Добірка наукової літератури з теми "Quantum science and technology"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Quantum science and technology".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Quantum science and technology"

1

Wang, Yazhen, and Xinyu Song. "Quantum Science and Quantum Technology." Statistical Science 35, no. 1 (February 2020): 51–74. http://dx.doi.org/10.1214/19-sts745.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vahala, K. "Quantum Technology." Science 263, no. 5147 (February 4, 1994): 699. http://dx.doi.org/10.1126/science.263.5147.699.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bayat, Abolfazl, Maria Bondani, Marco G. Genoni, Sibasish Ghosh, Stefano Olivares, and Matteo G. A. Paris. "Preface: Quantum optical science and technology." Physics Letters A 450 (October 2022): 128384. http://dx.doi.org/10.1016/j.physleta.2022.128384.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

TAKEUCHI, Shigeki. "Photonic quantum information: science and technology." Proceedings of the Japan Academy, Series B 92, no. 1 (2016): 29–43. http://dx.doi.org/10.2183/pjab.92.29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Angelakis, Dimitris, Nana Liu, Stefano Mancini, Laleh Memarzadeh, and Matteo G. A. Paris. "Preface: The science behind quantum Technology." Physics Letters A 384, no. 26 (September 2020): 126665. http://dx.doi.org/10.1016/j.physleta.2020.126665.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Oi, Daniel K. L., Alex Ling, James A. Grieve, Thomas Jennewein, Aline N. Dinkelaker, and Markus Krutzik. "Nanosatellites for quantum science and technology." Contemporary Physics 58, no. 1 (November 15, 2016): 25–52. http://dx.doi.org/10.1080/00107514.2016.1235150.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Richardson, Christopher J. K., Vincenzo Lordi, Shashank Misra, and Javad Shabani. "Materials science for quantum information science and technology." MRS Bulletin 45, no. 6 (June 2020): 485–97. http://dx.doi.org/10.1557/mrs.2020.147.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Demming, Anna. "Quantum science and technology at the nanoscale." Nanotechnology 21, no. 27 (June 22, 2010): 270201. http://dx.doi.org/10.1088/0957-4484/21/27/270201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Thew, Rob. "Quantum Science and Technology—one year on." Quantum Science and Technology 3, no. 1 (January 2018): 010201. http://dx.doi.org/10.1088/2058-9565/aaa14d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yamamoto, Yoshihisa, Masahide Sasaki, and Hiroki Takesue. "Quantum information science and technology in Japan." Quantum Science and Technology 4, no. 2 (February 22, 2019): 020502. http://dx.doi.org/10.1088/2058-9565/ab0077.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Quantum science and technology"

1

Peruzzo, Alberto. "Quantum information science in integrated photonics technology." Thesis, University of Bristol, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.573139.

