Добірка наукової літератури з теми "Projective"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Projective".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Projective"

1

COOPER, ARNOLD M. "Projection, Identification, Projective Identification." American Journal of Psychiatry 146, no. 4 (April 1989): 540–41. http://dx.doi.org/10.1176/ajp.146.4.540.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Roman, Pascal. "Méthode projective et épreuves projectives." La psychologie projective, no. 18 (April 1, 1995): 4–6. http://dx.doi.org/10.35562/canalpsy.2483.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mahler, Taylor. "The social component of the projection behavior of clausal complement contents." Proceedings of the Linguistic Society of America 5, no. 1 (April 13, 2020): 777. http://dx.doi.org/10.3765/plsa.v5i1.4703.

Повний текст джерела
Анотація:
Some accounts of presupposition projection predict that content's consistency with the Common Ground influences whether it projects (e.g., Heim 1983, Gazdar 1979a,b). I conducted an experiment to test whether Common Ground information about the speaker's social identity influences projection of clausal complement contents (CCs). Participants rated the projection of CCs conveying liberal or conservative political positions when the speaker was either Democrat- or Republican-affiliated. As expected, CCs were more projective when they conveyed political positions consistent with the speaker's political affiliation: liberal CCs were more projective with Democrat compared to Republican speakers, and conservative CCs were more projective with Republican compared to Democrat speakers. In addition, CCs associated with factive predicates (e.g., know) were more projective than those associated with non-factive predicates (e.g., believe). These findings suggest that social meaning influences projective meaning and that social meaning is constrained by semantic meaning, in line with previous research on the relation between other levels of linguistic structure/perception and social information.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tabatabaeifar, Tayebeh, Behzad Najafi, and Akbar Tayebi. "Weighted projective Ricci curvature in Finsler geometry." Mathematica Slovaca 71, no. 1 (January 29, 2021): 183–98. http://dx.doi.org/10.1515/ms-2017-0446.

Повний текст джерела
Анотація:
Abstract In this paper, we introduce the weighted projective Ricci curvature as an extension of projective Ricci curvature introduced by Z. Shen. We characterize the class of Randers metrics of weighted projective Ricci flat curvature. We find the necessary and sufficient condition under which a Kropina metric has weighted projective Ricci flat curvature. Finally, we show that every projectively flat metric with isotropic weighted projective Ricci and isotropic S-curvature is a Kropina metric or Randers metric.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Latifi, Dariush, and Asadollah Razavi. "Generalized Projectively Symmetric Spaces." Geometry 2013 (February 4, 2013): 1–5. http://dx.doi.org/10.1155/2013/292691.

Повний текст джерела
Анотація:
We study generalized projectively symmetric spaces. We first study some geometric properties of projectively symmetric spaces and prove that any such space is projectively homogeneous and under certain conditions the projective curvature tensor vanishes. Then we prove that given any regular projective s-space (, ), there exists a projectively related connection , such that (, ) is an affine s-manifold.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Luan, Guang Yu, Xue Dong Zhu, Ai Chuan Li, Zhen Su Lv, and Ren Sheng Che. "Frame Reconstruction with Missing Data from Multiple Images." Applied Mechanics and Materials 239-240 (December 2012): 1158–64. http://dx.doi.org/10.4028/www.scientific.net/amm.239-240.1158.

Повний текст джерела
Анотація:
To solve the missing data problem that is caused by reasons, such as occlusion, frame reconstruction by a two-level strategy in multiple images was considered. The method first performed a projective reconstruction combining singular value decomposition (SVD) and subspace method with missing data, which estimated projective shape, projection matrices, projective depths and missing data iteratively. Then it converted the projective solution to a Euclidean one with the unknown focal length and the constant principal point by enforcing constraints. Using the constraints and the fact that scale measurement matrix can recover numberless projection matrices and point matrices, the set equations of the transformation matrix from the projective reconstruction to Euclidean reconstruction were obtained. Experimental results using real images are provided to illustrate the performance of the proposed method.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hazra, Dipankar, Chand De, Sameh Shenawy, and Abdallah Abdelhameed Syied. "Some geometric and physical properties of pseudo m*-projective symmetric manifolds." Filomat 37, no. 8 (2023): 2465–82. http://dx.doi.org/10.2298/fil2308465h.

Повний текст джерела
Анотація:
In this study we introduce a new tensor in a semi-Riemannian manifold, named the M*-projective curvature tensor which generalizes the m-projective curvature tensor. We start by deducing some fundamental geometric properties of the M*-projective curvature tensor. After that, we study pseudo M*-projective symmetric manifolds (PM?S)n. A non-trivial example has been used to show the existence of such a manifold. We introduce a series of interesting conclusions. We establish, among other things, that if the scalar curvature ? is non-zero, the associated 1-form is closed for a (PM?S)n with divM* = 0. We also deal with pseudo M*-projective symmetric spacetimes, M*-projectively flat perfect fluid spacetimes, and M*-projectively flat viscous fluid spacetimes. As a result, we establish some significant theorems.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wei, Jiaqun. "Gorenstein homological theory for differential modules." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 145, no. 3 (June 2015): 639–55. http://dx.doi.org/10.1017/s0308210513000541.

Повний текст джерела
Анотація:
We show that a differential module is Gorenstein projective (injective, respectively) if and only if its underlying module is Gorenstein projective (injective, respectively). We then relate the Ringel–Zhang theorem on differential modules to the Avramov–Buchweitz–Iyengar notion of projective class of differential modules and prove that for a ring R there is a bijective correspondence between projectively stable objects of split differential modules of projective class not more than 1 and R-modules of projective dimension not more than 1, and this is given by the homology functor H and stable syzygy functor ΩD. The correspondence sends indecomposable objects to indecomposable objects. In particular, we obtain that for a hereditary ring R there is a bijective correspondence between objects of the projectively stable category of Gorenstein projective differential modules and the category of all R-modules given by the homology functor and the stable syzygy functor. This gives an extended version of the Ringel–Zhang theorem.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Podestà, Fabio. "Projective submersions." Bulletin of the Australian Mathematical Society 43, no. 2 (April 1991): 251–56. http://dx.doi.org/10.1017/s0004972700029014.

Повний текст джерела
Анотація:
We consider C∞ manifolds endowed with torsionfree affine connections and C∞ projective submersions between them which, by definition, map geodesics into geodesics up to parametrisation. After giving a differential characterisation of these mappings, we deal with the case when one of the given connections is projectively flat or satisfies certain conditions concerning its Ricci tensor; under these hypotheses we prove that the projective submersion is actually a covering.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tregnier, Claude. "Projection, identification projective et représentations intrapsychiques." Psychologie clinique et projective 21, no. 1 (2015): 93. http://dx.doi.org/10.3917/pcp.021.0093.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Projective"

1

Bosch, i. Bastardas Roger. "Projective forcing / Forcing projectiu." Doctoral thesis, Universitat de Barcelona, 2002. http://hdl.handle.net/10803/2097.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Winroth, Harald. "Dynamic projective geometry." Doctoral thesis, Stockholm : Tekniska högsk, 1999. http://www.lib.kth.se/abs99/winr0324.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Alexiou, John. "Projective articulated dynamics." Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/19658.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rejoub, Riad A. "Projective and non-projective systems of first order nonlinear differential equations." Scholarly Commons, 1992. https://scholarlycommons.pacific.edu/uop_etds/2228.

Повний текст джерела
Анотація:
It is well established that many physical and chemical phenomena such as those in chemical reaction kinetics, laser cavities, rotating fluids, and in plasmas and in solid state physics are governed by nonlinear differential equations whose solutions are of variable character and even may lack regularities. Such systems are usually first studied qualitatively by examining their temporal behavior near singular points of their phase portrait. In this work we will be concerned with systems governed by the time evolution equations [see PDF for mathematical formulas] The xi may generally be considered to be concentrations of species in a chemical reaction, in which case the k's are rate constants. In some cases the xi may be considered to be position and momentum variables in a mechanical system. We will divide the equations into two classes: those in which the evolution can be carried out by the action of one of Lie's transformation groups of the plane, and those for which this is not possible. Members of the first class can be integrated by quadrature either directly or by use of an integrating factor; those in the second class cannot. Of those in the first class the most interesting evolve by transformations of the projective group, and these, as well as the equations that cannot be integrated by quadrature, we study in some detail. We seek a qualitative analysis of systems which have no linear terms in their evolution equations when the origin from which the xi are measured is a critical point. The standard, linear, phase plane analysis is of course not adequate for our purposes.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chomenko, Aleksandr. "Categories with projective functors." [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=970362048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rothwell, Charles Andrew. "Recognition using projective invariance." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334849.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Charnes, C. "Invariants and projective planes." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.597502.

Повний текст джерела
Анотація:
In this thesis we study the isomorphism problem for finite projective planes and in particular for translation planes by using newly defined isomorphism invariants for projective planes. We consider two invariants; one which was proposed by J. H. Conway and is applicable to general projective planes, and another invariant defined only for translation planes. The isomorphism problem poses a serious obstacle in investigations of projective planes, as illustrated by the following remarks (contained in a paper by Hall, Swift and Killgrove). 'No satisfactory mechanical way to identify two isomorphic planes exists whether they be presented by a coordinate system or by an incidence matrix. The preparation of such a method is an interesting question.' The approach developed in this thesis provides a partial solution to this problem. We also study the related problem of determining the automorphism group of a projective plane. It turns out that for two-dimensional translation planes of odd order, the methods developed here reduce this problem to a routine calculation of an invariant. We have implemented the above invariants (and a variant) for computation, and used them to study the translation planes of orders: 52, 72, 82, 112 and 172 arising from the families of 8-dimensional ovoids defined by Conway et al and others. As a consequence of this investigation we obtain a number of new translation planes and determine their groups. We have also established previously unknown isomorphisms between certain translation planes occurring in the literature. We have found that the invariants have certain interesting properties and I have formulated a number of conjectures regarding these. The conjectures have been verified for all projective planes considered in this thesis, and we offer some comments regarding possibilities for their proof.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hefez, Abramo. "Duality for projective varieties." Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/86249.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mainetti, Matteo 1970. "Studies in projective combinatorics." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/47426.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pastor, Pierre. "Communication projective et prevention." Montpellier 3, 1995. http://www.theses.fr/1995MON30041.

Повний текст джерела
Анотація:
Nous etudions l'impact de communication d'un lieu de prevention contre le cancer : l'espace epidaure a val d'aurelle (montpellier, france) qui accueille un large public, dont l'essentiel est constitue d'enfants. Le principe de ce centre est l'education precoce a la prevention sante. En observant, sur trois ans, deux groupes de 50 enfants : un groupe d'enfants visiteurs, et un groupe temoin, nous avons voulu savoir si la situation de communication vecue, changeait le systeme de pertinence et les attitudes qui sous-tendent les comportements des enfants visiteurs en matiere de sante, et de prevention du cancer. Nous analysons les situations de communication de l'espace epidaure, en utilisant : la recherche des elements situationnels inducteurs (methode proposee par alex mucchielli) et les concepts systemiques de l'ecole de palo alto. Pour l'approche du systeme de pertinence et des attitudes sous-jacentes aux comportements, la voie choisie a ete celle de la communication projective. Nous montrons qu'une visite de deux heures, dans cet espace, permet a 70% du groupe "visiteurs", la restitution des messages-clefs, trois ans apres; mais leur niveau de conscience en matiere de sante n'est pas plus eleve. Le passage des messages preventifs dans les comportements est tres faible et subit une erosion due a la pression ambiante. Les systemes de pertinence des eleves visiteurs ne varient pas dans le sens d'une plus grande attention au probleme de prevention du cancer
We are studying the communications impact of a place where cancer is prevented : espace epidaure in val d'aurelle (montpellier, france), that welcomes a general public, mainly children. The principle of this center is early education in order to prevent health. During three years, we observed two groups of fifty children : a visitor group and a witness group, we wanted to know if the situation of real communication changed the significance system and the attitudes that imply the children's behaviour towards health and prvention of cancer. We analyse the situations of communications in epidaure espace using : research of situational inductives elements (from alex mucchielli method) and the systemics concepts of palo alto school. For the approach of the significance system and attitudes that imply the children behaviour, we chose the projective communication. We show that a two-hour visit in this space permits 70% of the visitors group to give the key messages back, three years later. But their level of conciousness about health does not improve. On the other hand, the passage from preventing messages to behaviours is weak because of an erosion due to surrounding pressure. The system of sifnificance of pupils visitors don't vary towards a fuller attention to the problem of prevention of cancer
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Projective"

1

Joseph, Sandler, ed. Projection, identification, projective identification. London: Karnac, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Joseph, Sandler, and Sigmund Freud Center for Study and Research in Psychoanalysis (Universiṭah ha-ʻIvrit bi-Yerushalayim), eds. Projection, identification, projective identification. Madison, Conn: International Universities Press, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Joseph, Kelly Paul, ed. Projective geometry and projective metrics. Mineola, N.Y: Dover Publications, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Anzieu, Didier. Les méthodes projectives. 8th ed. Paris: Presses universitaires de France, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Samuel, Pierre. Projective Geometry. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-3896-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fortuna, Elisabetta, Roberto Frigerio, and Rita Pardini. Projective Geometry. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42824-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Waters, C. D. J. Projective forecasting. Glasgow: Strathclyde Business School, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Coxeter, H. S. M. Projective geometry. 2nd ed. New York: Springer-Verlag, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kim, Sŭng-ho. Projective chronometry. [United States]: S.H. Kim, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Logue, James. Projective probability. Oxford: Clarendon Press, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Projective"

1

Frosh, Stephen. "Projection and projective identification." In A Brief Introduction to Psychoanalytic Theory, 161–70. London: Macmillan Education UK, 2012. http://dx.doi.org/10.1007/978-0-230-37177-4_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Clarke, Simon. "Projection, Projective Identification and Racism." In Social Theory, Psychoanalysis and Racism, 146–68. London: Macmillan Education UK, 2003. http://dx.doi.org/10.1007/978-1-137-09957-0_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Faure, Claude-Alain, and Alfred Frölicher. "Projective Geometries and Projective Lattices." In Modern Projective Geometry, 25–53. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9590-2_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Coxeter, H. S. M. "Introduction." In Projective Geometry, 1–13. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-6385-2_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Coxeter, H. S. M. "A Finite Projective Plane." In Projective Geometry, 91–101. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-6385-2_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Coxeter, H. S. M. "Parallelism." In Projective Geometry, 102–10. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-6385-2_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Coxeter, H. S. M. "Coordinates." In Projective Geometry, 111–32. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-6385-2_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Coxeter, H. S. M. "Triangles and Quadrangles." In Projective Geometry, 14–23. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-6385-2_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Coxeter, H. S. M. "The Principle of Duality." In Projective Geometry, 24–32. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-6385-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Coxeter, H. S. M. "The Fundamental Theorem and Pappus’s Theorem." In Projective Geometry, 33–40. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-6385-2_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Projective"

1

Yun Zhang and Henry Chu. "Inverse-polar ray projection for recovering projective transformations." In 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2008. http://dx.doi.org/10.1109/cvpr.2008.4587698.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sheehan, Bernard N. "Projective convolution." In the conference. New York, New York, USA: ACM Press, 1999. http://dx.doi.org/10.1145/307418.307586.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rémy, Didier. "Projective ML." In the 1992 ACM conference. New York, New York, USA: ACM Press, 1992. http://dx.doi.org/10.1145/141471.141507.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lee, Joon Hyub, Sang-Gyun An, Yongkwan Kim, and Seok-Hyung Bae. "Projective Windows." In CHI '18: CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3170427.3186524.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lee, Joon Hyub, Sang-Gyun An, Yongkwan Kim, and Seok-Hyung Bae. "Projective Windows." In CHI '18: CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3173574.3173792.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Weiler, Marcel, Dan Koschier, and Jan Bender. "Projective fluids." In MiG '16: Motion In Games. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2994258.2994282.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lee, Joon Hyub, Sang-Gyun An, Yongkwan Kim, and Seok-Hyung Bae. "Projective Windows." In UIST '17: The 30th Annual ACM Symposium on User Interface Software and Technology. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3131785.3131816.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Georgescu, Matei. "PROJECTIVE TECHNIQUE – INTRODUCTORY INTERACTIVE PROJECTIVE PSYCHOLOGY SOFTWARE PRODUCED BY AN APPLIED PSYCHOLOGY DEPARTMENT. A CASE STUDY." In eLSE 2012. Editura Universitara, 2012. http://dx.doi.org/10.12753/2066-026x-12-026.

Повний текст джерела
Анотація:
The main projective methods are conceived to be applied in a classic-paper style and the virtual-e-learning style represents the only possible learning experience for the students. The paper describes the experience of conceiving and using computer software in order to introduce the bases of projective psychology. The software (Matei Georgescu, Projective technique – interactive software, produced by Titu Maiorescu University, Bucharest, Romanian Office for Author Right: 0113 / 06. 02. 2001) was used in the benefit of the third year psychology students of a private university and support the direct experience with the virtual-stimulus-material of the main projective techniques such as Rotter, Düss, T.A.T., Rosenzweig, Rorschach, Szondi, Lüscher, Koch. Projective Psychology Lab was developed by se use of the computer and the Projective technique software over a semester of study, for three years under my assistence. The program contains the following items: the limits of the projection concept, the analytic relation and the projective relation, verbal associative experiment, completing sentences test and fables method, Thematic Apperception Test, the frustration test, the inkblot test, the drive analysis test, the color test, the tree test, draw a person test. Each method presentation contains information about the technique, the stimulus-material and the manner of interpretation. The access to stimulus-material of the Thematic Apperception Test, the frustration test, the inkblot test and the drive test analysis is possible in the order of test protocol. The software allows the color calibration of Lüscher test and also quotation examples. The Rorschach stimulus-material can be rotated within 360 degrees limit. The quotations index of the tree test is accessible in the order of the main interpretative zones. Despite the fact that the projective techniques were not conceived to be applied in the virtual-computerized style, during the three years pedagogical experiences with the Projective technique – interactive software, we have noticed the succes of such an introductory electronic way of learning.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Szilasi, József. "Calculus along the tangent bundle projection and projective metrizability." In Proceedings of the 10th International Conference on DGA2007. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812790613_0045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Li, Xiaolu, Tao He, Lijun Xu, Lulu Chen, and Zhanshe Guo. "Projective rectification of infrared image based on projective geometry." In 2012 IEEE International Conference on Imaging Systems and Techniques (IST). IEEE, 2012. http://dx.doi.org/10.1109/ist.2012.6295549.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Projective"

1

Ambuehl, Sandro, B. Douglas Bernheim, and Axel Ockenfels. Projective Paternalism. Cambridge, MA: National Bureau of Economic Research, July 2019. http://dx.doi.org/10.3386/w26119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Todd, Michael J., and Yinyu Ye. A Centered Projective Algorithm for Linear Programming. Fort Belvoir, VA: Defense Technical Information Center, February 1988. http://dx.doi.org/10.21236/ada192100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shaw, Ian E. Construction of Rational Maps on the Projective Line with Given Dynamical Structure. Fort Belvoir, VA: Defense Technical Information Center, April 2016. http://dx.doi.org/10.21236/ad1013471.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dmitriy Y. Anistratov, Adrian Constantinescu, Loren Roberts, and William Wieselquist. Nonlinear Projective-Iteration Methods for Solving Transport Problems on Regular and Unstructured Grids. Office of Scientific and Technical Information (OSTI), April 2007. http://dx.doi.org/10.2172/909188.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gezer, Aydin, and Lokman Bilen. Projective Vector Fields on the Tangent Bundle with a Class of Riemannian Metrics. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, May 2018. http://dx.doi.org/10.7546/crabs.2018.05.01.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yan, Ruoh-Nan (Terry), and Miranda Podmore. Understanding College Students’ Attitudes toward Made in USA Apparel Products: Exploration of Projective Techniques. Ames: Iowa State University, Digital Repository, 2014. http://dx.doi.org/10.31274/itaa_proceedings-180814-958.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Shashua, Amnon. On Geometric and Algebraic Aspects of 3D Affine and Projective Structures from Perspective 2D Views. Fort Belvoir, VA: Defense Technical Information Center, July 1993. http://dx.doi.org/10.21236/ada270520.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gill, P. E., W. Murray, M. A. Saunders, J. A. Tomlin, and M. H. Wright. On Projected Newton Barrier Methods for Linear Programming and an Equivalence to Karmarkar's Projective Method. Fort Belvoir, VA: Defense Technical Information Center, July 1985. http://dx.doi.org/10.21236/ada158212.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Blevins, Matthew, Gregory Lyons, Carl Hart, and Michael White. Optical and acoustical measurement of ballistic noise signatures. Engineer Research and Development Center (U.S.), January 2021. http://dx.doi.org/10.21079/11681/39501.

Повний текст джерела
Анотація:
Supersonic projectiles in air generate acoustical signatures that are fundamentally related to the projectile’s shape, size, and velocity. These characteristics influence various mechanisms involved in the generation, propagation, decay, and coalescence of acoustic waves. To understand the relationships between projectile shape, size, velocity, and the physical mechanisms involved, an experimental effort captured the acoustic field produced by a range of supersonic projectiles using both conventional pressure sensors and a schlieren imaging system. The results of this ongoing project will elucidate those fundamental mechanisms, enabling more sophisticated tools for detection, classification, localization, and tracking. This paper details the experimental setup, data collection, and preliminary analysis of a series of ballistic projectiles, both idealized and currently in use by the U.S. Military.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bender, James M. The Lightweight Artillery Projectile. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada396097.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії