue interface across a significant depth of spongy lesion while permitting thermal transport across the depth of the model lesion. This parameter-indicator could be used to regulate how much hyperthermia therapy is administered to intravenously perfused tissue.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Radiation theray"

1

PISANO, FRANCESCA. "The role of the cystectomy and minimally invasive surgery in the complex patient with bladder cancer." Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2895636.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Crosbie, Jeffrey. "Synchrotron microbeam radiation therapy." Monash University. Faculty of Science. School of Physics, 2008. http://arrow.monash.edu.au/hdl/1959.1/64948.

Повний текст джерела
Анотація:
This thesis presents interdisciplinary, collaborative research in the field of synchrotron microbeam radiation therapy (MRT). Synchrotron MRT is an experimental radiotherapy technique under consideration for clinical use, following demonstration of efficacy in tumour-bearing rodent models with remarkable sparing of normal tissue. A high flux, X-ray beam from a synchrotron is segmented into micro-planar arrays of narrow beams, typically 25 μm wide and with peak-to-peak separations of 200 μm. The radiobiological effect of MRT and the underlying cellular mechanisms are poorly understood. The ratio between dose in the ‘peaks’of the microbeams to the dose in the ‘valleys’, between the microbeams, has strong biological significance. However, there are difficulties in accurately measuring the dose distribution for MRT. The aim of this thesis is to address elements of both the dosimetric and radiobiological gaps that exist in the field of synchrotron MRT. A method of film dosimetry and microdensitometry was adapted in order to measure the peak-to-valley dose ratios for synchrotron MRT. Two types of radiochromic film were irradiated in a phantom and also flush against a microbeam collimator on beamline BL28B2 at the SPring-8 synchrotron. The HD-810 and EBT varieties of radiochromic film were used to record peak dose and valley dose respectively. In other experiments, a dose build-up effect was investigated and the half value layer of the beam with and without the microbeam collimator was measured to investigate the effect of the collimator on the beam quality. The valley dose obtained for films placed flush against the collimator was approximately 0.25% of the peak dose. Within the water phantom, the valley dose had increased to between 0.7–1.8% of the peak dose, depending on the depth in the phantom. We also demonstrated, experimentally and by Monte Carlo simulation, that the dose is not maximal on the surface and that there is a dose build-up effect. The microbeam collimator did not make an appreciable difference to the beam quality. The measured values of peak-to-valley dose ratio were higher than those predicted by previously published Monte Carlo simulation papers. For the radiobiological studies, planar (560 Gy) or cross-planar (2 x 280 Gy or 2 x 560 Gy) irradiations were delivered to mice inoculated with mammary tumours in their leg, on beamline BL28B2 at the SPring-8 synchrotron. Immunohistochemical staining for DNA double strand breaks, proliferation and apoptosis was performed on irradiated tissue sections. The MRT response was compared to conventional radiotherapy at 11, 22 or 44 Gy. The results of the study provides the first evidence for a differential tissue response at a cellular level between normal and tumour tissues following synchrotron MRT. Within 24 hours of MRT to tumour, obvious cell migration had occurred into and out of irradiated zones. MRT-irradiated tumours showed significantly less proliferative capacity by 24 hours post-irradiation (P = 0.002). Median survival times for EMT-6.5 and 67NR tumour-bearing mice following MRT (2 x 560 Gy) and conventional radiotherapy (22 Gy) increased significantly compared to unirradiated controls (P < 0.0005). However, there was markedly less normal tissue damage from MRT than from conventional radiotherapy. MRT-treated normal skin mounts a more coordinated repair response than tumours. Cell-cell communication of death signals from directly irradiated, migrating cells, may explain why tumours are less resistant to high dose MRT than normal tissue.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Skiöld, Sara. "Radiation induced biomarkers of individual sensitivity to radiation therapy." Doctoral thesis, Stockholms universitet, Institutionen för molekylär biovetenskap, Wenner-Grens institut, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-97123.

Повний текст джерела
Анотація:
Fifty percent of solid cancers are treated with radiation therapy (RT). The dose used in RT is adjusted to the most sensitive individuals so that not more than 5% of the patients will have severe adverse healthy tissue effects. As a consequence, the majority of the patients will receive a suboptimal dose, as they would have tolerated a higher total dose and received a better tumor control. Thus, if RT could be individualized based on radiation sensitivity (RS), more patients would be cured and the most severe adverse reactions could be avoided. At present the mechanisms behind RS are not known. The long term aim of this thesis was to develop diagnostic tools to assess the individual RS of breast cancer patients and to better understand the mechanisms behind the RS and radiation effects after low dose exposures. The approach was based on the hypothesis that biomarkers of individual RS, in terms of acute adverse skin reactions after breast cancer RT, can be found in whole blood that has been stressed by low doses of ionizing radiation (IR).  To reach this goal two different approaches to identify biomarkers of RS have been investigated. A protocol for the analysis of differential protein expression in response to low dose in vitro irradiated whole blood was developed (paper I). This protocol was then used to investigate the proteomic profile of radiation sensitive and normo-sensitive patients, using isotope-coded protein labeled proteomics (ICPL). The results from the ICPL study (paper III) show that the two patient groups have different protein expression profiles both at the basal level and after IR. In paper II the potential biomarker 8-oxo-dG was investigated in serum after IR. The relative levels of IR induced 8-oxo-dG from radiation sensitive patients differ significantly from normo-sensitive patients. This indicates that the sensitive patients differ in their cellular response to IR and that 8-oxo-dG is a potential biomarker for RS.

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Manuscript.

Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fu, Ceji. "Radiative Properties of Emerging Materials and Radiation Heat Transfer at the Nanoscale." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/4941.

Повний текст джерела
Анотація:
A negative index material (NIM), which possesses simultaneously negative permittivity and permeability, is an emerging material that has caught many researchers attention after it was first demonstrated in 2001. It has been shown that electromagnetic waves propagating in NIMs have some remarkable properties such as negative phase velocities and negative refraction and hold enormous promise for applications in imaging and optical communications. This dissertation is centered on investigating the unique aspects of the radiative properties of NIMs. Photon tunneling, which relies on evanescent waves to transfer radiative energy, has important applications in thin-film structures, microscale thermophotovoltaic devices, and scanning thermal microscopes. With multilayer thin-film structures, photon tunneling is shown to be greatly enhanced using NIM layers. The enhancement is attributed to the excitation of surface or bulk polaritons, and depends on the thicknesses of the NIM layers according to the phase matching condition. A new coherent thermal emission source is proposed by pairing a negative permittivity (but positive permeability) layer with a negative permeability (but positive permittivity) layer. The merits of such a coherent thermal emission source are that coherent thermal emission occurs for both s- and p-polarizations, without use of grating structures. Zero power reflectance from an NIM for both polarizations indicates the existence of the Brewster angles for both polarizations under certain conditions. The criteria for the Brewster angle are determined analytically and presented in a regime map. The findings on the unique radiative properties of NIMs may help develop advanced energy conversion devices. Motivated by the recent advancement in scanning probe microscopy, the last part of this dissertation focuses on prediction of the radiation heat transfer between two closely spaced semi-infinite media. The objective is to investigate the dopant concentration of silicon on the near-field radiation heat transfer. It is found that the radiative energy flux can be significantly augmented by using heavily doped silicon for the two media separated at nanometric distances. Large enhancement of radiation heat transfer at the nanoscale may have an impact on the development of near-field thermal probing and nanomanufacturing techniques.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bergh, Alphonsus Cornelis Maria van den. "Radiation therapy in pituitary adenomas." [S.l. : [Groningen : s.n.] ; University of Groningen] [Host], 2008. http://irs.ub.rug.nl/ppn/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Flejmer, Anna M. "Radiation burden from modern radiation therapy techniques including proton therapy for breast cancer treatment - clinical implications." Doctoral thesis, Linköpings universitet, Avdelningen för kliniska vetenskaper, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-127370.

