Добірка наукової літератури з теми "Quantum many body"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Quantum many body".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Quantum many body"
Hainzl, Christian, Benjamin Schlein, Robert Seiringer, and Simone Warzel. "Many-Body Quantum Systems." Oberwolfach Reports 16, no. 3 (September 9, 2020): 2541–603. http://dx.doi.org/10.4171/owr/2019/41.
Повний текст джерелаWimberger, Sandro. "Many Body Quantum Chaos." Condensed Matter 5, no. 2 (June 12, 2020): 41. http://dx.doi.org/10.3390/condmat5020041.
Повний текст джерелаWall, Michael L., Arghavan Safavi-Naini, and Martin Gärttner. "Many-body quantum mechanics." XRDS: Crossroads, The ACM Magazine for Students 23, no. 1 (September 20, 2016): 25–29. http://dx.doi.org/10.1145/2983537.
Повний текст джерелаMukherjee, Victor, and Uma Divakaran. "Many-body quantum thermal machines." Journal of Physics: Condensed Matter 33, no. 45 (August 27, 2021): 454001. http://dx.doi.org/10.1088/1361-648x/ac1b60.
Повний текст джерелаPalev, T. D., and N. I. Stoilova. "Many-body Wigner quantum systems." Journal of Mathematical Physics 38, no. 5 (May 1997): 2506–23. http://dx.doi.org/10.1063/1.531991.
Повний текст джерелаLindgren, Ingvar, Sten Salomonson, and Daniel Hedendahl. "New approach to many-body quantum-electrodynamics calculations:merging quantum electrodynamics with many-body perturbation." Canadian Journal of Physics 83, no. 4 (April 1, 2005): 395–403. http://dx.doi.org/10.1139/p05-012.
Повний текст джерелаVojta, Thomas. "Disorder in Quantum Many-Body Systems." Annual Review of Condensed Matter Physics 10, no. 1 (March 10, 2019): 233–52. http://dx.doi.org/10.1146/annurev-conmatphys-031218-013433.
Повний текст джерелаDaley, Andrew J. "Quantum trajectories and open many-body quantum systems." Advances in Physics 63, no. 2 (March 4, 2014): 77–149. http://dx.doi.org/10.1080/00018732.2014.933502.
Повний текст джерелаMonras, A., and O. Romero-Isart. "Quantum information processing with quantum zeno many-body dynamics." Quantum Information and Computation 10, no. 3&4 (March 2010): 201–22. http://dx.doi.org/10.26421/qic10.3-4-3.
Повний текст джерелаGómez-Ullate, D., A. González-López, and M. A. Rodríguez. "New algebraic quantum many-body problems." Journal of Physics A: Mathematical and General 33, no. 41 (October 5, 2000): 7305–35. http://dx.doi.org/10.1088/0305-4470/33/41/305.
Повний текст джерелаДисертації з теми "Quantum many body"
Bausch, Johannes Karl Richard. "Quantum stochastic processes and quantum many-body physics." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/269857.
Повний текст джерелаRiera, Graells Arnau. "Entanglement in Many Body Quantum Systems." Doctoral thesis, Universitat de Barcelona, 2010. http://hdl.handle.net/10803/1600.
Повний текст джерелаTEXT:
This thesis is made of two parts. In the first one, the issue of entanglement in many body systems is addressed. The concept of entanglement and some of the recent progress on the study of entropy of entanglement in many body quantum systems are reviewed. Emphasis is placed on the scaling properties of entropy for one-dimensional models at quantum phase transitions.
Then, we focus on the area-law scaling of the entanglement entropy. An explicit computation in arbitrary dimensions of the entanglement entropy of the ground state of a discretized scalar free field theory that shows the expected area law result is also presented. For this system, it is shown that area law scaling is a manifestation of a deeper reordering of the vacuum produced by majorization relations.
To finish this first part, the issue of how simple can a quantum system be such as to give a highly entangled ground state is addressed. In particular, we propose a Hamiltonian of a XX model with a ground state whose entropy scales linearly with the size of the block. It provides a simple example of a one dimensional system of spin-1/2 particles with nearest neighbour interactions that violates area-law for the entanglement entropy.
The second part of this thesis deals with the problem of simulating quantum mechanics for highly entangled systems. Two different approaches to this issue are considered. One consists of using ultra-cold atoms systems as quantum simulators. With this aim, some experimental techniques related to cold atoms that allow to simulate strongly correlated many body quantum systems are reviewed an explicit example of simulation is presented. In particular, we analyze how to achieve a Mott state of Laughlin wave functions in an optical lattice and study the consequences of considering anharmonic corrections to each single site potential expansion that were not taken into account until now.
Finally, a different approach to simulate strongly correlated systems is considered: to use small quantum computers to simulate them. An explicit quantum algorithm that creates the Laughlin state for an arbitrary number of particles n in the case of falling fraction equal to one is presented. We further prove the optimality of the circuit using permutation theory arguments and we compute exactly how entanglement develops along the action of each gate. We also discuss its experimental feasibility decomposing the qudits and the gates in terms of qubits and two qubit-gates as well as the generalization to arbitrary falling fraction.
KEYWORDS: Entanglement, Many body quantum systems, Quantum Information Condensed Matter, Cold atoms, Spin chains, Quantum simulator, Quantum computation.
"Entrellaçament quàntic en sistemes de molts cossos"
TEXT:
Aquesta tesi està composada per dues parts. En la primera, adrecem la qüestió de l'entrellaçament quàntic en els sistemes de molts cossos. Així, introduïm primer el concepte d'entrellaçament i revisem els progressos recents sobre aquest camp. A continuació, ens centrem la llei d'àrea per l'entropia d'entrellaçament i presentem un càlcul explícit d'aquesta entropia per a l'estat fonamental d'un camp escalar no interactuant obtenint la llei d'àrea esperada. Finalment, acabem aquesta part presentant un sistema molt senzill 1-dimensional que tot i tenir interaccions locals mostra una llei de volum per l'entropia.
En la segona part de la tesi tractem el problema de la simulació de sistemes quàntics altament entrellaçats. Considerem dos possibles vies per tractar aquest problema. Una d'elles consisteix en la utilització d'àtoms ultra-freds com a simuladors quàntics. En particular, analitzem un mètode per obtenir un estat producte de funcions d'ona de Laughlin en un xarxa òptica i estudiem les conseqüències de considerar la correcció anharmònica de l'expansió del potencial a cada pou de la xarxa. Finalment, considerem una altra aproximació a la simulació de sistemes fortament correlacionats: utilitzar petits ordinadors quàntics per a simular-los. Per il.lustrar aquest tipus de simulació, presentem un algoritme quàntic que crea un estat de Laughlin per un nombre arbitrari de partícules i en el cas de fracció d'ocupació 1.
Graham, Abi Claire. "Many-body interactions in quantum wires." Thesis, University of Cambridge, 2004. https://www.repository.cam.ac.uk/handle/1810/284031.
Повний текст джерелаJia, Ningyuan. "Quantum Many-Body Physics with Photons." Thesis, The University of Chicago, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10928150.
Повний текст джерелаUnderstanding and manipulating quantum materials is a long-sought goal in both the condensed matter and cold atom communities. Photons have recently emerged as a good candidate for studying quantum many-body states due to their fast dynamics and convenient manipulation. Tremendous efforts have been made to engineer single particle Hamiltonian with non-trivial topology. Having individual photons to strongly collide with each other and form an entangled many-body state remained as a challenge in optical domain.
In this thesis, I will first demonstrate how to engineer artificial magnetic field and non-trivial topology for microwave photons. In a classical lumped element circuit, we demonstrate the edge modes for microwave photons within the bulk band, and also show that these modes propagates with topological protection against the local lattice disorder. This work paves the way to synthesize correlated quantum materials in a lattice using microwave photons, combined with circuit QED technique.
Recently, Rydberg-Rydberg interaction has been broadly used in cold atom experiment to generate long-range inter-particle coupling for quantum information processing and quantum material simulation. We combine this technique with cavity electromagnetically induced transparency and create a robust quasi-particle, cavity Rydberg polaritons, which harness the power from both cavity photons with exotic topology and Rydberg atoms with strong interactions. We first demonstrate the interaction in the single quanta level in a quantum dot with single cavity mode and further expand it into multi-mode regime with modulated atomic states.
Scarlatella, Orazio. "Driven-Dissipative Quantum Many-Body Systems." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS281/document.
Повний текст джерелаMy PhD was devoted to the study of driven-dissipative quantum many-body systems. These systems represent natural platforms to explore fundamental questions about matter under non-equilibrium conditions, having at the same time a potential impact on emerging quantum technologies. In this thesis, we discuss a spectral decomposition of single-particle Green functions of Markovian open systems, that we applied to a model of a quantum van der Pol oscillator. We point out that a sign property of spectral functions of equilibrium systems doesn't hold in the case of open systems, resulting in a surprising ``negative density of states", with direct physical consequences. We study the phase transition between a normal and a superfluid phase in a prototype system of driven-dissipative bosons on a lattice. This transition is characterized by a finite-frequency criticality corresponding to the spontaneous break of time-translational invariance, which has no analog in equilibrium systems. Later, we discuss the mean-field phase diagram of a Mott insulating phase stabilized by dissipation, which is potentially relevant for ongoing experiments. Our results suggest that there is a trade off between the fidelity of the stationary phase to a Mott insulator and robustness of such a phase at finite hopping. Finally, we present some developments towards using dynamical mean field theory (DMFT) for studying driven-dissipative lattice systems. We introduce DMFT in the context of driven-dissipative models and developed a method to solve the auxiliary problem of a single impurity, coupled simultaneously to a Markovian and a non-Markovian environment. As a test, we applied this novel method to a simple model of a fermionic, single-mode impurity
Wesslén, Carl-Johan. "Many-Body effects in Semiconductor Nanostructures." Licentiate thesis, Stockholms universitet, Fysikum, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-102344.
Повний текст джерелаMur, Petit Jordi. "Many-body studies on atomic quantum systems." Doctoral thesis, Universitat de Barcelona, 2006. http://hdl.handle.net/10803/1587.
Повний текст джерелаEn primer lloc hem estudiat la possible existència d'una transició de fase superfluida en un gas ultrafred d'àtoms fermiònics, mitjançant una generalització de la teoria BCS de la superconductivitat que dóna especial rellevància al paper jugat per l'asimetria de densitat entre les dues espècies, i permet que l'estat fonamental presenti un trencament espontani de simetria.
En una segona part, hem estudiat la dinàmica d'un condensat de Bose-Einstein el grau de llibertat d'espí del qual pot evolucionar dins d'una trampa òptica quasi-unidimensional, tant a temperatura zero com finita, mitjançant una formulació de camp mitjà.
Finalment, hem dut a terme un estudi detallat de l'estat fonamental i la tensió lineal de sistemes bidimensional d'heli-4, primerament mitjançant les tècniques de Monte Carlo, i posteriorment amb un funcional de la densitat construit amb aquest objectiu.
EN CASTELLÀ:
En esta tesis se presenta un conjunto de estudios sobre sistemas atómicos donde los efectos cuánticos son especialmente destacados. Dichos estudios se han llevado a cabo aplicando varias técnicas de la física teórica de muchos cuerpos.
En primer lugar, se ha estudiado la posible existencia de una transición superfluida en un gas ultrafrío de átomos fermiónicos mediante una generalización de la teoría BCS de la superconductividad que presta especial atención al papel jugado por la asimetría de densidad entre las dos especies, y permite que el estado fundamental presente una rotura espontánea de simetría.
En una segunda parte, se ha estudiado la dinámica de un condensado de Bose-Einstein cuyo grado de libertad de espín puede evolucionar en una trampa óptica cuasi-unidimensional, tanto a temperatura cero como finita, mediante una formulación de campo medio.
Finalmente, se ha llevado a cabo un estudio detallado del estado fundamental y la tensión lineal de sistemas bidimensionales de helio-4, primeramente mediante las técnicas de Monte Carlo, y posteriormente con un funcional de la densidad construido al efecto.
PALABRAS CLAVE: Átomos fríos, Aparejamiento, Condensado espinorial, Helio, Dos dimensiones
SUMMARY:
This thesis presents a set of studies on atomic systems where quantum efects are particularly relevant. These studies have been developed by applying a variety of tools from many-body physics.
First of all, we have studied the prospects for the existance of a superfluid transition in an ultracold gas of fermionic atoms, by generalizing the BCS theory of superconductivity to the case when the two species that pair have different densities and the ground state may spontaneously break one or more symmetries.
In a second part, we have studied the dynamics of a Bose-Einstein condensate whose spin degree of freedom is free to evolve inside a quasi-onedimensional optical trap. We have used a mean-field formulation to address both the zero temperature case and the finite temperature one.
Finally, we have performed a careful study of the ground state and the line tension of two-dimensional systems of helium-4. First, we have used Monte Carlo techniques, then with a Density Functional built on-purpose.
KEYWORDS: Cold gases, Pairing, Spinor condensate, Helium, Two dimensions
Heyl, Markus Philip Ludwig. "Nonequilibrium phenomena in many-body quantum systems." Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-145838.
Повний текст джерелаYoung, Carolyn 1979. "Many-body cotunneling in coupled quantum dots." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=101692.
Повний текст джерелаIn this work, the single-particle formalism is extended to the study of higher-order two-particle cotunneling processes by considering many-body Green's functions. The effect of attaching leads to the system is described in terms of a two-particle self-energy, whose analytical form is written in terms of a Feynman path integral over all possible tunneling processes between the leads and the device. In addition, an efficient numerical technique for the calculation of the fully dressed Green's function of a device region attached to two-particle leads is presented.
The problem of two-particle transport is then approached, and an analogy to single-particle transport on the infinite plane is drawn. It is shown that, for nonspin flip cotunneling processes, the two-particle transport result can be related to the single-particle conductance by way of a simple convolution. Finally, results for the cotunneling contribution to the conductance of double quantum dots, or charge qubits, are presented.
Brell, Courtney Gordon Gray. "Many-body models for topological quantum information." Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/13539.
Повний текст джерелаКниги з теми "Quantum many body"
Rivasseau, Vincent, Robert Seiringer, Jan Philip Solovej, and Thomas Spencer. Quantum Many Body Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29511-9.
Повний текст джерелаKuramoto, Yoshio. Quantum Many-Body Physics. Tokyo: Springer Japan, 2020. http://dx.doi.org/10.1007/978-4-431-55393-9.
Повний текст джерелаMarie, Ericsson, and Montangero Simone, eds. Quantum information and many body quantum systems: Proceedings. Pisa: Edizioni Della Normale, 2008.
Знайти повний текст джерелаMarie, Ericsson, and Montangero Simone, eds. Quantum information and many body quantum systems: Proceedings. Pisa: Edizioni Della Normale, 2008.
Знайти повний текст джерелаKaldor, U., ed. Many-Body Methods in Quantum Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-93424-7.
Повний текст джерелаZagoskin, Alexandre M. Quantum Theory of Many-Body Systems. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0595-1.
Повний текст джерелаZagoskin, Alexandre. Quantum Theory of Many-Body Systems. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07049-0.
Повний текст джерелаQuantum scaling in many-body systems. Singapore: World Scientific, 2001.
Знайти повний текст джерелаMartin, Philippe A., and François Rothen. Many-Body Problems and Quantum Field Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08490-8.
Повний текст джерелаMartin, Philippe A., and François Rothen. Many-Body Problems and Quantum Field Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04894-8.
Повний текст джерелаЧастини книг з теми "Quantum many body"
Bes, Daniel R. "Many-Body Problems." In Quantum Mechanics, 95–118. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05384-3_7.
Повний текст джерелаBes, Daniel R. "Many-Body Problems." In Quantum Mechanics, 109–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20556-9_7.
Повний текст джерелаHecht, K. T. "Many-Body Formalism." In Quantum Mechanics, 721–38. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1272-0_78.
Повний текст джерелаSalam, Akbar. "Many-Body Forces." In Molecular Quantum Electrodynamics, 257–310. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9780470535462.ch6.
Повний текст джерелаFlügge, Siegfried. "IV. Many-Body Problems." In Practical Quantum Mechanics, 379–470. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-61995-3_4.
Повний текст джерелаCeperley, D. M., and M. H. Kalos. "Quantum Many-Body Problems." In Monte Carlo Methods in Statistical Physics, 145–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82803-4_4.
Повний текст джерелаKotecha, Isha. "Many-Body Quantum Spacetime." In On Generalised Statistical Equilibrium and Discrete Quantum Gravity, 45–59. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90969-7_3.
Повний текст джерелаKam, Chon-Fai, Wei-Min Zhang, and Da-Hsuan Feng. "Quantum Many-Body Systems." In Coherent States, 191–218. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20766-2_10.
Повний текст джерелаSalasnich, Luca. "Many-Body Systems." In Quantum Physics of Light and Matter, 115–44. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05179-6_6.
Повний текст джерелаSalasnich, Luca. "Many-Body Systems." In Quantum Physics of Light and Matter, 115–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52998-1_6.
Повний текст джерелаТези доповідей конференцій з теми "Quantum many body"
Lindgren, Ingvar. "Many-body theory." In Relativistic, quantum electrodynamics, and weak interaction effects in atoms. AIP, 1989. http://dx.doi.org/10.1063/1.38434.
Повний текст джерелаGUERLIN, C., K. BAUMANN, F. BRENNECKE, D. GREIF, R. JÖRDENS, S. LEINSS, N. STROHMAIER, et al. "SYNTHETIC QUANTUM MANY-BODY SYSTEMS." In Proceedings of the XIX International Conference. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814282345_0020.
Повний текст джерелаKelly, Hugh P. "Many-body calculations of photoionization cross sections." In Computational quantum physics. AIP, 1992. http://dx.doi.org/10.1063/1.42617.
Повний текст джерелаGustafson, Erik, Andy Li, Abid Khan, Joonho Kim, Doga Kürkçüoglu, M. Sohaib Alam, Peter Orth, Armin Rahmani, and Thomas Iadecola. "Preparing quantum many-body scar states on quantum computers." In Preparing quantum many-body scar states on quantum computers. US DOE, 2023. http://dx.doi.org/10.2172/1969682.
Повний текст джерелаVERSTRAETE, FRANK. "ENTANGLEMENT IN MANY-BODY QUANTUM PHYSICS." In Proceedings of the 14th International Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812779885_0007.
Повний текст джерелаKhatiwada, Pawan, and Imran Mirza. "Entanglement in many-body quantum systems." In Frontiers in Optics. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/fio.2020.jm6a.23.
Повний текст джерелаKira, Mackillo (Mack). "Quantum Optics with Many-Body States." In Conference on Coherence and Quantum Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/cqo.2013.m4b.2.
Повний текст джерелаVan Isacker, P., Kurt B. Wolf, Luis Benet, Juan Mauricio Torres, and Peter O. Hess. "Seniority in quantum many-body systems." In SYMMETRIES IN NATURE: SYMPOSIUM IN MEMORIAM MARCOS MOSHINSKY. AIP, 2010. http://dx.doi.org/10.1063/1.3537842.
Повний текст джерелаMekhov, Igor B. "Merging quantum optics and quantum many-body atomic systems." In 12th European Quantum Electronics Conference CLEO EUROPE/EQEC. IEEE, 2011. http://dx.doi.org/10.1109/cleoe.2011.5942918.
Повний текст джерелаBeau, Mathieu, Aurelia Chenu, Jianshu Cao, and Adolfo del Campo. "Quantum Simulation and Quantum Metrology of Many-Body Decoherence." In Quantum Information and Measurement. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/qim.2017.qf5b.3.
Повний текст джерелаЗвіти організацій з теми "Quantum many body"
Scalapino, Douglas J. Sugar, Robert L. Numerical Simulations of Quantum Many-body Systems. Office of Scientific and Technical Information (OSTI), April 1998. http://dx.doi.org/10.2172/842398.
Повний текст джерелаScalapino, D. J. Numerical simulation of quantum many-body systems. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/6652913.
Повний текст джерелаScalapino, D. J. Numerical simulation of quantum many-body systems. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/10127187.
Повний текст джерелаZhu, Jianxin, and Benedikt Fauseweh. Digital quantum simulation of non-equilibrium quantum many-body systems. Office of Scientific and Technical Information (OSTI), May 2022. http://dx.doi.org/10.2172/1868210.
Повний текст джерелаMartin, Joshua. Quantum many-body equilibration of neutrino flavor oscillations. Office of Scientific and Technical Information (OSTI), November 2023. http://dx.doi.org/10.2172/2217479.
Повний текст джерелаLukin, Mikhail, and Eugene Demler. Quantum Simulations of Many-Body Systems with Ultra-Cold Atoms. Fort Belvoir, VA: Defense Technical Information Center, February 2009. http://dx.doi.org/10.21236/ada496260.
Повний текст джерелаScully, Marlan O. Detection of Biochemical Pathogens, Laser Stand-off Spectroscopy, Quantum Coherence, and Many Body Quantum Optics. Fort Belvoir, VA: Defense Technical Information Center, February 2012. http://dx.doi.org/10.21236/ada558091.
Повний текст джерелаDeMille, David, and Karyn LeHur. NON-EQUILIBRIUM DYNAMICS OF MANY-BODY QUANTUM SYSTEMS: FUNDAMENTALS AND NEW FRONTIER. Office of Scientific and Technical Information (OSTI), November 2013. http://dx.doi.org/10.2172/1108018.
Повний текст джерелаScalapino, D. J., and R. L. Sugar. Numerical simulation of quantum many-body systems. Progress report for March 1, 1991--September 1, 1993. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/10133898.
Повний текст джерелаPaesani, Francesco. Final Report: Chemical Reactivity Through Adaptive Quantum Mechanics/Many-Body Representations: Theoretical Development, Software Implementation, and Applications. Office of Scientific and Technical Information (OSTI), October 2023. http://dx.doi.org/10.2172/2203697.
Повний текст джерела