Повний текст джерела
Анотація:
Quantum information science provides new paradigms of communication, computation and measurement; such as perfectly secure quantum key distribution, intrinsic parallel computation and increased precision measurement by beating the standard quantum limit. The first implementation of optical quantum circuits whose performance exceeds that required for fault tolerance quantum computation is presented. Near- unit fidelity non-classical interference and entangling operations are demonstrated in integrated photonic waveguides fabricated on silica on silicon chips. Improvement of about 5% in the measured performance is the result of perfectly indistinguishable photon pairs produced from an SPDC source. These integrated devices, combined with high efficiency single photon sources and detectors, will be the building block for future demonstrations of quantum information. Operation of quantum optics circuits with superconducting nanowire single photon detectors (SNSPD) is reported. The lower jitter of SNSPDs compared to silicon single photon avalanche photodiodes (SPADs) enables the measurement of higher visibility non-classical interference on directional couplers, CNOT gates and Mach-Zehnder interferometer. SSPDs are fast, low noise and can detect single photons in a broad range of wavelengths. Recent studies show very high detection efficiency making these devices promising for future photonic quantum information processing. Quantum interference in multi-mode interference (MMI) devices is reported for the first time. These devices allow the design of NxM splitters with superior performances, excellent tolerance to polarization and wavelength variations and relaxed fabrication requirements compared to the other main beam splitting technology, the directional couplers. However, to date, there have been no demonstrations of quantum interference in MMI devices (one may be concerned that multi-mode operation could prevent or perturb such interference). It is found that that the quantum interference visibility is significantly lower than that of a directional coupler with the same source. A major reason for the reduced visibility is the coherence length of the photons, which is set by the large-band interference filters. Since the different modes see different effective refractive indices within the interferometer, a jitter is 'introduced which allows distinguishability between the photons. To overcome this problem a narrower filter was introduced in one of the channels between the device and the detector, i.e. not affecting the source. This quantum erasure technique increases the detected indistinguishability of the photons, showing a high visibility and confirming that timing jitter limits quantum interference with large filters. The first observation of quantum walks of two indistinguishable particles is reported. Quantum walks offer new tools for simulating physical, chemical and biological systems, performing universal quantum computation and studying generalized quantum interference. Experimental demonstrations to date have shown single particle quantum walks; the observable dynamics of which can be fully explained with classical wave mechanics and experimentally mimicked using, for example, bright laser light. To observe uniquely quantum mechanical correlations in quantum walks, the propagation of two single, indistinguishable photons in an array of 21 waveguides in a silicon oxynitride chip is measured. The simultaneous walk of two photons on a graph simulate the walk of a single photon on a larger graph; the graph growing exponentially when linearly increasing the number of photons. These results violate classical bounds and cannot be efficiently simulated or described using classical mechanics. It is shown that the output strongly depends on the input state. Previous quantum optical work has highlighted the promise of monolithic integrated optics for quantum information science. This demonstration takes advantage of the intrinsic stability of photonic waveguide circuits to perform two-photon interference on a large scale. The results presented in this Thesis demonstrate the potential of integrated quantum photonic technology for quantum information applications, in particular quantum computation and quantum simulation.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wollmann, Sabine. "Resources for Optical Quantum Information Science and Technology." Thesis, Griffith University, 2017. http://hdl.handle.net/10072/365844.

Повний текст джерела
Анотація:
Quantum information science explores the foundational aspects of quantum mechanics and its ombination with information science for new information technologies. The underlying key resource is non-classical correlations. These counter-intuitive correlations between quantum systems can be used for encoding, transmitting and measuring information in quantum information tasks. Although quantum properties can be used in a variety of systems, here we explore photons. These information carriers are fast, easy to generate and manipulate and only interact weakly with the environment. These properties make them to excellent candidates to be employed in experiments. Developing quantum technology, such as single photon sources and single photon detectors, allows us to investigate the foundational aspects of quantum mechanics in quantum information tasks. These tasks use non-classical correlations, which form a hierarchy, from Bell nonlocality to Einstein-Podolsky-Rosen (EPR) steering to quantum nonseparability. Two systems are nonlocally correlated, when measuring one system affects the measurement results on the other system, hence the name `steering. In test for non-classical correlations, we share a quantum state between two observers which are trusted or untrusted. While observers are both untrusted or trusted in entanglement witness tests and Bell inequality violations, respectively, EPR-steering is distinct from these two classes by its fundamental asymmetry: one party is trusted while the other is untrusted.
Thesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Natural Sciences
Science, Environment, Engineering and Technology
Full Text
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Matthews, Jonathan C. F. "Multi-photon quantum information science and technology in integrated optics." Thesis, University of Bristol, 2011. http://hdl.handle.net/1983/9199e590-ef8b-4a6f-b032-507b0960adc4.