Повний текст джерела
Анотація:
The purpose of this thesis was to study the clinical implications of modern radiotherapy techniques for breast cancer treatment. This was investigated in several individual studies. Study I investigated the implications of using the analytical anisotropic algorithm (AAA) from the perspective of clinical recommendations for breast cancer radiotherapy. Pencil beam convolution plans of 40 breast cancer patients were recalculated with AAA. The latter plans had a significantly worse coverage of the planning target volume (PTV) with the 93% isodose, higher maximum dose in hotspots, higher volumes of the ipsilateral lung receiving doses below 25 Gy and smaller volumes with doses above 25 Gy. AAA also predicted lower doses to the heart. Study II investigated the implications of using the irregular surface compensator (ISC), an electronic compensation algorithm, in comparison to three‐dimensional conformal radiotherapy (3D‐CRT) for breast cancer treatment. Ten breast cancer patients were planned with both techniques. The ISC technique led to better coverage of the clinical target volume of the tumour bed (CTV‐T) and PTV in almost all patients with significant improvement in homogeneity. Study III investigated the feasibility of using scanning pencil beam proton therapy for regional and loco‐regional breast cancer with comparison of ISC photon planning. Ten patients were included in the study, all with dose heterogeneity in the target and/or hotspots in the normal tissues outside the PTV. The proton plans showed comparable or better CTV‐T and PTV coverage, with large reductions in the mean doses to the heart and the ipsilateral lung. Study IV investigated the added value of enhanced inspiration gating (EIG) for proton therapy. Twenty patients were planned on CT datasets acquired during EIG and freebreathing (FB) using photon 3D‐CRT and scanning proton therapy. Proton spot scanning has a high potential to reduce the irradiation of organs‐at‐risk for most patients, beyond what could be achieved with EIG and photon therapy, especially in terms of mean doses to the heart and the left anterior descending artery. Study V investigated the impact of physiological breathing motion during proton radiotherapy for breast cancer. Twelve thoracic patients were planned on CT datasets during breath‐hold at inhalation phase and breath‐hold at exhalation phase. Between inhalation and exhalation phase there were very small differences in dose delivered to the target and cardiovascular structures, with very small clinical implication. The results of these studies showed the potential of various radiotherapy techniques to improve the quality of life for breast cancer patients by limiting the dose burden for normal tissues.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Francoeur, Mathieu. "NEAR-FIELD RADIATIVE TRANSFER: THERMAL RADIATION, THERMOPHOTOVOLTAIC POWER GENERATION AND OPTICAL CHARACTERIZATION." UKnowledge, 2010. http://uknowledge.uky.edu/gradschool_diss/58.

Повний текст джерела
Анотація:
This dissertation focuses on near-field radiative transfer, which can be defined as the discipline concerned with energy transfer via electromagnetic waves at sub-wavelength distances. Three specific subjects related to this discipline are investigated, namely nearfield thermal radiation, nanoscale-gap thermophotovoltaic (nano-TPV) power generation and optical characterization. An algorithm for the solution of near-field thermal radiation problems in one-dimensional layered media is developed, and several tests are performed showing the accuracy, consistency and versatility of the procedure. The possibility of tuning near-field radiative heat transfer via thin films supporting surface phononpolaritons (SPhPs) in the infrared is afterwards investigated via the computation of the local density of electromagnetic states and the radiative heat flux between two films. Results reveal that due to SPhP coupling, fine tuning of near-field radiative heat transfer is possible by solely varying the structure of the system, the structure being the film thicknesses and their distance of separation. The coexistence of two regimes of near-field thermal radiation between two thin films of silicon carbide is demonstrated via numerical simulations and an asymptotic analysis of the radiative heat transfer coefficient. The impacts of thermal effects on the performances of nano-TPV power generators are investigated via the solution of the coupled near-field thermal radiation, charge and heat transport problem. The viability of nano-TPV devices proposed so far in the literature, based on a tungsten radiator at 2000 K and indium gallium antimonide cell, is questioned due to excessive heating of the junction converting thermal radiation into electricity. Using a convective thermal management system, a heat transfer coefficient as high as 105 Wm-2K-1 is required to maintain the junction at room temperature. The possibility of characterizing non-intrusively, and potentially in real-time, nanoparticles from 5 nm to 100 nm in size via scattered surface wave is explored. The feasibility of the characterization framework is theoretically demonstrated via a sensitivity analysis of the scattering matrix elements. Measurements of the scattering matrix elements for 200 nm and 50 nm gold spherical particles show the great sensitivity of the characterization tool, although an ultimate calibration is difficult with the current version of the experimental set-up.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Engelbeen, Céline. "The segmentation problem in radiation therapy." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210107.

Повний текст джерела
Анотація:
The segmentation problem arises in the elaboration of a radiation therapy plan. After the cancer has been diagnosed and the radiation therapy sessions have been prescribed, the physician has to locate the tumor as well as the organs situated in the radiation field, called the organs at risk. The physician also has to determine the different dosage he wants to deliver in each of them and has to define a lower bound on the dosage for the tumor (which represents the minimum amount of radiation that is needed to have a sufficient control of the tumor) and an upper bound for each organ at risk (which represents the maximum amount of radiation that an organ can receive without damaging). Designing a radiation therapy plan that respects these different bounds of dosage is a complex optimization problem that is usually tackled in three steps. The segmentation problem is one of them.

Mathematically, the segmentation problem amounts to decomposing a given nonnegative integer matrix A into a nonnegative integer linear combination of some binary matrices. These matrices have to respect the consecutive ones property. In clinical applications several constraints may arise that reduce the set of binary matrices which respect the consecutive ones property that we can use. We study some of them, as the interleaf distance constraint, the interleaf motion constraint, the tongue-and-groove constraint and the minimum separation constraint.

We consider here different versions of the segmentation problem with different objective functions. Hence we deal with the beam-on time problem in order to minimize the total time during which the patient is irradiated. We study this problem under the interleaf distance and the interleaf motion constraints. We consider as well this last problem under the tongue-and-groove constraint in the binary case. We also take into account the cardinality and the lex-min problem. Finally, we present some results for the approximation problem.

/Le problème de segmentation intervient lors de l'élaboration d'un plan de radiothérapie. Après que le médecin ait localisé la tumeur ainsi que les organes se situant à proximité de celle-ci, il doit aussi déterminer les différents dosages qui devront être délivrés. Il détermine alors une borne inférieure sur le dosage que doit recevoir la tumeur afin d'en avoir un contrôle satisfaisant, et des bornes supérieures sur les dosages des différents organes situés dans le champ. Afin de respecter au mieux ces bornes, le plan de radiothérapie doit être préparé de manière minutieuse. Nous nous intéressons à l'une des étapes à réaliser lors de la détermination de ce plan: l'étape de segmentation.

Mathématiquement, cette étape consiste à décomposer une matrice entière et positive donnée en une combinaison positive entière linéaire de certaines matrices binaires. Ces matrices binaires doivent satisfaire la contrainte des uns consécutifs (cette contrainte impose que les uns de ces matrices soient regroupés en un seul bloc sur chaque ligne). Dans les applications cliniques, certaines contraintes supplémentaires peuvent restreindre l'ensemble des matrices binaires ayant les uns consécutifs (matrices 1C) que l'on peut utiliser. Nous en avons étudié certaines d'entre elles comme celle de la contrainte de chariots, la contrainte d'interdiciton de chevauchements, la contrainte tongue-and-groove et la contrainte de séparation minimum.

Le premier problème auquel nous nous intéressons est de trouver une décomposition de la matrice donnée qui minimise la somme des coefficients des matrices binaires. Nous avons développé des algorithmes polynomiaux qui résolvent ce problème sous la contrainte de chariots et/ou la contrainte d'interdiction de chevauchements. De plus, nous avons pu déterminer que, si la matrice donnée est une matrice binaire, on peut trouver en temps polynomial une telle décomposition sous la contrainte tongue-and-groove.

Afin de diminuer le temps de la séance de radiothérapie, il peut être désirable de minimiser le nombre de matrices 1C utilisées dans la décomposition (en ayant pris soin de préalablement minimiser la somme des coefficients ou non). Nous faisons une étude de ce problème dans différents cas particuliers (la matrice donnée n'est constituée que d'une colonne, ou d'une ligne, ou la plus grande entrée de celle-ci est bornée par une constante). Nous présentons de nouvelles bornes inférieures sur le nombre de matrices 1C ainsi que de nouvelles heuristiques.

Finalement, nous terminons par étudier le cas où l'ensemble des matrices 1C ne nous permet pas de décomposer exactement la matrice donnée. Le but est alors de touver une matrice décomposable qui soit aussi proche que possible de la matrice donnée. Après avoir examiné certains cas polynomiaux nous prouvons que le cas général est difficile à approximer avec une erreur additive de O(mn) où m et n représentent les dimensions de la matrice donnée.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished

Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chan, Kin Wa (Karl), University of Western Sydney, of Science Technology and Environment College, and School of Computing and Information Technology. "Lateral electron disequilibrium in radiation therapy." THESIS_CSTE_CIT_Chan_K.xml, 2002. http://handle.uws.edu.au:8081/1959.7/538.

