Добірка наукової літератури з теми "Quantum science and technology"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Quantum science and technology".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Quantum science and technology"
Wang, Yazhen, and Xinyu Song. "Quantum Science and Quantum Technology." Statistical Science 35, no. 1 (February 2020): 51–74. http://dx.doi.org/10.1214/19-sts745.
Повний текст джерелаVahala, K. "Quantum Technology." Science 263, no. 5147 (February 4, 1994): 699. http://dx.doi.org/10.1126/science.263.5147.699.
Повний текст джерелаBayat, Abolfazl, Maria Bondani, Marco G. Genoni, Sibasish Ghosh, Stefano Olivares, and Matteo G. A. Paris. "Preface: Quantum optical science and technology." Physics Letters A 450 (October 2022): 128384. http://dx.doi.org/10.1016/j.physleta.2022.128384.
Повний текст джерелаTAKEUCHI, Shigeki. "Photonic quantum information: science and technology." Proceedings of the Japan Academy, Series B 92, no. 1 (2016): 29–43. http://dx.doi.org/10.2183/pjab.92.29.
Повний текст джерелаAngelakis, Dimitris, Nana Liu, Stefano Mancini, Laleh Memarzadeh, and Matteo G. A. Paris. "Preface: The science behind quantum Technology." Physics Letters A 384, no. 26 (September 2020): 126665. http://dx.doi.org/10.1016/j.physleta.2020.126665.
Повний текст джерелаOi, Daniel K. L., Alex Ling, James A. Grieve, Thomas Jennewein, Aline N. Dinkelaker, and Markus Krutzik. "Nanosatellites for quantum science and technology." Contemporary Physics 58, no. 1 (November 15, 2016): 25–52. http://dx.doi.org/10.1080/00107514.2016.1235150.
Повний текст джерелаRichardson, Christopher J. K., Vincenzo Lordi, Shashank Misra, and Javad Shabani. "Materials science for quantum information science and technology." MRS Bulletin 45, no. 6 (June 2020): 485–97. http://dx.doi.org/10.1557/mrs.2020.147.
Повний текст джерелаDemming, Anna. "Quantum science and technology at the nanoscale." Nanotechnology 21, no. 27 (June 22, 2010): 270201. http://dx.doi.org/10.1088/0957-4484/21/27/270201.
Повний текст джерелаThew, Rob. "Quantum Science and Technology—one year on." Quantum Science and Technology 3, no. 1 (January 2018): 010201. http://dx.doi.org/10.1088/2058-9565/aaa14d.
Повний текст джерелаYamamoto, Yoshihisa, Masahide Sasaki, and Hiroki Takesue. "Quantum information science and technology in Japan." Quantum Science and Technology 4, no. 2 (February 22, 2019): 020502. http://dx.doi.org/10.1088/2058-9565/ab0077.
Повний текст джерелаДисертації з теми "Quantum science and technology"
Peruzzo, Alberto. "Quantum information science in integrated photonics technology." Thesis, University of Bristol, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.573139.
Повний текст джерелаWollmann, Sabine. "Resources for Optical Quantum Information Science and Technology." Thesis, Griffith University, 2017. http://hdl.handle.net/10072/365844.
Повний текст джерелаThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Natural Sciences
Science, Environment, Engineering and Technology
Full Text
Matthews, Jonathan C. F. "Multi-photon quantum information science and technology in integrated optics." Thesis, University of Bristol, 2011. http://hdl.handle.net/1983/9199e590-ef8b-4a6f-b032-507b0960adc4.
Повний текст джерелаEltony, Amira M. (Amira Madeleine). "Scalable trap technology for quantum computing with ions." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99822.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages [187]-214).
Quantum computers employ quantum mechanical effects, such as superposition and entanglement, to process information in a distinctive way, with advantages for simulation and for new, and in some cases more-efficient algorithms. A quantum bit is a two-level quantum system, such as the electronic or spin state of a trapped atomic ion. Physics experiments with single atomic ions acting as "quantum bits" have demonstrated many of the ingredients for a quantum computer. But to perform useful computations these experimental systems will need to be vastly scaled-up. Our goal is to engineer systems for large-scale quantum computation with trapped ions. Building on established techniques of microfabrication, we create ion traps incorporating exotic materials and devices, and we investigate how quantum algorithms can be efficiently mapped onto physical trap hardware. An existing apparatus built around a bath cryostat is modified for characterization of novel ion traps and devices at cryogenic temperatures (4 K and 77 K). We demonstrate an ion trap on a transparent chip with an integrated photodetector, which allows for scalable, efficient state detection of a quantum bit. To understand and better control electric field noise (which limits gate fidelities), we experiment with coating trap electrodes in graphene. We develop traps compatible with standard CMOS manufacturing to leverage the precision and scale of this platform, and we design a Single Instruction Multiple Data (SIMD) algorithm for implementing the QFT using a distributed array of ion chains. Lastly, we explore how to bring it all together to create an integrated trap module from which a scalable architecture can be assembled.
by Amira M. Eltony.
Ph. D.
Zhao, Xinyue M. Eng Massachusetts Institute of Technology. "Commercialization of Quantum Dot White Light Emitting Diode technology." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37678.
Повний текст джерелаIncludes bibliographical references.
It is well known that the use of high-brightness LEDs for illumination has the potential to substitute conventional lighting and revolutionize the lighting industry over the next 10 to 20 years. However, successful penetration of this extremely large lighting market would require vast improvements in power conversion efficiencies, color index, light output per device and drastic reduction in cost. Quantum Dot white LED (QD WLED) technology may be one of the best choices, due to its higher energy efficiency, larger color render in index, better versatility and more importantly lower cost, compared to conventional blue LED plus YAG: Ce yellow phosphor technology. Due to the fundamental difference of the material structure, QD LEDs will win a steady position among existing white LED patents and a hybrid fabless plus IP business model has the best position to promote this technology to maximize its benefits and potential for the entire LED industry.
by Xinyue Zhao.
M.Eng.
Liu, Jingwei M. Eng Massachusetts Institute of Technology. "An evaluation of indium antimonide quantum well transistor technology." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37883.
Повний текст джерелаIncludes bibliographical references (leaves 98-102).
Motivated by the super high electron mobility of Indium Antimonide (InSb), researchers have seen great potential to use this new material in high switching speed and low power transistors. In Dec, 2005, Intel and its partner, QinetiQ, Ltd, announced 85nm gate length enhancement and depletion mode InSb quantum well transistors. Such transistors can operate as high as 305GHz and power consumption is reduced by a factor of 10. In this thesis, the emerging InSb transistor technology is discussed in details. Given its superior performance, it may complement silicon transistor to extend Moore's law in the next decade. The prospect of InSb transistor is also compared with other nanotechnology transistors, such as carbon nanotube and silicon nanowire. Several potential markets are figured out, namely, microprocessor, low noise amplifier and millimeter wave device. Related patents are evaluated. It is found that most of the patents are held by Intel's partner, QinetiQ Ltd. and thus patents issue would not block the launch of products. A joint venture or strategy alliance model is proposed to reduce the risk of investment. In addition, a cost model is presented at the end. It is concluded that cheap silicon substrate and large enough production scale are two crucial factors for the commercialization success of InSb transistor technology.
by Jingwei Liu.
M.Eng.
Waters, Jayson Cydhaarth. "Estranged/Entangled: The History, Theory, and Technology of Quantum Mechanics in International Relations." Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/29604.
Повний текст джерелаBurkhardt, Martin. "Fabrication technology and measurement of coupled quantum dot devices." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/11403.
Повний текст джерелаIncludes bibliographical references (p. 163-162).
by Martin Burkhardt.
Ph.D.
Razzaghe, Ashrafi Babak 1964. "Making and remaking quantum field theory." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/29762.
Повний текст джерелаIncludes bibliographical references (leaves 139-156).
In this thesis, I examine two episodes in the history of quantum field theory using different research techniques and historiographic approaches. The first episode occurred during the 1920's and 1930's when quantum mechanics and relativity were being reconciled. I present some of the central developments of that episode using an approach that relates questions asked by physicists to the structures of putative natural kinds upon which they predicated their research. The second episode occurred during the 1960's and 1970's when important features of quantum field theory were given new interpretations that arose from the exchange of methods and insights between particle physics, solid state physics, statistical mechanics and physical chemistry. Research for the second episode was conducted in collaboration with other historians and scientists using novel web-based and database-backed research tools.
by Babak Razzaghe Ashrafi.
Ph.D.
Kim, LeeAnn. "Deposition of colloidal quantum dots by microcontact printing for LED display technology." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37207.
Повний текст джерелаIncludes bibliographical references (p. 81-84).
This thesis demonstrates a new deposition method of colloidal quantum dots within a quantum dot organic light-emitting diode (QD-LED). A monolayer of quantum dots is microcontact printed as small as 20 ,Lm lines as well as millimeter scale planes, and the resulting devices show quantum efficiencies as high as 1.2% and color saturation superior to previous QD-LEDs'. Through a modification of the polydimethylsiloxane (PDMS) stamp with a parylene-C coating, quantum dots solvated in chloroform were successfully inked and stamped onto various substrates, including different molecular organic layers. The ability to control the placement and the pattern of the quantum dots independently from underlying organic layers provides a new level of performance in QD-LEDs, increasing the possibility of QD-LED displays.
by LeeAnn Kim.
M.Eng.
Книги з теми "Quantum science and technology"
International School of Quantum Electronics on Laser Science and Technology (1987 Erice, Italy). Laser science and technology. New York: Plenum Press, 1988.
Знайти повний текст джерелаSingh, Jasprit. Quantum mechanics: Fundamentals and applications to technology. New York: Wiley, 1997.
Знайти повний текст джерелаSingh, Jasprit. Quantum mechanics: Fundamentals and applications to technology. New York: Wiley, 1996.
Знайти повний текст джерелаMatthews, Jonathan C. F. Multi-Photon Quantum Information Science and Technology in Integrated Optics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32870-1.
Повний текст джерелаservice), SpringerLink (Online, ed. Quantum Dot Devices. New York, NY: Springer New York, 2012.
Знайти повний текст джерела1953-, Aerts Diederik, ed. Science, technology, and social change: The orange book of 'Einstein meets Magritte'. Dordrecht, Netherlands: Kluwer Academic Publishers, 1999.
Знайти повний текст джерелаInternational Symposium on Quantum Chemistry and Technology in the Mesoscopic Level (1993 Fukui, Japan). Quantum chemistry and technology in the mesoscopic level: Proceedings of the International Symposium, Center for Cooperative Research in Science and Technology, Fukui, Japan, 1993. Tokyo, Japan: Physical Society of Japan, 1993.
Знайти повний текст джерелаHasegawa, Hiroshi, 1929 Dec. 20- and International Symposium on Quantum Chemistry and Technology in the Mesoscopic Level (1993 : Fukui-ken, Japan), eds. Quantum chemistry and technology in the mesoscopic level: Proceedings of the international symposium : Center for Cooperative Research in Science and Technology, Fukui University, Fukui, Japan, 1993. Tokyo, Japan: Physical Society of Japan, 1994.
Знайти повний текст джерелаMario, Pivk, and SpringerLink (Online service), eds. Applied Quantum Cryptography. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.
Знайти повний текст джерелаF, Habenicht Bradley, ed. Excitonic and vibrational dynamics in nanotechnology: Quantum dots vs. nanotubes. Singapore: Pan Stanford Pub., 2009.
Знайти повний текст джерелаЧастини книг з теми "Quantum science and technology"
Romero, Guillermo, Enrique Solano, and Lucas Lamata. "Quantum Simulations with Circuit Quantum Electrodynamics." In Quantum Science and Technology, 153–80. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52025-4_7.
Повний текст джерелаDatta, Animesh, and Vaibhav Madhok. "Quantum Discord in Quantum Communication Protocols." In Quantum Science and Technology, 241–55. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53412-1_12.
Повний текст джерелаde Oliveira, Thiago R. "Quantum Correlations in Multipartite Quantum Systems." In Quantum Science and Technology, 87–103. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53412-1_5.
Повний текст джерелаVourdas, Apostolos. "Quantum Logic of Finite Quantum Systems." In Quantum Science and Technology, 77–91. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59495-8_6.
Повний текст джерелаSchuld, Maria, and Francesco Petruccione. "Quantum Information." In Quantum Science and Technology, 75–125. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96424-9_3.
Повний текст джерелаSchuld, Maria, and Francesco Petruccione. "Quantum Advantages." In Quantum Science and Technology, 127–37. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96424-9_4.
Повний текст джерелаSimon, David S., Gregg Jaeger, and Alexander V. Sergienko. "Quantum Metrology." In Quantum Science and Technology, 91–112. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46551-7_4.
Повний текст джерелаSimon, David S., Gregg Jaeger, and Alexander V. Sergienko. "Quantum Microscopy." In Quantum Science and Technology, 159–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46551-7_7.
Повний текст джерелаSchuld, Maria, and Francesco Petruccione. "Quantum Computing." In Quantum Science and Technology, 79–146. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83098-4_3.
Повний текст джерелаWojcieszyn, Filip. "Quantum Computing." In Quantum Science and Technology, 89–132. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99379-5_4.
Повний текст джерелаТези доповідей конференцій з теми "Quantum science and technology"
Najda, S. P., P. Perlin, M. Leszczyński, S. Stanczyk, C. C. Clark, T. J. Slight, J. Macarthur, et al. "GaN lasers for quantum information science and technology (QIST) applications." In Quantum 2.0. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/quantum.2020.qw6b.17.
Повний текст джерелаYin, Juan, Ji-Gang Ren, Sheng-Kai Liao, Yuan Cao, Wen-Qi Cai, Cheng-Zhi Peng, and Jian-Wei Pan. "Quantum Science Experiments with Micius Satellite." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/cleo_at.2019.jtu3g.4.
Повний текст джерелаAndersson, Erika. "Secure quantum signatures: a practical quantum technology (Conference Presentation)." In Quantum Information Science and Technology, edited by Mark T. Gruneisen, Miloslav Dusek, and John G. Rarity. SPIE, 2016. http://dx.doi.org/10.1117/12.2244674.
Повний текст джерелаCorkum, P. B. "Attosecond science and technology." In 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. IEEE, 2013. http://dx.doi.org/10.1109/cleoe-iqec.2013.6801134.
Повний текст джерелаDatta, Animesh, Dominic Branford, Magdalena Szczykulska, Christos N. Gagatsos, and Tillmann Baumgratz. "Quantum limits of sensing and imaging: Fundamental science while developing technology." In Quantum Information and Measurement. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/qim.2017.qf3a.2.
Повний текст джерелаBi, Siwen. "Research on quantum remote sensing science and technology." In Infrared Remote Sensing and Instrumentation XXVII, edited by Marija Strojnik and Gabriele E. Arnold. SPIE, 2019. http://dx.doi.org/10.1117/12.2528305.
Повний текст джерелаRaithel, Georg A., Ryan Cardman, and Alisher Duspayev. "Rydberg atoms for precision measurement in science and technology." In Quantum Sensing, Imaging, and Precision Metrology, edited by Selim M. Shahriar and Jacob Scheuer. SPIE, 2023. http://dx.doi.org/10.1117/12.2657709.
Повний текст джерелаKwiat, Paul G., Joseph Altepeter, Julio Barreiro, David A. Branning, Evan R. Jeffrey, Nicholas Peters, and Aaron P. VanDevender. "Optical technologies for quantum information science." In Optical Science and Technology, SPIE's 48th Annual Meeting, edited by Ronald E. Meyers and Yanhua Shih. SPIE, 2004. http://dx.doi.org/10.1117/12.504402.
Повний текст джерелаArakawa, Yasuhiko. "Quantum Dot Lasers: From Science to Practical Implementation." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/cleo_at.2012.jm4i.3.
Повний текст джерелаBoyd, Robert W., Megan Agnew, Eliot Bolduc, Ebrahim Karimi, Jonathan Leach, Omar S. Magana-Loaiza, Mehul Malik, et al. "Nonlinear Optics: The Enabling Technology for Quantum Information Science." In Nonlinear Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/nlo.2013.nw1a.1.
Повний текст джерелаЗвіти організацій з теми "Quantum science and technology"
None, None. Spotlight: Quantum Information Science and Technology. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1673377.
Повний текст джерелаSyamlal, Madhava, Jeremy Levy, Stephen Bush, Yuhua Duan, Benjamin Gilbert, Aaron Hussey, David Miller, and Raphael Pooser. Fossil Energy Workshop on Quantum Information Science & Technology (Summary Report). Office of Scientific and Technical Information (OSTI), July 2020. http://dx.doi.org/10.2172/1639026.
Повний текст джерелаAlsing, Paul M., and Michael L. Fanto. Quantum Information Science. Fort Belvoir, VA: Defense Technical Information Center, February 2012. http://dx.doi.org/10.21236/ada556971.
Повний текст джерелаChattopadhyay, Swapan, Roger Falcone, and Ronald Walsworth. Quantum Sensors at the Intersections of Fundamental Science, Quantum Information Science & Computing. Office of Scientific and Technical Information (OSTI), February 2016. http://dx.doi.org/10.2172/1358078.
Повний текст джерелаMartin, Michael. Quantum information science with Rydberg atoms. Office of Scientific and Technical Information (OSTI), November 2020. http://dx.doi.org/10.2172/1711350.
Повний текст джерелаAspuru-Guzik, Alan, Wim Van Dam, Edward Farhi, Frank Gaitan, Travis Humble, Stephen Jordan, Andrew J. Landahl, et al. ASCR Workshop on Quantum Computing for Science. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1194404.
Повний текст джерелаNdousse-Fetter, Thomas, Nicholas A. Peters, Warren P. Grice, Prem Kumar, Thomas Chapuran, Saikat Guha, Scott Hamilton, et al. Quantum Networks for Open Science (QNOS) Workshop. Office of Scientific and Technical Information (OSTI), April 2019. http://dx.doi.org/10.2172/1510580.
Повний текст джерелаBidier, S., U. Khristenko, R. Tosi, R. Rossi, and C. Soriano. D7.3 Report on UQ results and overall user experience. Scipedia, 2021. http://dx.doi.org/10.23967/exaqute.2021.9.002.
Повний текст джерелаBoshier, Malcolm, Dana Berkeland, Tr Govindan, and Jamil Abo - Shaeer. Quantum technology and its applications. Office of Scientific and Technical Information (OSTI), December 2010. http://dx.doi.org/10.2172/1044148.
Повний текст джерелаBabbitt, William R. Quantum Information Science Research and Technical Assessment Project. Fort Belvoir, VA: Defense Technical Information Center, August 2010. http://dx.doi.org/10.21236/ada533699.
Повний текст джерела