Повний текст джерела
Анотація:
Fundamental quantum physics and quantum information science has found great experimental success with the implementation of single photons. To date, however, the majority of quantum optical experiments use large scale (bulk) optical elements bolted down to an optical bench; an approach that ultimately limits the complexity and stability of quantum circuits required for quantum science and technology (QST). Here, a series of experiments are reported in the emerging field of integrated quantum photonics that show monolithic waveguide chips to be a suitable platform for realising the next generation of quantum optical circuits. The thesis begins by reporting high quality Hong-Ou-Mandel interference-a phenomena that is central to nearly all photonic QST -in directly written waveguide structures. We then observe multi-photon quantum interference in lithographically fabricated waveguide circuits to implement the following demonstrations relevant to quantum computation, quantum metrology and analogue quantum simulation: (i) a compiled version of Shor's quantum algorithm is performed to factorize 15, using a number of integrated single- and two-qubit gates; (ii) a reconfigurable circuit is used to observe super-sensitive quantum interference fringes by manipulating two- and four-photon number-path entanglement; (iii) high quality quantum interference is observed in the reconfigurable device, indicating use as a building block for arbitrary reconfigurable circuits and (iv) a scheme for heralding two- and four-photon entanglement is implemented using projective measurement of auxiliary photons. The capabilities of integrated quantum photonics are extended beyond those of bulk quantum optics with two further demonstrations using arrays of evanescently coupled waveguide: (v) continuous quantum interference of two photons in a 21 mode quantum walk is realised, demonstrating generalisation of the Hong-OuMandel effect and (vi) the symmetry and quantum correlations of two polarisation entangled photons injected into a waveguide array are used to directly simulate quantum interference of fermions, bosons and a continuum of fractional behaviour exhibited by anyons. The latter demonstration is shown to generalise simulation of quantum interference in any mode transformation and to simulate quantum interference of any number of particles. For both demonstrations, implementing such unitary evolution with bulk optics would require hundreds of individual elements in a large interferometric structure which in practice is beyond the abilities of conventional quantum optics. The results presented in this thesis report elementary integrated circuits for future quantum devices and presents quantum experiments realised in integrated photonics, that cannot be realised with bulk optical components. These demonstrations are foundational in developing a new quantum photonic platform necessary for studying fundamental quantum physics and for advancing quantum information science and technology.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Eltony, Amira M. (Amira Madeleine). "Scalable trap technology for quantum computing with ions." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99822.

Повний текст джерела
Анотація:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages [187]-214).
Quantum computers employ quantum mechanical effects, such as superposition and entanglement, to process information in a distinctive way, with advantages for simulation and for new, and in some cases more-efficient algorithms. A quantum bit is a two-level quantum system, such as the electronic or spin state of a trapped atomic ion. Physics experiments with single atomic ions acting as "quantum bits" have demonstrated many of the ingredients for a quantum computer. But to perform useful computations these experimental systems will need to be vastly scaled-up. Our goal is to engineer systems for large-scale quantum computation with trapped ions. Building on established techniques of microfabrication, we create ion traps incorporating exotic materials and devices, and we investigate how quantum algorithms can be efficiently mapped onto physical trap hardware. An existing apparatus built around a bath cryostat is modified for characterization of novel ion traps and devices at cryogenic temperatures (4 K and 77 K). We demonstrate an ion trap on a transparent chip with an integrated photodetector, which allows for scalable, efficient state detection of a quantum bit. To understand and better control electric field noise (which limits gate fidelities), we experiment with coating trap electrodes in graphene. We develop traps compatible with standard CMOS manufacturing to leverage the precision and scale of this platform, and we design a Single Instruction Multiple Data (SIMD) algorithm for implementing the QFT using a distributed array of ion chains. Lastly, we explore how to bring it all together to create an integrated trap module from which a scalable architecture can be assembled.
by Amira M. Eltony.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhao, Xinyue M. Eng Massachusetts Institute of Technology. "Commercialization of Quantum Dot White Light Emitting Diode technology." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37678.

Повний текст джерела
Анотація:
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2006.
Includes bibliographical references.
It is well known that the use of high-brightness LEDs for illumination has the potential to substitute conventional lighting and revolutionize the lighting industry over the next 10 to 20 years. However, successful penetration of this extremely large lighting market would require vast improvements in power conversion efficiencies, color index, light output per device and drastic reduction in cost. Quantum Dot white LED (QD WLED) technology may be one of the best choices, due to its higher energy efficiency, larger color render in index, better versatility and more importantly lower cost, compared to conventional blue LED plus YAG: Ce yellow phosphor technology. Due to the fundamental difference of the material structure, QD LEDs will win a steady position among existing white LED patents and a hybrid fabless plus IP business model has the best position to promote this technology to maximize its benefits and potential for the entire LED industry.
by Xinyue Zhao.
M.Eng.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Liu, Jingwei M. Eng Massachusetts Institute of Technology. "An evaluation of indium antimonide quantum well transistor technology." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37883.

Повний текст джерела
Анотація:
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2006.
Includes bibliographical references (leaves 98-102).
Motivated by the super high electron mobility of Indium Antimonide (InSb), researchers have seen great potential to use this new material in high switching speed and low power transistors. In Dec, 2005, Intel and its partner, QinetiQ, Ltd, announced 85nm gate length enhancement and depletion mode InSb quantum well transistors. Such transistors can operate as high as 305GHz and power consumption is reduced by a factor of 10. In this thesis, the emerging InSb transistor technology is discussed in details. Given its superior performance, it may complement silicon transistor to extend Moore's law in the next decade. The prospect of InSb transistor is also compared with other nanotechnology transistors, such as carbon nanotube and silicon nanowire. Several potential markets are figured out, namely, microprocessor, low noise amplifier and millimeter wave device. Related patents are evaluated. It is found that most of the patents are held by Intel's partner, QinetiQ Ltd. and thus patents issue would not block the launch of products. A joint venture or strategy alliance model is proposed to reduce the risk of investment. In addition, a cost model is presented at the end. It is concluded that cheap silicon substrate and large enough production scale are two crucial factors for the commercialization success of InSb transistor technology.
by Jingwei Liu.
M.Eng.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Waters, Jayson Cydhaarth. "Estranged/Entangled: The History, Theory, and Technology of Quantum Mechanics in International Relations." Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/29604.

Повний текст джерела
Анотація:
In recent years a growing number of scholars of international relations (IR) have looked hopefully towards quantum mechanics (QM) as a source of new analytical tools and critical approaches to address many of the intractable problems — and emergent challenges — faced by the discipline and the world. It now appears that what some call a new ‘wave’ — or ‘turn’ or ‘era’ — and others a paradigm shift may be coming to the discipline. Novel, and more accurate, methods for modelling behaviour are being introduced by Quantum Decision Theory and Quantum Game Theory, and old Newtonian analogies, metaphors, and cosmologies are being challenged and replaced by quantum equivalents. Alexander Wendt has even gone so far as to suggest that scholars need to rethink the social sciences from the (quantum) mind up. In place of traditional mind/body dualism, Wendt proposes a quantum monism based on a panpsychist quantum theory of mind. This is a radical proposal, the ramifications of which could drastically reframe understandings of both the social and physical aspects of the world. While there is no doubt that the present ‘quantum wave’ in IR is the most significant, it is not the first. In 1927, during his address to the American Political Science Association, William Bennett Munro called for political scientists to engage with QM and to borrow, by analogy, from the ‘new physics’ to “get rid of intellectual insincerities concerning the nature of sovereignty, the general will, natural rights, and the freedom of the individual” and discover “the true purposes and policies which should direct human action in matters of government.” Remarkably, Munro’s appeal came a mere two months after Max Born and Werner Heisenberg declared “quantum mechanics to be a closed theory” at the Fifth Solvay Conference. Some headway was made during the interwar period, but a complex combination of circumstances leading up to, and following, the Second World War estranged this line of scientific inquiry from IR theory. This pattern of estrangement and entanglement has recurred several times in the history of IR. This thesis employs an experimental methodology to interrogate three neglected aspects of the relationship between QM and IR. The critical approaches of genealogy, semiology, and dromology are applied, respectively, to the historical, theoretical, and technological entanglements of IR and QM. Reinterpreting nearly a century of estrangement and entanglement, the thesis makes the case for a quantum theory of IR that is process-relational and event-ontological. Ultimately, however, this thesis is a work of pre-theory. Rather than presenting a critique of quantum IR, or an attempt at a fully formed quantum theory of IR, this thesis lays the groundwork for future theory and future developments in quantum IR.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Burkhardt, Martin. "Fabrication technology and measurement of coupled quantum dot devices." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/11403.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.
Includes bibliographical references (p. 163-162).
by Martin Burkhardt.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Razzaghe, Ashrafi Babak 1964. "Making and remaking quantum field theory." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/29762.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Program in Science, Technology and Society, 2003.
Includes bibliographical references (leaves 139-156).
In this thesis, I examine two episodes in the history of quantum field theory using different research techniques and historiographic approaches. The first episode occurred during the 1920's and 1930's when quantum mechanics and relativity were being reconciled. I present some of the central developments of that episode using an approach that relates questions asked by physicists to the structures of putative natural kinds upon which they predicated their research. The second episode occurred during the 1960's and 1970's when important features of quantum field theory were given new interpretations that arose from the exchange of methods and insights between particle physics, solid state physics, statistical mechanics and physical chemistry. Research for the second episode was conducted in collaboration with other historians and scientists using novel web-based and database-backed research tools.
by Babak Razzaghe Ashrafi.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kim, LeeAnn. "Deposition of colloidal quantum dots by microcontact printing for LED display technology." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37207.