Повний текст джерела
Анотація:
The radiation dose in radiation therapy is mainly measured by ion chamber. The ion chamber measurement will not be accurate if there is not enough phantom material surrounding the ion chamber to provide the electron equilibrium condition. The lack of electron equilibrium will cause a reduction of dose. This may introduce problems in treatment planning. Because some planning algorithms cannot predict the reduction, they over estimate the dose in the region. Electron disequilibrium will happen when the radiation field size is too small or the density of irradiated material is too low to provide sufficient electrons going into the dose volume. The amount of tissue required to provide electron equilibrium in a 6MV photon beam by three methods: direct calculation from Klein-Nisina equation, measurement in low density material phantom and a Monte Carlo simulation is done to compare with the measurement, an indirect method from a planning algorithm which does not provide an accurate result under lateral electron disequilibrium. When the error starts to happen in such planning algorithm, we know that the electron equilibrium conditions does not exist. Only the 6MV photon beam is investigated. This is because in most cases, a 6MV small fields are used for head and neck (larynx cavity) and 6MV fields are commonly used for lung to minimise uncertainity due to lateral electron at higher energies.
Master of Science (Hons)
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chan, Kin Wa. "Lateral electron disequilibrium in radiation therapy /." View thesis, 2002. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20040507.164802/index.html.

Повний текст джерела
Анотація:
Thesis (M.Sc.) (Hons)-- University of Western Sydney, 2002.
"A thesis submitted in fulfillment of the requirements for the Degree of Master of Science (Honours) in Physics at the University of Western Sydney" "September 2002" "Kin Wa (Karl) Chan of Medical Physics Department of Westmead Hospital and the University of Western Sydney"-- t.p. Bibliography: leaves 100-105.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Radiation theray"

1

Smith, Alfred R., ed. Radiation Therapy Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03107-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Viswanathan, Akila N., Christian Kirisits, Beth E. Erickson, and Richard Pötter, eds. Gynecologic Radiation Therapy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-540-68958-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sauer, Rolf, ed. Interventional Radiation Therapy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84163-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bentel, Gunilla C. Radiation therapy planning. 2nd ed. New York, NY: McGraw-Hill, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

S, Ibbott Geoffrey, and Hendee Eric G, eds. Radiation therapy physics. 3rd ed. Hoboken, N.J: J. Wiley, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

S, Ibbott Geoffrey, ed. Radiation therapy physics. 2nd ed. St. Louis: Mosby, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

D, Altschuler M., and Smith Alfred R, eds. Radiation therapy physics. Berlin: Springer-Verlag, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bentel, Gunilla Carleson. Radiation therapy planning. 2nd ed. New York: McGraw-Hill, Health Professions Division, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

R, Dobelbower Ralph, and Abe Mitsuyuki 1932-, eds. Intraoperative radiation therapy. Boca Raton, Fla: CRC Press, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cukier, Daniel. Coping with radiation therapy. Los Angeles: Lowell House, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Radiation theray"

1

Rimner, Andreas. "Radiation Therapy." In Caring for Patients with Mesothelioma: Principles and Guidelines, 47–56. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-96244-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Molina, Kristine M., Kristine M. Molina, Heather Honoré Goltz, Marc A. Kowalkouski, Stacey L. Hart, David Latini, J. Rick Turner, et al. "Radiation Therapy." In Encyclopedia of Behavioral Medicine, 1614. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1005-9_101431.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ito, Yoshinori. "Radiation Therapy." In Esophageal Squamous Cell Carcinoma, 227–49. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54977-2_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bush, R. S. "Radiation Therapy." In Ovarian Cancer, 74–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69695-4_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Barrett, A., and S. S. Donaldson. "Radiation Therapy." In Cancer in Children, 42–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84722-6_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Robbins, Jared R., John Maclou Longo, and Michael Straza. "Radiation Therapy." In Cancer Regional Therapy, 461–79. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28891-4_37.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bahr, Benjamin, Boris Lemmer, and Rina Piccolo. "Radiation Therapy." In Quirky Quarks, 264–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49509-4_64.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bryant, Curtis, and William M. Mendenhall. "Radiation Therapy." In Juvenile Angiofibroma, 225–42. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45343-9_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Goltra, Peter S. "Radiation Therapy." In Medcin, 690. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-2286-6_85.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bambace, Santa, Giuseppe Bove, Stefania Carbone, Samantha Cornacchia, Angelo Errico, Maria Cristina Frassanito, Giovanna Lovino, Anna Maria Grazia Pastore, and Girolamo Spagnoletti. "Radiation Therapy." In Imaging Gliomas After Treatment, 23–28. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31210-7_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Radiation theray"

1

Affonce, Derek A., and Alex J. Fowler. "THE EFFECT OF THERMAL LENSING DURING SELECTIVE PHOTOTHERMOLYSIS." In RADIATION III. ICHMT Third International Symposium on Radiative Transfer. Connecticut: Begellhouse, 2001. http://dx.doi.org/10.1615/ichmt.2001.radiationsymp.400.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tseng, Charles C., Ruth L. Sikorski, R. Viskanta, and Ming Y. Chen. "On the Role of Radiation in Low Density Silicon Carbide Foams." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86338.

Повний текст джерела
Анотація:
There are a variety of foams that can be used in thermal protection and/or thermal insulation systems. At high temperature (> 1000 K) thermal radiation may be important or dominate heat transfer in a foam; however, studies based on more detailed thermal radiation analysis are limited. In this paper foams are considered to be semitransparent, because radiation can penetrate through the pore (or void) space and/or foam skeleton (ligament), depending on the materials from which the foams are made. Of particular interest of this study is to understand how the properties of foam material such as its density, mean cell size, etc. affect the radiative transfer through silicon carbide (SiC) foams. In the paper, the dimensionless strut diameter is considered an important parameter of foams, and the radiative properties of the foams are analyzed by Mie scattering theory. The attenuation/extinction behavior of SiC foams can be considered as a function of the dimensionless strut diameter of the foam. The results reveal that the foam properties can significantly reduce radiative heat transfer through the high temperature foam used for the thermal protection.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Spinnler, M., and E. R. F. Winter. "STUDIES OF HIGH-TEMPERATURE THERMAL INSULATION SYSTEMS FOR FUEL CELLS." In RADIATION III. ICHMT Third International Symposium on Radiative Transfer. Connecticut: Begellhouse, 2001. http://dx.doi.org/10.1615/ichmt.2001.radiationsymp.350.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Leonardi, S. A., and Jay P. Gore. "RADIATION AND THERMAL PERFORMANCE MEASUREMENTS OF A METAL FIBER BURNER." In RADIATION III. ICHMT Third International Symposium on Radiative Transfer. Connecticut: Begellhouse, 2001. http://dx.doi.org/10.1615/ichmt.2001.radiationsymp.510.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Volz, Sebastian, and Denis Lemonnier. "DETERMINATION OF NANOWIRE THERMAL CONDUCTIVITY BY SOLVING THE PHONON BOLTZMANN TRANSPORT EQUATION." In RADIATION III. ICHMT Third International Symposium on Radiative Transfer. Connecticut: Begellhouse, 2001. http://dx.doi.org/10.1615/ichmt.2001.radiationsymp.30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Otanicar, Todd P. "Enhancing the Heat Transfer in Energy Systems From a Volumetric Approach." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44170.

Повний текст джерела
Анотація:
Many energy systems rely on flat surfaces for energy conversion. The simplest example is the solar thermal collector which absorbs solar irradiance on a flat plate and then transfers heat via conduction, convection and radiation to both the surroundings and more importantly to the working fluid. Conversely a night-sky radiator tries to lose heat via convection and radiation to ambient and night sky respectively while being coupled either via convection or conduction to higher temperature system. The recent advent of nanoparticles, particularly liquid-nanoparticle suspensions termed nanofluids, have led to novel systems that can reduce some of these heat transfer steps by utilizing the whole fluid volume directly. This study looks at the advantages afforded by using the volumetric approach on both the radiative properties of the system and the simplification of the heat transfer networks within these systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Park, Jae Hyun, and Seung Wook Baek. "TWO-PHASE THERMAL RADIATION EFFECTS ON THE SOUND WAVE PROPAGATION IN GAS-PARTICLE TWO-PHASE MEDIUM." In RADIATION III. ICHMT Third International Symposium on Radiative Transfer. Connecticut: Begellhouse, 2001. http://dx.doi.org/10.1615/ichmt.2001.radiationsymp.630.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Narayanaswamy, Arvind, Sheng Shen, and Gang Chen. "Near-Field Thermal Radiation: Comparison of Numerical Results and Experiments." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-69230.

Повний текст джерела
Анотація:
Near–field radiative transfer between two objects can be enhanced by a few order of magnitude compared to the far–field radiative transfer that can be described by Planck’s theory of blackbody radiation and Kirchoffs laws. We have developed a numerical technique to determine the near–field thermal radiative transfer between two spheres. We have measured near–field thermal radiation between a silica sphere and a flat silica substrate as a function of gap between them using an bi–material cantilever as a thermal sensor. The experimental results show qualitative agreement with numerical results. The results of this work indicate that the proximity force approximation, widely used to determine forces between curved objects, is not applicable to near–field radiative transfer between curved objects.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dombrovsky, Leonid A. "A MODIFIED DIFFERENTIAL APPROXIMATION FOR THERMAL RADIATION OF SEMITRANSPARENT NONISOTHERMAL PARTICLES: APPLICATION TO OPTICAL DIAGNOSTICS OF PLASMA SPRAYING." In RADIATION III. ICHMT Third International Symposium on Radiative Transfer. Connecticut: Begellhouse, 2001. http://dx.doi.org/10.1615/ichmt.2001.radiationsymp.420.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kaminski, Deborah A. "THERMAL TRANSPORT IN OPTICAL FIBER MANUFACTURING." In Radiative Transfer I. Proceedings of the First International Symposium on Radiation Transfer. Connecticut: Begellhouse, 1995. http://dx.doi.org/10.1615/ichmt.1995.radtransfproc.480.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Radiation theray"

1

International Commssion on Illumination, CIE. CIE TN 013:2022 Terms related to Planckian radiation temperature for light sources. International Commssion on Illumination, February 2022. http://dx.doi.org/10.25039/tn.013.2022.

Повний текст джерела
Анотація:
There are several terms which describe the Planckian radiation temperature for light sources, including radiance temperature, colour temperature, correlated colour temperature, distribution temperature and ratio temperature. This document provides descriptions of these terms, information on their applicability, and highlights relationships between them so that they may be consistently applied in all applications. Definitions and additional explanatory information for each term are given in this document. Obviously, the greater the difference between the radiation considered and a Planckian radiator, the more tenuous the interpretation of the temperature attribution. Guidelines as to agreed reasonable limits of applicability, if any, are therefore also given, together with information on the calculation of the associated measurement uncertainties where relevant. Keywords: Planckian radiation, Planckian radiatior, Thermodynamic temperature, Planckian radiator temperature, Blackbody temperature, Radiance temperature, Colour temperature, Correlated colour temperature, CCT, Distribution temperature, Ratio temperature
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wehr, Tobias, ed. EarthCARE Mission Requirements Document. European Space Agency, November 2006. http://dx.doi.org/10.5270/esa.earthcare-mrd.2006.

Повний текст джерела
Анотація:
ESA's EarthCARE (Cloud, Aerosol and Radiation Explorer) mission - scheduled to be launched in 2024 - is the largest and most complex Earth Explorer to date and will advance our understanding of the role that clouds and aerosols play in reflecting incident solar radiation back into space and trapping infrared radiation emitted from Earth's surface. The mission is being implemented in cooperation with JAXA (Japan Aerospace Exploration Agency). It carries four scientific instruments. The Atmospheric Lidar (ATLID), operating at 355 nm wavelength and equipped with a high-spectral resolution and depolarisation receiver, measures profiles of aerosols and thin clouds. The Cloud Profiling Radar (CPR, contribution of JAXA), operates at 94 GHz to measure clouds and precipitation, as well as vertical motion through its Doppler functionality. The Multi-Spectral Imager provides across-track information of clouds and aerosols. The Broad-Band Radiometer (BBR) measures the outgoing reflected solar and emitted thermal radiation in order to derive broad-band radiative fluxes at the top of atmosphere. The Mission Requirement Document defines the scientific mission objectives and observational requirements of EarthCARE. The document has been written by the ESA-JAXA Joint Mission Advisory Group for EarthCARE.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Garsa, Adam, Julie K. Jang, Sangita Baxi, Christine Chen, Olamigoke Akinniranye, Owen Hall, Jody Larkin, Aneesa Motala, Sydne Newberry, and Susanne Hempel. Radiation Therapy for Brain Metasases. Agency for Healthcare Research and Quality (AHRQ), June 2021. http://dx.doi.org/10.23970/ahrqepccer242.

Повний текст джерела
Анотація:
Objective. This evidence report synthesizes the available evidence on radiation therapy for brain metastases. Data sources. We searched PubMed®, Embase®, Web of Science, Scopus, CINAHL®, clinicaltrials.gov, and published guidelines in July 2020; assessed independently submitted data; consulted with experts; and contacted authors. Review methods. The protocol was informed by Key Informants. The systematic review was supported by a Technical Expert Panel and is registered in PROSPERO (CRD42020168260). Two reviewers independently screened citations; data were abstracted by one reviewer and checked by an experienced reviewer. We included randomized controlled trials (RCTs) and large observational studies (for safety assessments), evaluating whole brain radiation therapy (WBRT) and stereotactic radiosurgery (SRS) alone or in combination, as initial or postoperative treatment, with or without systemic therapy for adults with brain metastases due to non-small cell lung cancer, breast cancer, or melanoma. Results. In total, 97 studies, reported in 190 publications, were identified, but the number of analyses was limited due to different intervention and comparator combinations as well as insufficient reporting of outcome data. Risk of bias varied; 25 trials were terminated early, predominantly due to poor accrual. Most studies evaluated WBRT, alone or in combination with SRS, as initial treatment; 10 RCTs reported on post-surgical interventions. The combination treatment SRS plus WBRT compared to SRS alone or WBRT alone showed no statistically significant difference in overall survival (hazard ratio [HR], 1.09; confidence interval [CI], 0.69 to 1.73; 4 RCTs; low strength of evidence [SoE]) or death due to brain metastases (relative risk [RR], 0.93; CI, 0.48 to 1.81; 3 RCTs; low SoE). Radiation therapy after surgery did not improve overall survival compared with surgery alone (HR, 0.98; CI, 0.76 to 1.26; 5 RCTs; moderate SoE). Data for quality of life, functional status, and cognitive effects were insufficient to determine effects of WBRT, SRS, or post-surgical interventions. We did not find systematic differences across interventions in serious adverse events radiation necrosis, fatigue, or seizures (all low or moderate SoE). WBRT plus systemic therapy (RR, 1.44; CI, 1.03 to 2.00; 14 studies; moderate SoE) was associated with increased risks for vomiting compared to WBRT alone. Conclusion. Despite the substantial research literature on radiation therapy, comparative effectiveness information is limited. There is a need for more data on patient-relevant outcomes such as quality of life, functional status, and cognitive effects.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fan, Jianhua, Zhiyong Tian, Simon Furbo, Weiqiang Kong, and Daniel Tschopp. Simulation and design of collector array units within large systems. IEA SHC Task 55, October 2019. http://dx.doi.org/10.18777/ieashc-task55-2019-0004.

Повний текст джерела
Анотація:
Solar radiation data is necessary for the design of solar heating systems and used to estimate the thermal performance of solar heating plants. Compared to global irradiance, the direct beam component shows much more variability in space and time. The global radiation split into beam and diffuse radiation on collector plane is important for the evaluation of the performance of different collector types and collector field designs.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Duncan, Victoria Stephanie. Radiation Detection Theory. Office of Scientific and Technical Information (OSTI), April 2019. http://dx.doi.org/10.2172/1505948.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mclean, Thomas Donaldson. Radiation Detector Theory [PowerPoint]. Office of Scientific and Technical Information (OSTI), July 2018. http://dx.doi.org/10.2172/1459622.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Macdonald, Dusten. Targeted Radiation Therapy for Cancer Initiative. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada612050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Halligan, John, Stephanie Ninneman, and Michael Brown. Targeted Radiation Therapy for Cancer Initiative. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada539130.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

MacDonald, Dusten, and Stephanie Ninneman. Targeted Radiation Therapy for Cancer Initiative. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada567268.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Macdonald, Dusten, and Stephanie Ninneman. Targeted Radiation Therapy for Cancer Initiative. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada590464.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії