Добірка наукової літератури з теми "Pulsed laser radiation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Pulsed laser radiation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Pulsed laser radiation"

1

Shemyakin, A. N., M. Yu Rachkov, N. G. Solov’ev та M. Yu Yakimov. "Radiation Power Control of the Industrial CO2 Laser Excited by а Nonself-Sustained Glow Discharge by Changing the Frequency of Ionization Pulses". Mekhatronika, Avtomatizatsiya, Upravlenie 21, № 4 (11 квітня 2020): 224–31. http://dx.doi.org/10.17587/mau.21.224-231.

Повний текст джерела
Анотація:
The article describes radiation power control of industrial CO2 lasers of Lantan series excited by а nonself-sustained glow discharge in the automatic mode. These lasers are closed-cycle fast gas-transport lasers excited by a nonself-sustained glow discharge with ionization by periodic-pulsed capacitively coupled auxiliary discharge. In this case, ionization and conductivity are provided by periodic-pulsed capacitively coupled discharge. The energy contribution to molecular oscillations is provided by the passage of the main discharge current through the plasma with electron density given by ionization. This permits easy laser power control, provides excellent optical homogeneity and stability of an active volume together with high laser efficiency. A system of a nonself-sustained glow discharge with ionization by periodic-pulsed capacitively coupled auxiliary discharge, the stages of creation and brief characteristics of the Lantan series lasers is presented. The method of controlling the power of laser radiation by changing the frequency of the ionization pulses is determined. This control method allows operating of the laser in continuous and in pulse-periodic modes with adjustable pulse ratio and pulse duration, and also provides switching from one mode to another. In the continuous mode, the radiation power is controlled by changing the frequency of ionization pulses, which are high voltage pulses with duration of 100 ns, given with the frequency of 1-5 kHz. Pulse-periodic radiation control is performed by modulating ionization pulses that consists of pulses being delivered in batches. The frequency of the pulses in a batch determines the radiation power in a pulse. The frequency of the batches following is the frequency of the pulse mode, and the length of the batch determines the pulses duration. Based on the experimental data, the dependence of the radiation power on the ionization pulses frequency was determined. An experimental system is presented and the measuring accuracy of the laser radiation power and the frequency of ionization pulses is determined. Data acquiring and processing of experimental results were performed using the NI 6008 USB data acquisition device in the LabVIEW programs of National Instruments. To study the dependence of the laser power on Мехатроника, автоматизация, управление, Том 21, № 4, 2020 231 the frequency of the ionization pulses, a regression analysis method was applied. Studies have shown that the dependence of the laser power on the ionization pulses frequency is linear in a wide range of parameters. The equation of the direct regression is calculated. The confidence estimates of the coefficients of the direct regression and the confidence estimates of the deviation of the theoretical direct regression from the empirical one are calculated with a confidence level of 95%.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Glotov, A. N., Yu V. Golubenko, V. A. Desyatskov, and A. V. Stepanov. "Certain Features of Interaction Between Laser Radiation and Metals." Herald of the Bauman Moscow State Technical University. Series Instrument Engineering, no. 1 (130) (February 2020): 15–32. http://dx.doi.org/10.18698/0236-3933-2020-1-15-32.

Повний текст джерела
Анотація:
The paper presents experimental investigation results concerning the problem of optimising the efficiency of interaction between laser radiation and metals. We used several types of Nd lasers featuring the desired combination of power, temporal and spatial radiation parameters as sources of the radiation required. To pump these lasers, we employed rectangular pulses at a periodicity eliminating effects characteristic of continuous-wave and pulsed laser operation modes. This limits the laser radiation parameters driving the interaction efficiency functions to strictly those parameters that match the single-pulse laser operation mode. Temporal radiation parameter variation involved measurements in the free-running and high-frequency Q-switching modes as well as adjusting pumping (lasing) pulse durations. Power parameter variation was implemented through altering radiation energy density over the irradiated surface. Spatial structure of the ablative radiation was varied by means of optical radiation transfer facilities and different laser emitters. The experimental investigation results allowed us to establish certain patterns concerning the interaction between laser radiation and metals as a function of radiation parameters listed
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Александров, В. А., В. В. Бесогонов та Д. Г. Калюжный. "Импульсная проводимость в Ag-Pd-резисторах, индуцированная импульсами лазера". Журнал технической физики 92, № 5 (2022): 738. http://dx.doi.org/10.21883/jtf.2022.05.52379.246-21.

Повний текст джерела
Анотація:
Pulsed EMF in resistive thick-film Ag - Pd elements is experimentally studied when their surface is irradiated with a laser beam. The dependences of the pulsed EMF on the coordinate of the action of the laser beam on the film surface are obtained. It is shown that applying a constant bias voltage to a thick-film resistive element can significantly increase the amplitude of unipolar EMF pulses induced by laser pulses. It was found that the amplitude and frequency of the EMF signals depend, respectively, on the power and frequency of laser pulses. It is shown that by the value of the pulsed EMF it is possible to control the parameters of the high-power laser radiation incident on the surface in real time. The design of a receiver for recording the parameters of laser radiation based on an Ag - Pd sensitive element has been developed. The sensitivity of the device for measuring the power and pulse repetition rate is estimated.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Khabarov, Kirill, Messan Nouraldeen, Sergei Tikhonov, Anna Lizunova, Alexey Efimov, and Victor Ivanov. "Modification of Aerosol Gold Nanoparticles by Nanosecond Pulsed-Periodic Laser Radiation." Nanomaterials 11, no. 10 (October 13, 2021): 2701. http://dx.doi.org/10.3390/nano11102701.

Повний текст джерела
Анотація:
This study investigates the processes of interaction of nanosecond pulsed-periodic laser radiation with the flow of aerosol agglomerates of gold nanoparticles synthesized in a spark discharge. Nanoparticles in a gas flow are spatially separated nano-objects whose interaction with each other and with the walls of an experimental cell was insignificant. Therefore, the energy absorbed by nanoparticles was used only for their own heating with further shape and size modification and on heat transfer to the surrounding gas. In the research, we used laser radiation with wavelengths of 527 and 1053 nm at pulse energies up to 900 µJ and pulse repetition rates up to 500 Hz. The dynamics of changes in the nanoparticles size during their sintering process depending on the laser pulses energy is characterized by an S-shaped shrinkage curve. Complete sintering of the initial agglomerates with their transformation into spherical nanoparticles is achieved by a series of impacting laser pulses. The result of nanoparticles’ laser modification is largely determined by the pulse energy and the efficiency of the nanoparticles’ radiation absorption.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Khabarov, Kirill, Messan Nouraldeen, Sergei Tikhonov, Anna Lizunova, Alexey Efimov, and Victor Ivanov. "Modification of Aerosol Gold Nanoparticles by Nanosecond Pulsed-Periodic Laser Radiation." Nanomaterials 11, no. 10 (October 13, 2021): 2701. http://dx.doi.org/10.3390/nano11102701.

Повний текст джерела
Анотація:
This study investigates the processes of interaction of nanosecond pulsed-periodic laser radiation with the flow of aerosol agglomerates of gold nanoparticles synthesized in a spark discharge. Nanoparticles in a gas flow are spatially separated nano-objects whose interaction with each other and with the walls of an experimental cell was insignificant. Therefore, the energy absorbed by nanoparticles was used only for their own heating with further shape and size modification and on heat transfer to the surrounding gas. In the research, we used laser radiation with wavelengths of 527 and 1053 nm at pulse energies up to 900 µJ and pulse repetition rates up to 500 Hz. The dynamics of changes in the nanoparticles size during their sintering process depending on the laser pulses energy is characterized by an S-shaped shrinkage curve. Complete sintering of the initial agglomerates with their transformation into spherical nanoparticles is achieved by a series of impacting laser pulses. The result of nanoparticles’ laser modification is largely determined by the pulse energy and the efficiency of the nanoparticles’ radiation absorption.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Афанасьєва, Ольга Валентинівна, Наталія Олексіївна Лалазарова та Олена Георгіївна Попова. "Нові технології лазерної поверхневої обробки". Aerospace technic and technology, № 2 (28 квітня 2021): 59–65. http://dx.doi.org/10.32620/aktt.2021.2.07.

Повний текст джерела
Анотація:
Subject and purpose. Currently, gas, solid-state, and fiber lasers are used to process materials in the aviation industry. For the thermal treatment of steels, gas CO2 lasers with a capacity of more than 1 kW used, which are reliable in operation but have high cost and low efficiency. There are no results on the use of low-power (up to 20 W) pulsed-mode lasers for surface hardening of steel products. The purpose of this work is to determine the modes of surface hardening of products from carbon and alloy steels using low-power solid-state pulsed YAG lasers. Methodology. For laser hardening, a 5 W solid-state YAG laser was used (diode pumping, radiation wavelength λ = 1,064 μm, pulse mode). The use of a nonlinear crystal made it possible to obtain UV radiation with λ = 0,355 μm (third harmonic). The following modes were investigated: processing with single pulses (duration 0,1...0,4 ms) and multi-pulse processing with short (30...70 ms) pulses. The scanning speed was 8...2 mm/s. The energy in the pulse was determined by the photoelectric method. Thermal hardening was performed on the following steels: У12, P6M5. The possibility of UV radiation hardening was evaluated on steel 20, 45, У12, and ШХ15. Findings. The optimum values of pulse duration for maximum hardness in laser hardening of the investigated steels. With multi-pulse treatment of steels, the pulse duration is shorter than with single-pulse treatment, the hardening intensity is higher, and the quality of the processed surface is better. Single-pulse and multi-pulse processing are accompanied by partial melting of the surface of steel products, which does not allow it to be used in cases where a high quality of the surface is required. Laser hardening of steel by ultraviolet radiation is not accompanied by melting. Conclusion. For surface hardening of products, where partial melting of the surface is possible, low-power lasers in pulse mode can be used. Laser hardening by ultraviolet radiation is a promising direction for thermal hardening of steels, which allows maintaining the original quality of the surface layer. Thermal hardening with low-power lasers can be effective for small-sized areas of the processed parts of the fuel equipment of aircraft engines, friction elements, and, especially, the tool is small.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ражев, А. М., Е. С. Каргапольцев та И. А. Трунов. "Импульсный индукционный CO-=SUB=-2-=/SUB=--лазер с энергией излучения 1 J и высоким КПД с ВЧ возбуждением". Оптика и спектроскопия 130, № 3 (2022): 400. http://dx.doi.org/10.21883/os.2022.03.52169.2836-21.

Повний текст джерела
Анотація:
An efficient pulsed gas-discharge inductive CO2-laser with a radiation energy of 1.05 J has been developed for the first time. In this case, the pulse duration of the laser radiation was about 10 msec. The maximum efficiency of 21.1% was obtained at a radiation energy of 340 mJ. RF current pulses propagated along the inductor conductor and, thus, an inductive discharge was formed to create an inverse population at the infrared (IR) transitions of CO2* molecules. The temporal and energy characteristics of the radiation of the inductive CO2-laser depending on the duration of the pump pulse are investigated. The spatial characteristics and spectrum of the radiation of the developed laser are estimated. The divergence of the laser radiation was 0.52 mrad. The cross-sectional dimension of the laser output beam was about 35 mm in diameter.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Пашенцев, В. Н. "Изменение характеристик полупроводниковых структур СВЧ-усилителей под воздействием импульсного лазерного излучения". Журнал технической физики 91, № 11 (2021): 1715. http://dx.doi.org/10.21883/jtf.2021.11.51533.43-21.

Повний текст джерела
Анотація:
The effect of pulsed laser radiation on the change in the parameters of semiconductor structures of field-effect transistors with a Schottky gate with an operating frequency range of 1.5–8 GHz and integrated amplifiers with an operating frequency range of 0.4–6 GHz is studied. Laser radiation with 25 ns pulse duration, incident on the transistor crystal, creates a pulsed photocurrent. It is shown that the amplitude of the pulsed photocurrent is three times higher than the operating transistor current. The current-voltage characteristics of the field-effect transistor were measured in the mode of pulsed laser radiation. The amplitude dependence of the pulsed photocurrent in semiconductor structures on the power of laser radiation for various wavelengths of 1.06 µm and 0.53 µm is studied. It is shown that as a result of the action of pulsed laser radiation on semiconductor structures, a short disappearance of the amplification of the high-frequency signal at the amplifier output occurs.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dzyubenko, M., I. Kolenov, V. Pelipenko, N. Dakhov, and A. Degtyarev. "Laser rangefinder of relatively eye-safe wavelength range." RADIOFIZIKA I ELEKTRONIKA 26, no. 1 (2021): 41–48. http://dx.doi.org/10.15407/rej2021.01.041.

Повний текст джерела
Анотація:
Subject and Purpose. The development and prototype making of a laser rangefinder operating in the 1.50…1.70 μm spectral region is reported. This wavelength region is attractive to both laser producers and laser users for, first of all, relative eye-safety of radiation. Methods and Methodology. The paraxial scheme of rangefinder construction is used, involving a software-controlled power supply of laser radiation with technical arrangements providing its adaptation to varying operating conditions. The alignment of the transceiver channels is provided with laser beam visualization methods. Results. A pulsed laser rangefinder operating at a 1.54 μm wavelength has been developed, a prototype has been made. The rangefinder essentially consists of the transmitting and receiving channels and the visual channel for targeting. The radiation source is a pulsed laser on ytterbium-erbium glass with semiconductor diode pumping and modulated Q-factor. The laser provides a 6 mJ power pulse of 25 ns duration and 5 mrad radiation divergence. A laser light spot of a required aperture is formed using a Galilean telescope system. For the photodetector of the reflected radiation, a pin-photodiode with a photosensitive area diagonal of 0.3 mm and a 2.5 ns time resolution is used. The echo signal processing module has been developed and performed, providing a high-precision registration of a time delay between the starting and reflected pulses. An effective method with the use of a charge-coupled device and an LCD monitor has been proposed and implemented for the alignment of all the three rangefinder channels. The rangefinder can operate in a single-pulse or repetitive-pulse mode with a probing pulse repetition rate of 1 Hz. Conclusion. A pulsed laser rangefinder operating in a relatively eye-safe spectrum region has been developed, a prototype has been made. The field tests have shown that the created rangefinder measures an object distance within 140…7 000 m with a measurement error no worse than 3 m.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

ZHANG, DUANMING, DAN LIU, ZHIHUA LI, SIPU HOU, BOMING YU, LI GUAN, XINYU TAN, and LI LI. "EFFECTS OF PLASMA SHIELDING ON PULSED LASER ABLATION." Modern Physics Letters B 20, no. 15 (June 30, 2006): 899–909. http://dx.doi.org/10.1142/s021798490601041x.

Повний текст джерела
Анотація:
We have developed a theoretical model which studies the characteristics of laser-plasma interaction, the effect of plasma shielding and plasma radiation in the ablation process. The model is used to simulate 25 ns square pulsed laser irradiation on YBa 2 Cu 3 O 7 targets, and pulsed laser with the pulse width of 25 ns (FWHM) irradiation on Ni targets. The evolution of the plasma length and the transmitted intensity are performed. The model shows the variation of ablation depth with energy density. Moreover, we obtain the dependence of the ablation depth on the number of laser pulses. The satisfactorily good agreement between our results and experimental results confirms that plasma shielding plays a relevant role in the ablation process.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Pulsed laser radiation"

1

Choi, Bernard. "Thermal interactions of pulsed laser radiation and cryogen spray cooling with skin." Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3025203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Афанасьева, О. В., Ю. П. Мачехин, Н. А. Лалазарова та Т. Ю. Свергун. "Термическая обработка быстрорежущих сталей с помощью лазеров малой мощности". Thesis, ХНУРЭ, 2011. http://openarchive.nure.ua/handle/document/9125.

Повний текст джерела
Анотація:
Надежность и долговечность инструмента из быстрорежущей стали в основном определяется его твердостью, которая зависит от химического состава и режимов термической обработки. Поэтому целью данной работы является разработка режимов лазерной закалки для быстрорежущей стали, обеспечивающих максимальную твердость.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Афанасьева, О. В., та Ф. А. Евтушенко. "Разработка режимов лазерной резки неметаллов". Thesis, «Бял ГРАД-БГ», 2017. http://openarchive.nure.ua/handle/document/9245.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Афанасьева, О. В., та М. В. Патлань. "Лазерные технологии обработки неметаллических материалов". Thesis, Sheffield. Science and education LTD, 2019. http://openarchive.nure.ua/handle/document/9248.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Romano, Valerio. "Interaction of pulsed laser radiation with tissue : determination of the thermal damage with time resolved thermal microscopy /." Bern, 1991. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Афанасьева, О. В., та Н. А. Лалазарова. "Влияние импульсной лазерной обработки на свойства инструментальных сталей". Thesis, ХНАДУ, 2016. http://openarchive.nure.ua/handle/document/9249.

Повний текст джерела
Анотація:
Целью настоящей работы является разработка режимов упрочнения поверхности деталей и инструмента с использованием YAG-лазеров малой мощности. Исследования проводились на инструментальных сталях: углеродистой и быстрорежущей, после стандартной термической обработки. Основным варьируемым параметром была длительность импульса В качестве параметра контроля свойств упрочненного слоя была выбрана микротвердость. Было показано, что для каждой стали существует оптимальное значение длительности импульса, обеспечивающее максимальную твёрдость.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tadadjeu, Sokeng Ifriky. "Sub-10 MeV proton irradiation effects on a coating obtained from the pulsed laser ablation of W2B5/B4C for space applications." Thesis, Cape Peninsula University of Technology, 2015. http://hdl.handle.net/20.500.11838/2181.

Повний текст джерела
Анотація:
Thesis submitted in partial fulfilment of the requirements for the degree Doctor of Technology: Electrical, Electronic and Computer Engineering in the Faculty of Engineering at the Cape Peninsula University of Technology
This research investigates the effects of sub-10 MeV protons on coatings obtained from the pulsed laser ablation of W2B5/B4C. This is in an attempt to extend the bullet proof applications of W2B5/B4C to space radiation shielding applications, offering low cost and low mass protection against radiation including X-rays, neutrons, gamma rays and protons in low Earth orbit. The focus in this research, however, is on low energy protons. The associated problems addressed in this work are solar cell degradation and Single Event Upsets in high density semiconductor devices caused by low energy protons. The relevant constraints considered are the necessity for low cost, low mass and high efficiency solutions. The work starts with a literature review of the space environment, the interaction of radiation with matter, and on pulsed laser deposition as a technique of choice for the coating synthesis. This paves the way for the pulsed laser ablation of W2B5/B4C. The resulting coating is a solid solution of the form WC1-xBx which contains crystalline and amorphous forms. Two proton irradiation experiments are carried out on this coating, and the resulting effects are analysed. The effects of 900 keV proton irradiation were the melting and subsequent growing of nanorods on the surface of the coating, the lateral transfer of the proton energy across the coating surface, and the lateral displacement of matter along the coating surface. These effects show that the coating is a promising cost effective and low mass radiation shield against low energy protons. The effects of 1 MeV protons on this coating are the three-stage melting of rods formed on the coating surface, and further evidence of lateral transfer of energy across the coating surface. Optical measurements of this coating show that it is about 73% transparent in the Ultraviolet, Visible and near Infrared range. This allows it to be used as radiation shielding for solar cells, in addition to high density semiconductor devices, against low energy protons in low Earth orbit. Simulations show that based on coulombic interactions alone, the same level of protection coverglass offers to solar cells can be achieved with about half the thickness of WC1-xBx or less.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

COUTANCE, PASCAL. "Etude du laser cu/hbr. Son application au pompage d'une chaine laser sa/ti." Université Joseph Fourier (Grenoble), 1996. http://www.theses.fr/1996GRE10253.

Повний текст джерела
Анотація:
Un laser cu/hbr de plus de 100 watts a 18 khz avec un rendement a la prise de 1. 4% a ete construit au laboratoire. Nous l'avons caracterise au niveau des performances et de la qualite de faisceau. Nous avons montre que son profil d'intensite en champ lointain est parfaitement symetrique et quasi-gaussien avec une divergence de 3 fois la limite de diffraction en cavite instable axiale contrairement au profil d'un laser a vapeur de cuivre classique. Une simulation nous permet de retrouver les caracteristiques du champ lointain pour le laser cu/hbr et de montrer, avec l'appui de nos resultats experimentaux, qu'une cavite instable de grandissement 40 est un bon compromis entre puissance et qualite de faisceau. Nous avons effectue des mesures de cinetique d'especes presentes dans le laser cu/hbr. Nous avons mesure pour la premiere fois la concentration des molecules cubr et cu#3br#3 aussi bien radialement que temporellement dans le laser. Ces mesures montrent que la source principale d'atomes de cuivre dans ce laser est la molecule cu#3br#3 et non cubr comme il etait admis jusque la. Nous avons utilise le laser cu/hbr afin de pomper une chaine laser composee d'un oscillateur et d'un amplificateur sa/ti afin d'obtenir une source proche infrarouge, spectralement fine, de forte puissance et pulsee a 18 khz qui sera utilisee pour des experiences de spectroscopie. Nous avons obtenu ainsi un oscillateur avec une cavite en z sortant 300 mw a 795 nm avec 10% de rendement optique, a un taux de repetition de 18 khz, de largeur spectrale 3 ghz et balayable sur 40 cm#-#1. Nous avons amplifie le faisceau grace a deux passages dans un amplificateur sa:ti et obtenu ainsi 1. 4 watts. Ce travail a permis de modeliser un futur systeme de forte puissance
Стилі APA, Harvard, Vancouver, ISO та ін.
9

BERGEON, MURIELE. "Etude et realisation de microlasers declenches et de microlasers balayes en longueur d'onde, compatibles avec un procede de fabrication collectif." Université Joseph Fourier (Grenoble), 1996. http://www.theses.fr/1996GRE10248.

Повний текст джерела
Анотація:
Le microlaser est un laser a etat solide miniature (<1mm#3), dont les miroirs de la cavite sont directement deposes sur le milieu a gain. De nombreuses applications demandent un fonctionnement impulsionnel ou balaye en longueur d'onde (telemetrie, detection de gaz, marquage). En inserant un cristal electrooptique a l'interieur de la cavite laser, des microlasers a emission declenchee et des microlasers a emission balayee en longueur d'onde ont ete realises. Les dispositifs concus sont constitues de yag:nd et de tantalate de lithium, ils sont stabilises en temperature et donnent une emission laser a 1,06 m. Le declenchement de ces microlasers a donne des impulsions laser de 0,3 j d'energie, a des frequences de 5 a 10 khz pour un champ electrique appliquee de 0,8 10#6 v/m. De meme, le balayage de la longueur d'onde laser est realise avec un taux de balayage de 10 mhz/v, a des frequences variant du continu jusqu'a 20 khz: des excursions de 10 ghz (0,35 a) ont ete mesurees pour un champ electrique de 10#6 v/m. De maniere a maintenir les qualites de compacite et fiabilite intrinseques au microlaser, un procede de fabrication collectif a ete mis au point
Стилі APA, Harvard, Vancouver, ISO та ін.
10

BERRETTA, JOSE R. "Solda laser em materiais dissimilares com laser de Nd:YAG pulsado." reponame:Repositório Institucional do IPEN, 2005. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11293.

Повний текст джерела
Анотація:
Made available in DSpace on 2014-10-09T12:50:23Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T14:02:52Z (GMT). No. of bitstreams: 1 10892.pdf: 82299221 bytes, checksum: dceed1e4106bebec1654b10d9cef9110 (MD5)
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Pulsed laser radiation"

1

International Conference on Atomic and Molecular Pulsed Lasers (4th 2001 Tomsk, Russia). International Conference on Atomic and Molecular Pulsed Lasers IV: 10-14 September, 2001, Tomsk, Russia. Edited by Maĭer G. V, Petrash G. G, Tarasenko V. F, Institut optiki atmosfery SO RAN., Rossiĭskai︠a︡ akademii︠a︡ nauk, and Society of Photo-optical Instrumentation Engineers. Bellingham, Washington: SPIE, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

NATO Advanced Research Workshop (ARW) on Pulsed Metal Vapour Lasers, Physics and Emerging Applications in Industry, Medicine, and Science (1995 University of St. Andrews). Pulsed metal vapour lasers. Dordrecht: Kluwer Academic, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Little, Chris E. Pulsed Metal Vapour Lasers. Dordrecht: Springer Netherlands, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mackenroth, K. Felix. Quantum Radiation in Ultra-Intense Laser Pulses. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07740-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

F, Tarasenko V., Maĭer G. V, Petrash G. G, Institut optiki atmosfery SO RAN., Rossiĭskai͡a︡ akademii͡a︡ nauk, and Society of Photo-optical Instrumentation Engineers., eds. Atomic and molecular pulsed lasers V: 15-19 September 2003, Tomsk, Russia. Bellingham, Wash., USA: SPIE, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

International, Conference on Atomic and Molecular Pulsed Lasers (7th 2007 Tomsk Russia). Atomic and molecular pulsed lasers VII: 10-14 September, 2007, Tomsk, Russia. Bellingham, Wash: SPIE, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

International Conference on Atomic and Molecular Pulsed Lasers (6th 2005 Tomsk, Russia). Atomic and molecular pulsed lasers VI: 12-16 September, 2005, Tomsk, Russia. Edited by Tarasenko V. F, Maĭer G. V, Petrash G. G, Institut optiki atmosfery SO RAN., Rossiĭskai︠a︡ akademii︠a︡ nauk, and Society of Photo-optical Instrumentation Engineers. Bellingham, Wash: SPIE, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

F, Tarasenko V., Maĭer G. V, Petrash G. G, Institut optiki atmosfery SO RAN., and Society of Photo-optical Instrumentation Engineers., eds. International Conference on Atomic and Molecular Pulsed Lasers, 27-30 March, 1995, Tomsk, Russia. Bellingham, Wash: SPIE--the International Society for Optical Engineering, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

F, Tarasenko V., Maĭer G. V, Petrash G. G, Institut optiki atmosfery SO RAN., Institut fiziki (Rossiĭskai͡a︡ akademii͡a︡ nauk), Institut astronomii (Rossiĭskai͡a︡ akademii͡a︡ nauk), and Society of Photo-optical Instrumentation Engineers., eds. International Conference on Atomic and Molecular Pulsed Lasers II: 22-26 September 1997, Tomsk, Russia. Bellingham, Wash., USA: SPIE, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

F, Tarasenko V., Maĭer G. V, Petrash G. G, Institut optiki atmosfery SO RAN., Rossiĭskai͡a︡ akademii͡a︡ nauk, and Society of Photo-optical Instrumentation Engineers., eds. International Conference on Atomic and Molecular Pulsed Lasers III: 13-17 September, 1999, Tomsk, Russia. Bellingham, Washington: SPIE, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Pulsed laser radiation"

1

Poprawe, R., and H. G. Treusch. "Micro Machining by Pulsed Laser Radiation." In Laser/Optoelektronik in der Technik / Laser/Optoelectronics in Engineering, 371–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82638-2_73.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gladush, Gennady G., and Igor Smurov. "Interaction of Pulsed Laser Radiation with Materials." In Physics of Laser Materials Processing, 345–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19831-1_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gladush, Gennady G., and Igor Smurov. "Interaction of Repetitively Pulsed Laser Radiation with Materials." In Physics of Laser Materials Processing, 471–527. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19831-1_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Isaev, A. A. "Transformation of Copper and Copper Bromide Laser Radiation in Non-Linear Processes." In Pulsed Metal Vapour Lasers, 289–301. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1669-2_30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ogawa, Rei. "Long-Pulsed 1064 nm Nd:YAG Laser Treatment for Keloids and Hypertrophic Scars." In Textbook on Scar Management, 271–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44766-3_32.

Повний текст джерела
Анотація:
AbstractThere are many therapeutic options for keloids and hypertrophic scars, including surgery, radiation, corticosteroids, 5-fluorouracil, cryotherapy, laser therapy, anti-allergy agents, anti-inflammatory agents, bleaching creams, and make-up therapies. In terms of laser therapy, we have used long-pulsed 1064 nm Nd:YAG laser to treat keloids and hypertrophic scars. This laser was developed for the treatment of vascular diseases, including inflammatory scars that exhibit neovascularization. The depth that is reached is determined by the spot size, the laser power, and the fluence: the larger the spot size, power, or fluence, the deeper the laser beam penetrates. The laser should generally be applied to the skin surface with the following standard treatment settings: a spot diameter of 5 mm, an energy density of 75 J/cm2, an exposure time per pulse of 25 ms, and a repetition rate of 2 Hz.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Steiger, A., K. Grützmacher, and M. I. de la Rosa. "Efficient Generation of Pulsed Single-Mode Radiation Tunable in the UV-C Region." In Laser in Forschung und Technik / Laser in Research and Engineering, 308–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80263-8_68.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kim, Woo-Seung, Louis G. Hector, and Richard B. Hetnarski. "Thermoelastic Stresses in a Bonded Layer Due to Repetitively Pulsed Laser Radiation." In Encyclopedia of Thermal Stresses, 5760–75. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_997.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

McMorrow, Dale. "Characteristics and Applications of Pulsed Laser-Induced Single-Event Effects." In Radiation Effects on Integrated Circuits and Systems for Space Applications, 61–81. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04660-6_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Opachko, I. I. "Interaction of CVL Radiation with Solids: Application to Mass Spectrometry." In Pulsed Metal Vapour Lasers, 441–44. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1669-2_47.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Omatsu, Takashige, and Kazuo Kuroda. "Beam Quality Issues for the Second Harmonic Generation of Copper Vapour Radiation." In Pulsed Metal Vapour Lasers, 263–68. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1669-2_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Pulsed laser radiation"

1

Lozovik, Yurii E., S. P. Merkulova, and Sergei V. Lavrishchev. "Transport processes under nonuniform pulsed-laser radiation." In Nonresonant Laser-Matter Interaction, edited by Vitali I. Konov and Mikhail N. Libenson. SPIE, 1997. http://dx.doi.org/10.1117/12.271705.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Uchtmann, Hermann, Dorian Kürschner, and Ingomar Kelbassa. "Hybrid laser drilling of cooling holes by using millisecond pulsed fiber laser radiation and ultrashort pulsed laser radiation." In ICALEO® 2015: 34th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2015. http://dx.doi.org/10.2351/1.5063244.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zvereva, Galina N., Irina Kirtsideli, and Eduard Machs. "DNA destruction under the influence of VUV radiation." In XV International Conference on Pulsed Lasers and Laser Applications, edited by Victor F. Tarasenko, Anton V. Klimkin, and Maxim V. Trigub. SPIE, 2021. http://dx.doi.org/10.1117/12.2613831.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Soldatov, A. N., V. I. Donin, D. V. Jakovin, and I. V. Reimer. "Laser dyes excited by high PRR Nd:YAG laser second-harmonic radiation." In Atomic and Molecular Pulsed Lasers VII, edited by Victor F. Tarasenko. SPIE, 2007. http://dx.doi.org/10.1117/12.785639.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zakharov, S. D., Mishik A. Kazaryan, and Nikolay P. Korotkov. "Some effects of interaction of laser radiation with small particles." In Second Conference on Pulsed Lasers: Pulsed Atomic and Molecular Transitions, edited by Victor F. Tarasenko, Georgy V. Mayer, and Gueorgii G. Petrash. SPIE, 1995. http://dx.doi.org/10.1117/12.216921.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ionin, Andrei A., Andrei A. Kotkov, and Leonid V. Seleznev. "Intracavity phase conjugation of pulsed CO2 laser radiation." In High-Power Laser Ablation, edited by Claude R. Phipps. SPIE, 1998. http://dx.doi.org/10.1117/12.321597.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sokolova, Irina V., Ksenia Skobtsova, Anastasia Fedorova, Olga Tchaikovskaya, and Georgiy Mayer. "Photodegradation of aqueous solutions of phenoxyacetic acids under excilamps radiation." In XV International Conference on Pulsed Lasers and Laser Applications, edited by Victor F. Tarasenko, Anton V. Klimkin, and Maxim V. Trigub. SPIE, 2021. http://dx.doi.org/10.1117/12.2593693.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dmitriev, E. I., A. S. Sakyan, Aleksey N. Starchenko, and Dmitri A. Goryachkin. "Heating of optical materials by pulsed CO2 laser radiation." In Laser Optics '98, edited by Vladimir E. Sherstobitov. SPIE, 1998. http://dx.doi.org/10.1117/12.334833.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kozlov, Boris A., Dmitry S. Makhanko, and Alexander Y. Payurov. "TEA-N2 laser with a high level of average radiation power." In XV International Conference on Pulsed Lasers and Laser Applications, edited by Victor F. Tarasenko, Anton V. Klimkin, and Maxim V. Trigub. SPIE, 2021. http://dx.doi.org/10.1117/12.2613562.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sosnin, Eduard A., Anastasia A. Burenina, Elena N. Surnina, Yulia Y. Fadeeva, and Tatiana P. Astaphyrova. "Physiological action of UVB radiation on wheat sprouts (Triticum aestivum L.)." In XV International Conference on Pulsed Lasers and Laser Applications, edited by Victor F. Tarasenko, Anton V. Klimkin, and Maxim V. Trigub. SPIE, 2021. http://dx.doi.org/10.1117/12.2605104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Pulsed laser radiation"

1

Thomas, Alexander Roy, and Karl Krushelnick. High Harmonic Radiation Generation and Attosecond pulse generation from Intense Laser-Solid Interactions. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1322280.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Marshall, T. C. Third and Seventh Harmonic Free Electron Laser Coherent Millimeter Radiation, and Studies of Short-Pulse Emission from FEL. Fort Belvoir, VA: Defense Technical Information Center, December 1997. http://dx.doi.org/10.21236/ada332952.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії