Добірка наукової літератури з теми "Properties loss"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Properties loss".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Properties loss"
Okamoto, H., H. Hayashi, A. Tomioka, M. Konno, M. Owa, A. Kawagoe, F. Sumiyoshi, et al. "AC loss properties in YBCO model coils for loss reduction." Physica C: Superconductivity 468, no. 15-20 (September 2008): 1731–33. http://dx.doi.org/10.1016/j.physc.2008.05.185.
Повний текст джерелаTanaka, Kazuhide, Kazuo Funaki, Takahiro Sueyoshi, Yushi Sasashige, Kazuhiro Kajikawa, Masataka Iwakuma, Michiya Okada, Hiroaki Kumakura, and Hidemi Hayashi. "AC loss properties of MgB2multifilament wires." Superconductor Science and Technology 21, no. 9 (July 4, 2008): 095007. http://dx.doi.org/10.1088/0953-2048/21/9/095007.
Повний текст джерелаWang, Chia-Li, and Ronald W. Wolff. "Loss probability properties in retrial queues." Operations Research Letters 37, no. 1 (January 2009): 47–50. http://dx.doi.org/10.1016/j.orl.2008.09.003.
Повний текст джерелаXu, Huan, Wen Sun, Yonghao Gui, Lixi Wang, Mingxun Yu, and Qitu Zhang. "Electromagnetic loss properties of ZnO nanofibers." Journal of Materials Science: Materials in Electronics 27, no. 12 (July 27, 2016): 12846–51. http://dx.doi.org/10.1007/s10854-016-5419-z.
Повний текст джерелаSpišák, Emil, and Janka Majerníková. "The Loss of Plasticity Stability." Applied Mechanics and Materials 693 (December 2014): 346–51. http://dx.doi.org/10.4028/www.scientific.net/amm.693.346.
Повний текст джерелаGomes, Lais, Bruna Alves, Rita de Cassia Nunes, Ricardo Michel, Ygor Ribeiro, Flavia da Silva, and Luciana Spinelli. "APHRONS OBTAINED FROM DIFFERENT NONIONIC SURFACTANTS: PROPERTIES AND FILTRATION LOSS EVALUATION." Chemistry & Chemical Technology 11, no. 3 (August 28, 2017): 349–57. http://dx.doi.org/10.23939/chcht11.03.349.
Повний текст джерелаPeng, Qian, Yadong Qiao, and Yang Liu. "Temperature-dependent optical properties of low-loss plasmonic SrMoO3 thin films." Chinese Optics Letters 21, no. 5 (2023): 053601. http://dx.doi.org/10.3788/col202321.053601.
Повний текст джерелаHarel, Arie. "Convexity Properties of the Erlang Loss Formula." Operations Research 38, no. 3 (June 1990): 499–505. http://dx.doi.org/10.1287/opre.38.3.499.
Повний текст джерелаKumaran, Krishnan, Michel Mandjes, and Alexander Stolyar. "Convexity properties of loss and overflow functions." Operations Research Letters 31, no. 2 (March 2003): 95–100. http://dx.doi.org/10.1016/s0167-6377(02)00191-8.
Повний текст джерелаSaotome, Hideo, Keisuke Azuma, Hiroki Kizuka, and Takuma Tanaka. "Properties of dynamic magnetic loss of ferrite." AIP Advances 8, no. 5 (May 2018): 056103. http://dx.doi.org/10.1063/1.5003858.
Повний текст джерелаДисертації з теми "Properties loss"
Munro, Roger Cameron. "Anti - haemostatic properties of the Hirudinea." Thesis, Open University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317381.
Повний текст джерелаBestenlehner, Joachim Michael. "Mass-loss properties of the most massive stars in 30 Doradus." Thesis, Queen's University Belfast, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.602438.
Повний текст джерелаAhmed, El-Mahadi. "Rheological properties, loss of workability and strength development of high-strength concrete." Thesis, University College London (University of London), 2002. http://discovery.ucl.ac.uk/1317867/.
Повний текст джерелаErgen, Cemil Emre. "Flood Mitigation Decision Tool for Target Repetitive Loss Properties in Jefferson Parish." ScholarWorks@UNO, 2006. http://scholarworks.uno.edu/td/405.
Повний текст джерелаOlsson, Martin. "Thermal Shape Factor : The impact of the building shape and thermal properties on the heating energy demand in Swedish climates." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-125076.
Повний текст джерелаSon, Vo Thanh, and n/a. "Evaluation of the USLE (Universal Soil Loss Equation) to estimate soil loss from hobby farms and commercial pastoral properties around Murrumbateman, NSW, Australia." University of Canberra. Applied Science, 1993. http://erl.canberra.edu.au./public/adt-AUC20061108.171337.
Повний текст джерелаAbdullah, Wan Mohammad H. W. "The effect of moisture loss on the mechanical and sensory properties of carrots." Thesis, University of Newcastle Upon Tyne, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239066.
Повний текст джерелаChen, Jonathan. "DEVELOPMENT OF A MUFFLER INSERTION LOSS FLOW RIG." UKnowledge, 2019. https://uknowledge.uky.edu/me_etds/131.
Повний текст джерелаPardo, Vivé Enric. "Geometry Effects on the Electromagnetic Properties of Linear Magnetic Materials and Superconductors in the Critical State." Doctoral thesis, Universitat Autònoma de Barcelona, 2004. http://hdl.handle.net/10803/3356.
Повний текст джерелаEl comportament electromagnètic d'un cert material no només depèn de les seves propietats intrínseques sinó també de la geometria de la mostra estudiada. De fet, algunes magnituds magnètiques en mostres del mateix material però geometria diferent poden diferir en varis ordres de magnitud.
La tesi està dividida en dues parts. La primera part està dedicada a l'estudi dels efectes de geometria, també denominats efectes desimantadors, en mostres de materials lineals, homogenis i isòtrops (LHI) sota l'aplicació d'un camp magnètic uniforme. Per quantificar els efectes desimantadors en les magnituds magnètiques més rellevants en materials LHI s'utilitzen els factors de desimantació fluxmètric i magnetomètric (Nf i Nm); el seu càlcul teòric és necessari per poder determinar algunes propietats intrínseques dels materials a partir d'experiments. Després de detectar grans mancances en els resultats teòrics previs dels factors de desimantació per prismes rectangulars, presentem nombrosos càlculs originals de Nf i Nm. Pels casos de prismes infinitament llargs i prismes quadrats finits Nf i Nm es calculen per un rang ampli de relació gruix-amplada i susceptibilitat magnètica. Pel cas d'un prisma finit perfectament diamagnètic es presenta un estudi sistemàtic dels factors de desimantació en funció de les dimensions relatives del prisma a partir de càlculs precisos. També es calculen resultats numèrics per cilindres amb camp aplicat en la direcció radial, situació per la que existien molt poques dades.
L'altra part de la tesi consisteix en un estudi de superconductors durs, que són materials molt interessants per aplicacions pràctiques. En aquest cas, l'estudi es centra en algunes geometries infinitament llargues immerses en un camp magnètic altern i uniforme aplicat en direcció transversal o bé que transporten un corrent elèctric altern. Concretament, s'estudien amb detall les geometries de prisma infinit de secció rectangular, el·líptica i varis casos de conjunts de múltiples prismes rectangulars. L'estudi d'aquestes geometries és de gran importància pràctica a l'hora de dissenyar cintes i cables superconductors per treballar en dispositius elèctrics en corrent altern, pels que és fonamental la reducció de les pèrdues energètiques per la viabilitat de la tecnologia basada en cables superconductors. Per fer l'estudi esmentat es desenvolupa un mètode numèric basat en el model d'estat crític per superconductors i la minimització de l'energia magnètica. Pels casos de camp magnètic aplicat, el mètode permet descriure dos tipus de connexió entre filaments, elèctricament aïllats un a un o interconnectats entre sí al extrems dels prismes. Malgrat que el primer tipus de connexió és la que presenta pèrdues energètiques més baixes, no havia estat possible simular-lo fins ara. Els resultats numèrics obtinguts a partir d'aquest mètode són originals i de gran precisió. A més, la descripció sistemàtica del problema permet realitzar un estudi en profunditat de les propietats electromagnètiques per aquestes geometries, gràcies al que s'obtenen unes tendències bàsiques per reduir les pèrdues energètiques.
The electromagnetic behaviour of a certain material do not only depends on its internal properties but also on the geometry of the studied sample. Actually, some magnetic quantities in samples of the same material but different geometry can vary in several orders of magnitude.
The thesis is divided into two parts. In the first part we study the geometry effects, also called demagnetizing effects, in samples made of linear homogenous isotropic materials (LHI) subjected to a uniform applied magnetic field. In order to quantify the demagnetizing effects on the most relevant magnetic quantities of the samples, we carry out accurate calculations for the fluxmetric and magnetometric demagnetizing factors (Nf and Nm); the calculation of these factors is needed to determine some internal magnetic properties of materials from experiments. After detecting some important lacks in the already existing theoretical results for rectangular prisms, we present a complete set of original calculated data of Nf and Nm. For the cases of infinitely long rectangular prisms and finite square bars we calculate Nf and Nm for a wide range of thickness-to-width aspect ratio and magnetic susceptibility. For the case of a perfectly shielding rectangular prism, we present a systematic study of the demagnetizing factors as a function of the relative dimensions of the prism by means of accurate numerical calculations. Numerical results are also presented for cylinders under radial applied field, situation for which there existed very few data.
The other part of the thesis consists in a study of hard superconductors, which are materials very interesting for applications. For this case, we have focused on some infinitely long geometries subjected to either a transverse AC applied field or a transport alternating current. Specifically, there have been studied in detail the geometries of an infinitely long prism with rectangular cross-section, elliptical one and some arrangements of several rectangular prisms. The study of these geometries is of great practical importance for the design of superconducting tapes and cables for devices operating in AC conditions, for which the reduction of the AC loss is of vital importance for the viability of the technology based on superconducting wires. In order to do such an study, we develop a numerical method based on the critical-state model for superconductors and magnetic energy minimization. For the cases considering an applied magnetic field, the method allows the description of two different kinds of filament connexion, mutually electrically isolated or interconnected at the ends of the prisms. Although the first kind of connection presents lower AC loss, this situation has not been simulated until now by any author. The numerical results obtained from this method are original and very accurate. Furthermore, the systematic study of the problem provides a deep understanding of the electromagnetic properties for these geometries, thanks to which we obtain some general trends to reduce the AC loss.
Chen, Xinyue. "Understanding Loss Mechanisms and Enhancing Dielectric Properties of Multilayer Polymer Films for Capacitor Applications." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1584527483998243.
Повний текст джерелаКниги з теми "Properties loss"
Church, Ronald H. Dielectric properties of low-loss minerals. [Pittsburgh]: U.S. Dept. of the Interior, 1988.
Знайти повний текст джерелаChurch, Ronald H. Dielectric properties of low-loss minerals. Washington, DC: U.S. Bureau of Mines, 1988.
Знайти повний текст джерелаDavis, Bob. Manufactured homes acquisition program: Heat loss assumptions, calculations, and heat loss coefficient tables. Seattle, WA: Ecotope, Inc., 1992.
Знайти повний текст джерелаCenter, Langley Research, ed. Broadband transmission loss due to reverberant excitation. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Знайти повний текст джерелаVanuatu. Office of the Ombudsman. Public report on the loss of properties at Santo Police Station. Republic of Vanuatu: Office of the Ombudsman, 1999.
Знайти повний текст джерелаCravey, Robin L. W-band transmission measurements and X-band dielectric properties measurements for a radome material sample. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Знайти повний текст джерелаCravey, Robin L. W-band transmission measurements and X-band dielectric properties measurements for a radome material sample. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Знайти повний текст джерелаCravey, Robin L. W-band transmission measurements and X-band dielectric properties measurements for a radome material sample. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Знайти повний текст джерелаL, Tiemsin Pacita, and Langley Research Center, eds. W-band transmission measurements and X-band dielectric properties measurements for a radome material sample. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Знайти повний текст джерелаBoyd, Christopher Fred. Predictions of spent fuel heatup after a complete loss of spent fuel pool coolant. Washington, DC: Safety Margins and Systems Analysis Branch, Office of Nuclear Regulatory Research, Nuclear Regulatory Commission, 2000.
Знайти повний текст джерелаЧастини книг з теми "Properties loss"
Maciulaitiene, Ruta, and Ingrida Januleviciene. "Structure Loss." In Biophysical Properties in Glaucoma, 133–38. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-98198-7_18.
Повний текст джерелаMaciulaitiene, Ruta, and Ingrida Januleviciene. "Function Loss." In Biophysical Properties in Glaucoma, 139–43. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-98198-7_19.
Повний текст джерелаKuzmiene, Loreta. "Visual Field Loss in Glaucoma." In Biophysical Properties in Glaucoma, 115–26. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-98198-7_16.
Повний текст джерелаPanda, Subhabrata. "Soil Properties Responsible for Soil Loss." In SpringerBriefs in Molecular Science, 13–34. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15405-8_2.
Повний текст джерелаSohmen, E., E. Pellegrin, S. L. Drechsler, and J. Fink. "Electron Energy-Loss Spectroscopy on Doped and Undoped ß-Carotene." In Electronic Properties of Polymers, 248–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84705-9_46.
Повний текст джерелаCoote, Jonathan E., and Neil S. Headings. "Revised Method For Graphite Weight Loss Prediction." In Modelling and Measuring Reactor Core Graphite Properties and Performance, 76–83. Cambridge: Royal Society of Chemistry, 2012. http://dx.doi.org/10.1039/9781849735179-00076.
Повний текст джерелаBerghöfer, Thomas W., and Jürgen H. M. M. Schmitt. "X-ray Properties of Early-Type Stars." In Pulsation, Rotation and Mass Loss in Early-Type Stars, 200–201. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1030-3_50.
Повний текст джерелаLiu, Kun, Daifen Chen, Serhiy Serbin, and Volodymyr Patlaichuk. "Features of the Actual Profile Flow. Cascade Loss Classification." In Gas Turbines Structural Properties, Operation Principles and Design Features, 59–73. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0977-3_5.
Повний текст джерелаBotton, G. A., G. Y. Guo, W. M. Temmerman, and C. J. Humphreys. "Electron Energy Loss Spectroscopy as a Tool to Probe the Electronic Structure in Intermetallic Alloys." In Properties of Complex Inorganic Solids, 175–80. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5943-6_22.
Повний текст джерелаDarvish, Shadi, Ali Karbasi, Surendra K. Saxena, and Yu Zhong. "Weight Loss Mechanism of (La0.8Sr0.2)0.98MnO3±δDuring Thermal Cycles." In Mechanical Properties and Performance of Engineering Ceramics and Composites X, 93–99. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119211310.ch11.
Повний текст джерелаТези доповідей конференцій з теми "Properties loss"
Vu, Minh, Hamid Bagheri, Lisong Xu, Wei Sun, and Mingrui Zhang. "Scalable Verification of Multi-ACK Properties in Loss-Based Congestion Control Implementations." In 2024 IEEE 32nd International Conference on Network Protocols (ICNP), 1–12. IEEE, 2024. https://doi.org/10.1109/icnp61940.2024.10858512.
Повний текст джерелаStoll, Katherine, Harish B. Bhandari, Oleg Maksimov, Katherine Hansen, Lionel Kimerling, Anuradha Agarwal, and Samuel Serna. "Nonlinear Properties of Hybrid ZnTe-on-SiN Waveguides." In Frontiers in Optics, FM3E.6. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.fm3e.6.
Повний текст джерелаWang, Mengyun, June Sang Lee, Samarth Aggarwal, Nikolaos Farmakidis, Yuhan He, Tangsheng Cheng, and Harish Bhaskaran. "Tunable metasurfaces using ultralow-loss phase-change materials." In Photonic and Phononic Properties of Engineered Nanostructures XIII, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2023. http://dx.doi.org/10.1117/12.2650320.
Повний текст джерелаLan, Shoufeng, Sean P. Rodrigues, Mohammad Taghinejad, Lei Kang, Devin K. Brown, Augustine M. Urbas, and Wenshan Cai. "Geometrically-induced loss suppression in plasmoelectronic nanostructures (Conference Presentation)." In Photonic and Phononic Properties of Engineered Nanostructures VII, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2017. http://dx.doi.org/10.1117/12.2251429.
Повний текст джерелаVárallyay, Zoltán, Tamás Mihálffy, Sándor Bilicz, Gábor Varga, and Kazunori Mukasa. "Microbending Loss Properties of Different Fiber Designs." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/ofc.2021.th1a.49.
Повний текст джерелаLiu, Jun, and Mark Crovella. "Using loss pairs to discover network properties." In the First ACM SIGCOMM Workshop. New York, New York, USA: ACM Press, 2001. http://dx.doi.org/10.1145/505202.505219.
Повний текст джерелаZhu, Muliang, Sajjad Abdollahramezani, Omid Hemmatyar, and Ali Adibi. "Tunable third-harmonic generation using low-loss phase change chalcogenides." In Photonic and Phononic Properties of Engineered Nanostructures XI, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2021. http://dx.doi.org/10.1117/12.2590709.
Повний текст джерелаDal Negro, Luca. "Engineering light scattering with low-loss dielectric nanostructures (Conference Presentation)." In Photonic and Phononic Properties of Engineered Nanostructures VIII, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2018. http://dx.doi.org/10.1117/12.2297712.
Повний текст джерелаMuskens, Otto L., Daniel Lawson, Sophie Blundell, Matthew Delaney, Dan Hewak, and Ioannis Zeimpekis. "Programmable and switchable nanophotonics using ultralow-loss phase change materials." In Photonic and Phononic Properties of Engineered Nanostructures XIII, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2023. http://dx.doi.org/10.1117/12.2661041.
Повний текст джерелаLyon, Keenan A., Zoran L. Miskovic, Alain C. Diebold, and Juan-Carlos Idrobo. "Modeling ellipsometry and electron energy loss spectroscopy of graphene." In ELECTRONIC, PHOTONIC, PLASMONIC, PHONONIC AND MAGNETIC PROPERTIES OF NANOMATERIALS. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4870212.
Повний текст джерелаЗвіти організацій з теми "Properties loss"
Howe, James M. Using Plasmon Peaks in Electron Energy-Loss Spectroscopy to Determine the Physical and Mechanical Properties of Nanoscale Materials. Office of Scientific and Technical Information (OSTI), May 2013. http://dx.doi.org/10.2172/1078573.
Повний текст джерелаLeis, Brian, Xian-Kui Zhu, and Tom McGaughy. PR185-173611-R01 Applicability of Existing Metal-Loss Criteria to Low-Hardening Steels. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), February 2020. http://dx.doi.org/10.55274/r0011652.
Повний текст джерелаLeis, Brian, Xian-Kui Zhu, and Tom McGaughy. PR-185-143600-R01 Assessment of Corrosion Model Error for Metal-loss Defects in Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), July 2017. http://dx.doi.org/10.55274/r0011031.
Повний текст джерелаKrivoi, Kallmeyer, and Baranyak. L52199 Nopig Metal-Loss Detection System for Non-Piggable-Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), February 2005. http://dx.doi.org/10.55274/r0011343.
Повний текст джерелаHaggag. L52280 In-Situ Measurement of Pipeline Mechanical Properties Using Stress-Strain Microprobe - Validation. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 2007. http://dx.doi.org/10.55274/r0010668.
Повний текст джерелаFrench, T. R., and C. B. Josephson. The effect of polymer-surfactant interaction on the rheological properties of surfactant enhanced alkaline flooding formulations. [Phase separation, precipitation and viscosity loss]. Office of Scientific and Technical Information (OSTI), February 1993. http://dx.doi.org/10.2172/6781205.
Повний текст джерелаLeis and Zhu. PR-003-103603-R01 Assessing Corrosion Severity for High-Strength Steels. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2014. http://dx.doi.org/10.55274/r0010821.
Повний текст джерелаZhang, Renduo, and David Russo. Scale-dependency and spatial variability of soil hydraulic properties. United States Department of Agriculture, November 2004. http://dx.doi.org/10.32747/2004.7587220.bard.
Повний текст джерелаKing and Jack. L51906 The Role of Redox and Corrosion Potentials in the Corrosion of Line Pipe Steel. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 2001. http://dx.doi.org/10.55274/r0010374.
Повний текст джерелаTiku, Sanjay, Aaron Dinovitzer, Vlad Semiga, and Binoy John. PR-214-073510-Z01 FS Fatigue Testing Plain Dents+Dents Interacting with Welds and Metal Loss with Data. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2018. http://dx.doi.org/10.55274/r0011514.
Повний текст джерела