Повний текст джерела
Анотація:
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.
Includes bibliographical references (p. 81-84).
This thesis demonstrates a new deposition method of colloidal quantum dots within a quantum dot organic light-emitting diode (QD-LED). A monolayer of quantum dots is microcontact printed as small as 20 ,Lm lines as well as millimeter scale planes, and the resulting devices show quantum efficiencies as high as 1.2% and color saturation superior to previous QD-LEDs'. Through a modification of the polydimethylsiloxane (PDMS) stamp with a parylene-C coating, quantum dots solvated in chloroform were successfully inked and stamped onto various substrates, including different molecular organic layers. The ability to control the placement and the pattern of the quantum dots independently from underlying organic layers provides a new level of performance in QD-LEDs, increasing the possibility of QD-LED displays.
by LeeAnn Kim.
M.Eng.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Quantum science and technology"

1

International School of Quantum Electronics on Laser Science and Technology (1987 Erice, Italy). Laser science and technology. New York: Plenum Press, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Singh, Jasprit. Quantum mechanics: Fundamentals and applications to technology. New York: Wiley, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Singh, Jasprit. Quantum mechanics: Fundamentals and applications to technology. New York: Wiley, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Matthews, Jonathan C. F. Multi-Photon Quantum Information Science and Technology in Integrated Optics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32870-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

service), SpringerLink (Online, ed. Quantum Dot Devices. New York, NY: Springer New York, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

1953-, Aerts Diederik, ed. Science, technology, and social change: The orange book of 'Einstein meets Magritte'. Dordrecht, Netherlands: Kluwer Academic Publishers, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

International Symposium on Quantum Chemistry and Technology in the Mesoscopic Level (1993 Fukui, Japan). Quantum chemistry and technology in the mesoscopic level: Proceedings of the International Symposium, Center for Cooperative Research in Science and Technology, Fukui, Japan, 1993. Tokyo, Japan: Physical Society of Japan, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hasegawa, Hiroshi, 1929 Dec. 20- and International Symposium on Quantum Chemistry and Technology in the Mesoscopic Level (1993 : Fukui-ken, Japan), eds. Quantum chemistry and technology in the mesoscopic level: Proceedings of the international symposium : Center for Cooperative Research in Science and Technology, Fukui University, Fukui, Japan, 1993. Tokyo, Japan: Physical Society of Japan, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mario, Pivk, and SpringerLink (Online service), eds. Applied Quantum Cryptography. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

F, Habenicht Bradley, ed. Excitonic and vibrational dynamics in nanotechnology: Quantum dots vs. nanotubes. Singapore: Pan Stanford Pub., 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Quantum science and technology"

1

Romero, Guillermo, Enrique Solano, and Lucas Lamata. "Quantum Simulations with Circuit Quantum Electrodynamics." In Quantum Science and Technology, 153–80. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52025-4_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Datta, Animesh, and Vaibhav Madhok. "Quantum Discord in Quantum Communication Protocols." In Quantum Science and Technology, 241–55. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53412-1_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

de Oliveira, Thiago R. "Quantum Correlations in Multipartite Quantum Systems." In Quantum Science and Technology, 87–103. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53412-1_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vourdas, Apostolos. "Quantum Logic of Finite Quantum Systems." In Quantum Science and Technology, 77–91. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59495-8_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Schuld, Maria, and Francesco Petruccione. "Quantum Information." In Quantum Science and Technology, 75–125. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96424-9_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Schuld, Maria, and Francesco Petruccione. "Quantum Advantages." In Quantum Science and Technology, 127–37. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96424-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Simon, David S., Gregg Jaeger, and Alexander V. Sergienko. "Quantum Metrology." In Quantum Science and Technology, 91–112. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46551-7_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Simon, David S., Gregg Jaeger, and Alexander V. Sergienko. "Quantum Microscopy." In Quantum Science and Technology, 159–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46551-7_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Schuld, Maria, and Francesco Petruccione. "Quantum Computing." In Quantum Science and Technology, 79–146. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83098-4_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wojcieszyn, Filip. "Quantum Computing." In Quantum Science and Technology, 89–132. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99379-5_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Quantum science and technology"

1

Najda, S. P., P. Perlin, M. Leszczyński, S. Stanczyk, C. C. Clark, T. J. Slight, J. Macarthur, et al. "GaN lasers for quantum information science and technology (QIST) applications." In Quantum 2.0. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/quantum.2020.qw6b.17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yin, Juan, Ji-Gang Ren, Sheng-Kai Liao, Yuan Cao, Wen-Qi Cai, Cheng-Zhi Peng, and Jian-Wei Pan. "Quantum Science Experiments with Micius Satellite." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/cleo_at.2019.jtu3g.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Andersson, Erika. "Secure quantum signatures: a practical quantum technology (Conference Presentation)." In Quantum Information Science and Technology, edited by Mark T. Gruneisen, Miloslav Dusek, and John G. Rarity. SPIE, 2016. http://dx.doi.org/10.1117/12.2244674.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Corkum, P. B. "Attosecond science and technology." In 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. IEEE, 2013. http://dx.doi.org/10.1109/cleoe-iqec.2013.6801134.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Datta, Animesh, Dominic Branford, Magdalena Szczykulska, Christos N. Gagatsos, and Tillmann Baumgratz. "Quantum limits of sensing and imaging: Fundamental science while developing technology." In Quantum Information and Measurement. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/qim.2017.qf3a.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bi, Siwen. "Research on quantum remote sensing science and technology." In Infrared Remote Sensing and Instrumentation XXVII, edited by Marija Strojnik and Gabriele E. Arnold. SPIE, 2019. http://dx.doi.org/10.1117/12.2528305.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Raithel, Georg A., Ryan Cardman, and Alisher Duspayev. "Rydberg atoms for precision measurement in science and technology." In Quantum Sensing, Imaging, and Precision Metrology, edited by Selim M. Shahriar and Jacob Scheuer. SPIE, 2023. http://dx.doi.org/10.1117/12.2657709.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kwiat, Paul G., Joseph Altepeter, Julio Barreiro, David A. Branning, Evan R. Jeffrey, Nicholas Peters, and Aaron P. VanDevender. "Optical technologies for quantum information science." In Optical Science and Technology, SPIE's 48th Annual Meeting, edited by Ronald E. Meyers and Yanhua Shih. SPIE, 2004. http://dx.doi.org/10.1117/12.504402.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Arakawa, Yasuhiko. "Quantum Dot Lasers: From Science to Practical Implementation." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/cleo_at.2012.jm4i.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Boyd, Robert W., Megan Agnew, Eliot Bolduc, Ebrahim Karimi, Jonathan Leach, Omar S. Magana-Loaiza, Mehul Malik, et al. "Nonlinear Optics: The Enabling Technology for Quantum Information Science." In Nonlinear Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/nlo.2013.nw1a.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Quantum science and technology"

1

None, None. Spotlight: Quantum Information Science and Technology. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1673377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Syamlal, Madhava, Jeremy Levy, Stephen Bush, Yuhua Duan, Benjamin Gilbert, Aaron Hussey, David Miller, and Raphael Pooser. Fossil Energy Workshop on Quantum Information Science & Technology (Summary Report). Office of Scientific and Technical Information (OSTI), July 2020. http://dx.doi.org/10.2172/1639026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Alsing, Paul M., and Michael L. Fanto. Quantum Information Science. Fort Belvoir, VA: Defense Technical Information Center, February 2012. http://dx.doi.org/10.21236/ada556971.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chattopadhyay, Swapan, Roger Falcone, and Ronald Walsworth. Quantum Sensors at the Intersections of Fundamental Science, Quantum Information Science & Computing. Office of Scientific and Technical Information (OSTI), February 2016. http://dx.doi.org/10.2172/1358078.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Martin, Michael. Quantum information science with Rydberg atoms. Office of Scientific and Technical Information (OSTI), November 2020. http://dx.doi.org/10.2172/1711350.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Aspuru-Guzik, Alan, Wim Van Dam, Edward Farhi, Frank Gaitan, Travis Humble, Stephen Jordan, Andrew J. Landahl, et al. ASCR Workshop on Quantum Computing for Science. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1194404.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ndousse-Fetter, Thomas, Nicholas A. Peters, Warren P. Grice, Prem Kumar, Thomas Chapuran, Saikat Guha, Scott Hamilton, et al. Quantum Networks for Open Science (QNOS) Workshop. Office of Scientific and Technical Information (OSTI), April 2019. http://dx.doi.org/10.2172/1510580.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bidier, S., U. Khristenko, R. Tosi, R. Rossi, and C. Soriano. D7.3 Report on UQ results and overall user experience. Scipedia, 2021. http://dx.doi.org/10.23967/exaqute.2021.9.002.

Повний текст джерела
Анотація:
This deliverable report focuses on the main Uncertainty Quanti cation (UQ) results obtained within the EXAscale Quanti cation of Uncertainties for Technology and Science Simulation (ExaQUte) project. Details on the turbulent wind inlet generator, that enables the supply of random, yet steady, wind velocity boundary conditions during run-time, are given in section 2. This enables the developed UQ workflow, whose results are presented on the basis of the Commonwealth Advisory Aeronautical Council (CAARC) as described in Deliverable 7.1. Finally, the completed UQ workflow and the results are evaluated from an application-driven wind engineering point of view. Thereby, the significance of the developed methods and the obtained results are discussed and their applicability in practical wind-engineering applications is tested through a complete test-run of the UQ workflow.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Boshier, Malcolm, Dana Berkeland, Tr Govindan, and Jamil Abo - Shaeer. Quantum technology and its applications. Office of Scientific and Technical Information (OSTI), December 2010. http://dx.doi.org/10.2172/1044148.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Babbitt, William R. Quantum Information Science Research and Technical Assessment Project. Fort Belvoir, VA: Defense Technical Information Center, August 2010. http://dx.doi.org/10.21236/ada533699.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії