Добірка наукової літератури з теми "Procedural simulation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Procedural simulation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Procedural simulation":

1

Ahn, James, and Shekhar Menon. "Procedural Simulation." Disease-a-Month 57, no. 11 (November 2011): 691–99. http://dx.doi.org/10.1016/j.disamonth.2011.08.015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Patel, Aalpen A., Craig Glaiberman, and Derek A. Gould. "Procedural Simulation." Anesthesiology Clinics 25, no. 2 (June 2007): 349–59. http://dx.doi.org/10.1016/j.anclin.2007.03.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Daivson, Steven L. "Virtual Procedural Simulation." Journal of Vascular and Interventional Radiology 15, no. 2 (February 2004): P180. http://dx.doi.org/10.1016/s1051-0443(04)70196-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dawson, Steven. "Procedural Simulation: A Primer." Radiology 241, no. 1 (October 2006): 17–25. http://dx.doi.org/10.1148/radiol.2411062581.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Murin, Susan, and Nicholas S. Stollenwerk. "Simulation in Procedural Training." Chest 137, no. 5 (May 2010): 1009–11. http://dx.doi.org/10.1378/chest.10-0199.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dawson, Steven. "Procedural Simulation: A Primer." Journal of Vascular and Interventional Radiology 17, no. 2 (February 2006): 205–13. http://dx.doi.org/10.1097/01.rvi.0000194871.97225.ca.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hock, Sara M., and Edward J. Ward. "Ongoing Simulation-Based Procedural Practice." American Journal of Medical Quality 37, no. 2 (March 2022): 183–84. http://dx.doi.org/10.1097/jmq.0000000000000026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

French, M. "PROCEDURAL CONSIDERATIONS FOR ROAD SIMULATION." Experimental Techniques 24, no. 6 (November 2000): 46–47. http://dx.doi.org/10.1111/j.1747-1567.2000.tb01349.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fita, Josep Lluis, Gonzalo Besuievsky, and Gustavo Patow. "Perspective on procedural modeling based on structural analysis." Virtual Archaeology Review 8, no. 16 (May 22, 2017): 44. http://dx.doi.org/10.4995/var.2017.5765.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
<p>With the rise of available computing capabilities, structural analysis has recently become a key tool for building assessment usually managed by art historians, curators, and other specialist related to the study and preservation of ancient buildings. On the other hand, the flourishing field of procedural modeling has provided some exciting breakthroughs for the recreation of lost buildings and urban structures. However, there is a surprising lack of literature to enable the production of procedural-based buildings taking into account structural analysis, which has proven to be a crucial element for the recreation of faithful masonry structures. In order to perform an in-depth study of the advances in this type of analysis for cultural heritage buildings, we performed a study focused on procedural modeling that make use of structural analysis methods, especially in its application to historic masonry buildings such as churches and cathedrals. Moreover, with the aim of improving the knowledge about structural analysis of procedurally-recreated historical buildings, we have taken a geometric structure, added a set of procedural walls structured in masonry bricks, and studied its behavior in a generic, freely-available simulation tool, thus showing the feasibility of its analysis with non-specialized tools. This not only has allowed us to understand and learn how the different parameter values of a masonry structure can affect the results of the simulation, but also has proven that this kind of simulations can be easily integrated in an off-the-shelf procedural modeling tool, enabling this kind of analysis for a wide variety of historical studies, or restoration and preservation actions.</p>
10

Augustine, Erin M., and Madelyn Kahana. "Effect of Procedure Simulation Workshops on Resident Procedural Confidence and Competence." Journal of Graduate Medical Education 4, no. 4 (December 1, 2012): 479–85. http://dx.doi.org/10.4300/jgme-d-12-00019.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Background Pediatrics residents perform a limited number of some procedures in the clinical setting and may benefit from procedure simulation workshops. Objective To examine (1) the number and types of procedures performed by pediatrics residents in the clinical setting, (2) the relationship between the number of procedures performed and self-reported procedural confidence and competence, and (3) the effect of a procedure simulation workshop on self-reported procedural confidence and competence. Methods Pediatrics residents at Lucile Packard Children's Hospital at Stanford attended a half-day procedure workshop, rotating between 6 procedure simulation stations: vascular access, airway management, bladder catheterization, chest tube placement, lumbar puncture, and umbilical lines. Residents completed a survey immediately before and after the workshop to self-assess procedural confidence and competence. Results Seventy-two residents participated in a procedure workshop. The average number of procedures performed increased significantly from intern to junior to senior year. A positive correlation was found between number of procedures performed and preworkshop confidence (P &lt; .001, R2 = 0.86) and competence (P &lt; .001, R2 = 0.88). For each procedure assessed, completion of the procedure simulation workshop resulted in a statistically significant (P &lt; .001) increase in self-perceived confidence (14%–131%; average, 48%) and competence (12%–119%; average, 50%). Statistically significant (P &lt; .05) increases remained when results for interns, juniors, and seniors were examined separately. Conclusion Procedure simulation workshops improve resident self-reported procedural confidence and competence, particularly for procedures that are least performed.

Дисертації з теми "Procedural simulation":

1

Sen, Mahasweta. "A procedural comparison of combat tactics: a simulation approach." Thesis, Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/53245.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Naval operational planning is complex because it is dependent on uncertain future combat conditions. Effective decision making is directly related to the validity of assumptions regarding future combat scenarios and the appropriateness of selected procedures. A two phase procedure for comparing multiple combat tactics is developed in this thesis. In the first phase of the procedure, simulation models are developed to replicate combat under each tactic. The models generate data for performance measures that are relevant for comparing a wide range of tactics. In the second phase of the procedure, the data for the performance measures are analyzed using the sign test or the Wilcoxon signed ranked test. The applicability of simulation modeling, appropriateness of the performance measures, and the use of sign test to compare combat tactics with any degree of complexity is established in this study. An application of this procedure is illustrated using two hypothetical tactics.
Master of Science
2

Tarantilis, Georgios E. "Simulating clouds with procedural texturing techniques using the GPU." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Sep%5FTarantilis.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (M.S. in Modeling, Virtual Environments and Simulations (MOVES))--Naval Postgraduate School, Sept. 2004.
Thesis Advisor(s): Rudy Darken, Joe Sullivan. Includes bibliographical references (p. 53). Also available online.
3

Johannesson, Eva. "Learning manual and procedural clinical skills through simulation in health care education." Licentiate thesis, Linköpings universitet, Sjukgymnastik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-75505.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The general aim of this thesis was to contribute to a deeper understanding of students’ perceptions of learning in simulation skills training in relation to the educational design of the skills training. Two studies were conducted to investigate learning features, what clinical skills nursing students learn through simulation, and how. Undergraduate nursing students were chosen in both studies. Study I was conducted in semester three, and study II in semester six, the last semester. Twenty-two students in study I practised intravenous catheterisation in pairs in the regular curriculum with an additional option of using two CathSim® simulators. In study II, ten students practised urethral catheterisation in pairs, using the UrecathVision™ simulator. This session was offered outside the curriculum, one pair at a time. In study I, three questionnaires were answered - before the skills training, after the skills training and the third after the skills examination but before the students’ clinical practice. The questions were both closed and open and the answers were analysed with quantitative and qualitative methods. The results showed that the simulator was valuable as a complement to arm models. Some disadvantages were expressed by the students, namely that there was no arm model to hold and into which to insert the needle and that they missed a holistic perspective. The most prominent learning features were motivation, variation, realism, meaningfulness, and feedback. Other important features mentioned were a safe environment, repeated practice, active and independent learning, interactive multimedia and a simulation device that was easy to use. In study II the students were video-recorded during the skills training. Afterwards, besides open questions, the video was used for individual interviews as stimulated recall. The interview data were analysed with qualitative content analysis. Three themes were identified: what the students learn, how the students learn, and how the simulator can contribute to the students’ learning. When learning clinical skills through simulation, motivation, meaningfulness and confidence were expressed as important factors to take into account from a student perspective. The students learned manual and procedural skills and also professional behaviour by preparing, watching, practising and reflecting. From an educational perspective, variation, realism, feedback and reflection were seen as valuable features to be aware of in organising curricula with simulators. Providing a safe environment, giving repeated practice, ensuring active and independent learning, using interactive multimedia, and providing a simulation tool that is easy to use were factors to take into account. The simulator contributed by providing opportunities to prepare for skills training, to see the anatomy, to feel resistance to catheter insertion, and to become aware of performance ability. Learning features, revealed from the students’ thoughts and experiences in these studies, are probably general to some extent but may be used to understand and design clinical skills training in all health care educations. In transferring these results it is important to take the actual educational context into account.
4

Morkel, Chantelle. "Non-interactive modeling tools and support environment for procedural geometry generation." Thesis, Rhodes University, 2006. http://eprints.ru.ac.za/242/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sowndararajan, Ajith. "Quantifying the Benefits of Immersion for Procedural Training." Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/34017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Training is one of the most important and widely-used applications of immersive Virtual Reality (VR). Research has shown that Immersive Virtual Environments (IVEs) are beneficial for training motor activities and spatial activities, but it is unclear whether immersive VEs are beneficial for purely mental activities, such as memorizing a procedure. In this thesis, we present two experiments to identify benefits of immersion for a procedural training process. The first experiment is a between-subjects experiment comparing two levels of immersion in a procedural training task. For the higher level of immersion, we used a large L-shaped projection display. We used a typical laptop display for the lower level of immersion. We asked participants to memorize two procedures: one simple and the other complex. We found that the higher level of immersion resulted in significantly faster task performance and reduced error for the complex procedure. As result of the first experiment we performed a controlled second experiment. We compared two within-subjects variables namely environment and location under various treatments formed by combination of three between-subject variables namely Software Field Of View (SFOV), Physical FOV, Field Of Regard (FOR). We found that SFOV is the most essential component for learning a procedure efficiently using IVEs. We hypothesize that the higher level of immersion helped users to memorize the complex procedure by providing enhanced spatial cues, leading to the development of an accurate mental map that could be used as a memory aid.
Master of Science
6

Cura, Rémi. "Inverse procedural Street Modelling : from interactive to automatic reconstruction." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1034/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La population mondiale augmente rapidement, et avec elle, le nombre de citadins, ce qui rend d'autant plus importantes la planification et la gestion des villes.La gestion "intelligente" de ces villes et les nombreuses applications (gestion, tourisme virtuel, simulation de trafic, etc.) nécessitent plus de données réunies dans des modèles virtuels de villes.En milieu urbain, les rues et routes sont essentielles par leur rôle d'interface entre les espaces publics et privés, et entre ces différents usages.Il est difficile de modéliser les rues (ou de les reconstruire virtuellement) car celles-ci sont très diverses (de par leur forme, fonction, morphologie), et contiennent des objets très divers (mobilier, marquages, panneaux).Ce travail de thèse propose une méthode (semi-) automatique pour reconstruire des rues en utilisant le paradigme de la modélisation procédurale inverse dont le principe est de générer un modèle procéduralement, puis de l'adapter à des observations de la réalité.Notre méthode génère un premier modèle approximatif - à partir de très peu d'informations (un réseau d'axes routiers + attributs associés) - assez largement disponible.Ce modèle est ensuite adapté à des observations de façon interactive (interaction en base compatible avec les logiciels SIG communs) et (semi-) automatique (optimisation).L'adaptation (semi-) automatique déforme le modèle de route de façon à ce qu'il corresponde à des observations (bords de trottoir, objets urbains) extraites d'images et de nuages de points.La génération (StreetGen) et l'édition interactive se font dans un serveur de base de données ; de même que la gestion des milliards de points Lidar (Point Cloud Server).La génération de toutes les rues de la ville de Paris prends quelques minutes, l'édition multi-utilisateurs est interactive (<0.3 s). Les premiers résultats de l'adaptation (semi-) automatique (qq minute) sont prometteurs (la distance moyenne à la vérité terrain passe de 2.0 m à 0.5 m).Cette méthode, combinée avec d'autres telles que la reconstruction de bâtiment, de végétation, etc., pourrait permettre rapidement et semi automatiquement la création de modèles précis et à jour de ville
World urban population is growing fast, and so are cities, inducing an urgent need for city planning and management.Increasing amounts of data are required as cities are becoming larger, "Smarter", and as more related applications necessitate those data (planning, virtual tourism, traffic simulation, etc.).Data related to cities then become larger and are integrated into more complex city model.Roads and streets are an essential part of the city, being the interface between public and private space, and between urban usages.Modelling streets (or street reconstruction) is difficult because streets can be very different from each other (in layout, functions, morphology) and contain widely varying urban features (furniture, markings, traffic signs), at different scales.In this thesis, we propose an automatic and semi-automatic framework to model and reconstruct streets using the inverse procedural modelling paradigm.The main guiding principle is to generate a procedural generic model and then to adapt it to reality using observations.In our framework, a "best guess" road model is first generated from very little information (road axis network and associated attributes), that is available in most of national databases.This road model is then fitted to observations by combining in-base interactive user edition (using common GIS software as graphical interface) with semi-automated optimisation.The optimisation approach adapts the road model so it fits observations of urban features extracted from diverse sensing data.Both street generation (StreetGen) and interactions happen in a database server, as well as the management of large amount of street Lidar data (sensing data) as the observations using a Point Cloud Server.We test our methods on the entire Paris city, whose streets are generated in a few minutes, can be edited interactively (<0.3 s) by several concurrent users.Automatic fitting (few m) shows promising results (average distance to ground truth reduced from 2.0 m to 0.5m).In the future, this method could be mixed with others dedicated to reconstruction of buildings, vegetation, etc., so an affordable, precise, and up to date City model can be obtained quickly and semi-automatically.This will also allow to such models to be used in other application areas.Indeed, the possibility to have common, more generic, city models is an important challenge given the cost an complexity of their construction
7

Abdul, Karim Ahmad. "Procedural locomotion of multi-legged characters in complex dynamic environments : real-time applications." Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10181/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les créatures à n-pattes, comme les quadrupèdes, les arachnides ou les reptiles, sont une partie essentielle de n’importe quelle simulation et ils participent à rendre les mondes virtuels plus crédibles et réalistes. Ces créatures à n-pattes doivent être capables de se déplacer librement vers les points d’intérêt de façon réaliste, afin d’offrir une meilleure expérience immersive aux utilisateurs. Ces animations de locomotion sont complexes en raison d’une grande variété de morphologies et de modes de déplacement. Il convient d’ajouter à cette problématique la complexité des environnements où ils naviguent. Un autre défi lors de la modélisation de tels mouvements vient de la difficulté à obtenir des données sources. Dans cette thèse nous présentons un système capable de générer de manière procédurale des animations de locomotion pour des dizaines de créatures à n-pattes, en temps réel, sans aucune donnée de mouvement préexistante. Notre système est générique et contrôlable. Il est capable d’animer des morphologies différentes, tout en adaptant les animations générées à un environnement dynamique complexe, en temps réel, ce qui donne une grande liberté de déplacement aux créatures à n-pattes simulées. De plus, notre système permet à l’utilisateur de contrôler totalement l’animation produite et donc le style de locomotion
Multi-legged characters like quadrupeds, arachnids, reptiles, etc. are an essential part of any simulation and they greatly participate in making virtual worlds more life-like. These multi-legged characters should be capable of moving freely and in a believable way in order to convey a better immersive experience for the users. But these locomotion animations are quite rich due to the complexity of the navigated environments and the variety of the animated morphologies, gaits, body sizes and proportions, etc. Another challenge when modeling such animations arises from the lack of motion data inherent to either the difficulty to obtain them or the impossibility to capture them.This thesis addresses these challenges by presenting a system capable of procedurally generating locomotion animations fordozens of multi-legged characters in real-time and without anymotion data. Our system is quite generic thanks to the chosen Procedural-Based techniques and it is capable of animating different multi-legged morphologies. On top of that, the simulated characters have more freedom while moving, as we adapt the generated animations to the dynamic complex environments in real-time. Themain focus is plausible movements that are, at the same time,believable and fully controllable. This controllability is one of the forces of our system as it gives the user the possibility to control all aspects of the generated animation thus producing the needed style of locomotion
8

Nikfetrat, Nima. "Video-based Fire Analysis and Animation Using Eigenfires." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23471.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We introduce new approaches of modeling and synthesizing realistic-looking 2D fire animations using video-based techniques and statistical analysis. Our approaches are based on real footage of various small-scale fire samples with customized motions that we captured for this research, and the final results can be utilized as a sequence of images in video games, motion graphics and cinematic visual effects. Instead of conventional physically-based simulation, we utilize example-based principal component analysis (PCA) and take it to a new level by introducing “Eigenfires”, as a new way to represent the main features of various real fire samples. The visualization of Eigenfires helps animators to design the fire interactively through a more meaningful and convenient way in comparison to known procedural approaches or other video-based synthesis models. Our system enables artists to control real-life fire videos through motion transitions and loops by selecting any desired ranges of any video clips and then the system takes care of the remaining part that best represent a smooth transition. Instead of tricking the eyes with a basic blending only between similar shapes, our flexible fire transitions are capable of connecting various fire styles. Our techniques are also effective for data compressions, they can deliver real-time interactive recognition for high resolution images, very easy to implement, and requires little parameter tuning.
9

Elkins, Ethan B. "Simulating Destruction Effects in SideFX Houdini." Digital Commons @ East Tennessee State University, 2020. https://dc.etsu.edu/honors/524.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
As movies, television shows, and other forms of media have progressed over the last century, the use of destruction sequences as a form of entertainment have seemingly grown exponentially. From ginormous explosions to cities collapsing, more destruction sequences have drawn people’s attention in ways that are quite captivating. However, as content producers continue to push the limit of what is possible, the reliance on practical effects starts to dwindle in comparison to the usage of computer generated scenes. This thesis acknowledges the trend and dissects the entire process of how a general destruction sequence is made, from the research and planning process to the actual simulation of the effects. Various methods are discussed in how to attempt the creation of destruction with a singular project in mind. The goal is to not only to complete the sequence, but to do so in an efficient manner that can rival a professional workflow.
10

Culbertson, Greg S. "Investigating methods of conditioning fresh vegetables in retail establishments and exploring procedural modifications that improve product quality and safety." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1397488227.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Procedural simulation":

1

Sanders, William. Digital procedural skill retention for selected M1A2 Tank Inter-Vehicular Information System (IVIS) tasks. Alexandria, Va: U.S. Army Research Institute for the Behavioral and Social Sciences, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

VanLehn, Kurt. Mind bugs: The origins of procedural misconceptions. Cambridge, Mass: MIT Press, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Schrag, Philip G. Civil procedure: A simulation supplement. Boston: Little, Brown, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jin-Chern, Chiou, Downer Janice Diane, and United States. National Aeronautics and Space Administration., eds. Staggered solution procedures for multibody dynamics simulation. Boulder, Colo: Center for Space Structures and Controls, College of Engineering, University of Colorado, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

C, Chiou J., Downer J. D, and United States. National Aeronautics and Space Administration., eds. Staggered solution procedures for multibody dynamics simulation. Boulder, Colo: Center for Space Structures and Controls, College of Engineering, University of Colorado, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dasgupta, Prokar, Kamran Ahmed, Peter Jaye, and Mohammed Shamim Khan. Surgical simulation. London: Anthem Press, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

M, Meinert Karen, and Langley Research Center, eds. Numerical propulsion system simulation, software standards & procedures, specification. [Hampton, Va.]: National Aeronautics and Space Administration, Langley Research Center, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Canada, Statistics. Smoothing procedures for simulated longitudinal microdata. [Ottawa, Ont.]: Statistics Canada, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Erkelens, L. J. J. Flight simulator evaluation of advanced MLS procedures. Amsterdam: National Aerospace Laboratory, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

D, Callero Monti, United States. Defense Advanced Research Projects Agency., and National Defense Research Institute (U.S.), eds. Enhancing weapon system analysis: Issues and procedures for integrating a research and development simulator with a distributed simulation network. Santa Monica, CA: Rand, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Procedural simulation":

1

Tokas, Theodoros, Chandra Shekhar Biyani, and Ali Serdar Gözen. "Procedural Training Simulators." In Practical Simulation in Urology, 93–122. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-88789-6_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gallagher, Anthony G., Gerald C. O’Sullivan, and Gerald C. O’Sullivan. "Simulations for Procedural Training." In Fundamentals of Surgical Simulation, 39–66. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-763-1_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Puliatti, Stefano, Pietro Piazza, Ahmed Eissa, Lorenzo Bianchi, Eugenio Brunocilla, and Salvatore Micali. "Procedural Robotic Skills Training." In Practical Simulation in Urology, 331–45. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-88789-6_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

White, Marjorie Lee, Anne Ades, Allan Evan Shefrin, and Susanne Kost. "Task and Procedural Skills Training." In Comprehensive Healthcare Simulation: Pediatrics, 139–52. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24187-6_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Deshpande, Girish G., Gregory S. Podolej, and Nadia Shaikh. "Simulation in Pediatric Procedural Sedation." In Sedation and Analgesia for the Pediatric Intensivist, 489–507. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52555-2_36.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Frédéric, Drago, and Chiba Norishige. "Procedural Simulation of Interwoven Structures." In Advances in Modelling, Animation and Rendering, 123–38. London: Springer London, 2002. http://dx.doi.org/10.1007/978-1-4471-0103-1_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gallagher, Anthony G., Gerald C. O’Sullivan, and Gerald C. O’Sullivan. "Simulation Training for Improved Procedural Performance." In Fundamentals of Surgical Simulation, 265–96. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-763-1_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

González-Medina, Daniel, Luis Rodríguez-Ruiz, and Ismael García-Varea. "Procedural City Generation for Robotic Simulation." In Advances in Intelligent Systems and Computing, 707–19. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27149-1_55.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Herlin, Christian, Benjamin Gilles, Gérard Subsol, and Guillaume Captier. "Generic 3D Geometrical and Mechanical Modeling of the Skin/Subcutaneous Complex by a Procedural Hybrid Method." In Biomedical Simulation, 173–81. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12057-7_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sawyer, Taylor, Lisa Bergman, and Marjorie L. White. "Simulation for Procedural Skills Teaching and Learning." In Clinical Education for the Health Professions, 1–21. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-13-6106-7_92-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Procedural simulation":

1

Bhatti, Zeeshan, Asadullah Shah, and Farruh Shahidi. "Procedural model of horse simulation." In the 12th ACM SIGGRAPH International Conference. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2534329.2534364.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Benn, B., T. D. Espina, and J. S. Kurman. "Difficult Airway Procedure Simulation Workshop Improves Fellow Procedural Confidence and Competence." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a1407.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sanchez, Daniel, Juan M. Solá-Sloan, and Elio Lozano-Inca. "Procedural generation of building blueprints for real-time applications." In the 2010 Spring Simulation Multiconference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1878537.1878777.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

"OLYMPUS: AN INTELLIGENT INTERACTIVE LEARNING PLATFORM FOR PROCEDURAL TASKS." In Simulation and Interaction in Intelligent Environments. SciTePress - Science and and Technology Publications, 2012. http://dx.doi.org/10.5220/0003943605430550.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lejemble, Thibault, Amélie Fondevilla, Nicolas Durin, Thibault Blanc-Beyne, Camille Schreck, Pierre-Luc Manteaux, Paul G. Kry, and Marie-Paule Cani. "Interactive procedural simulation of paper tearing with sound." In MIG '15: Motion in Games. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2822013.2822029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Shaffer, David W., Dwight A. Meglan, Margaret Ferrell, and Steven L. Dawson. "Virtual rounds: simulation-based education in procedural medicine." In AeroSense '99, edited by Homer H. Pien. SPIE, 1999. http://dx.doi.org/10.1117/12.353016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sun, Tsai-Ho, Yi-Chun Tseng, Sai-Keung Wong, Hsuan Chen, and Tsung-Yu Tsai. "Animating pictures using procedural 2.5D water flow simulation." In 2017 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2017. http://dx.doi.org/10.1109/icme.2017.8019293.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Willers, J., S. Down, R. Willers, and J. Pereira. "113 Pitfalls in introducing novel high-fidelity procedural simulation." In Abstracts of the Association for Simulation Practice in Healthcare (ASPiH) Annual Conference. 15th to 17th November 2016, Bristol, UK. The Association for Simulated Practice in Healthcare, 2016. http://dx.doi.org/10.1136/bmjstel-2016-000158.164.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Campos, Carlos, Joao Miguel Leitao, Joao Paulo Pereira, Antonio Ribas, and Antonio Fernando Coelho. "Procedural generation of topologic road networks for driving simulation." In 2015 10th Iberian Conference on Information Systems and Technologies (CISTI). IEEE, 2015. http://dx.doi.org/10.1109/cisti.2015.7170557.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Van der Geest, Peter, and Lars Fucke. "Development of a Procedural Pilot Model for the Manual Balked Landing Maneuvre." In AIAA Modeling and Simulation Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-5819.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Procedural simulation":

1

Vakaliuk, Tetiana, Valerii Kontsedailo, Dmytro Antoniuk, Olha Korotun, Serhiy Semerikov, and Iryna Mintii. Using Game Dev Tycoon to Create Professional Soft Competencies for Future Engineers-Programmers. [б. в.], November 2020. http://dx.doi.org/10.31812/123456789/4129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The article presents the possibilities of using game simulator Game Dev Tycoon to develop professional soft competencies for future engineer programmers in higher education. The choice of the term “gaming simulator” is substantiated, a generalization of this concept is given. The definition of such concepts as “game simulation” and “professional soft competencies” are given. Describes how in the process of passing game simulations students develop the professional soft competencies. Professional soft competencies include: the ability to work in a team; ability to cooperate; ability to problem-solving; ability to communicative; ability to decision-making; ability to orientation to the result; ability to support of interpersonal relations; ability to use of rules and procedures; ability to reporting; ability to attention to detail; ability to customer service; ability to sustainability; ability to the manifestation of professional honesty and ethics; ability to planning and prioritization; ability to adaptation; ability to initiative; ability to Innovation; ability to external and organizational awareness.
2

Geisler-Moroder, David, Eleanor S. Lee, Gregory Ward, Bruno Bueno, Lars O. Grobe, Taoning Wang, Bertrand Deroisy, and Helen Rose Wilson. BSDF Generation Procedures for Daylighting Systems. IEA SHC Task 61, January 2021. http://dx.doi.org/10.18777/ieashc-task61-2021-0001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This white paper summarizes the current state of the art in the field of measurement and simulation characterization of daylighting systems by bidirectional scattering distribution functions (BSDFs) and provides recommendations broken down by classes of systems and use cases.
3

Floyd, Jason, and Daniel Madrzykowski. Analysis of a Near Miss in a Garden Apartment Fire – Georgia 2022. UL's Fire Safety Research Institute, October 2022. http://dx.doi.org/10.54206/102376/rsfd6862.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
On February 9, 2022, Cobb County Fire and Emergency Services responded to a fire in a ground floor unit in a garden apartment building. At arrival, the fire was a post-flashover fire in a bedroom. Initial fire control was attempted by an interior fire attack team which was unable to quickly locate the fire. Exterior suppression through the bedroom window was started prior to discovery of the fire by the interior team. Shortly after fire discovery by the internal team, a mayday was called. Four firefighters from the interior fire attack team received first and second degree burns. This report analyzes photographic, video, and written documentation from the incident to evaluate the timeline of the incident and to assess the fire conditions present. Computer modeling using the Fire Dynamics Simulator (FDS) was performed to provide further insight into the fire conditions and the impact of decisions and actions on the fire ground. Additionally, data from a full scale fire test of a similar fire in a similar structure was used to provide additional insight. Four FDS simulations were performed in support of the analysis. These included a simulation of the event as it unfolded and three simulations looking at the impact of alternate tactics which included: initial exterior attack prior to entry, the use of a smoke curtain to protect the building exit path, and interior only attack. FDS simulations provided insight on the heat present in the apartment during the fire and the impact of the interior and exterior suppression on conditions inside the apartment. Full scale test data of a similar fire showed similar behavior to the FDS predictions and gives credence to the FDS results. Results of the analysis suggest that injuries resulted from the length of time the interior attack team was present inside the apartment before actions were taken to reduce the severity of the fire. Six contributing factors were identified including size-up, communication and accountability, delayed exterior attack, lack of entry hall protection, the apartment layout and construction, thermal imager use, and mayday procedures and training. The last contributing factor was a positive contribution that helped avoid more serious injuries. Based on the contributing factors, five recommendations were made that include improved size-up, exterior fire control to prevent exterior spread, protection of exit pathways, basing fire ground tactics on known information, and recognizing when a change in tactics is needed.
4

Marshall, Lynne, and Thomas E. Hanna. Stopping Rules for Audiological Ascending Test Procedures: Computer Simulation Evaluation. Fort Belvoir, VA: Defense Technical Information Center, September 1986. http://dx.doi.org/10.21236/ada173829.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shephard, Mark S. Automated Finite Element Modeling Procedures for Metal Forming Simulations. Fort Belvoir, VA: Defense Technical Information Center, March 1999. http://dx.doi.org/10.21236/ada380170.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pearson, Ken, and Channing Arndt. Implementing Systematic Sensitivity Analysis Using GEMPACK. GTAP Technical Paper, November 2000. http://dx.doi.org/10.21642/gtap.tp03.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In economic simulation, results often hinge crucially on values of key exogenous inputs (the values of the parameters of the model and the shocks applied). Computational burden has, in the past, hindered systematic investigation of the impacts of variations in these key exogenous inputs. In this document, practical methods for conducting systematic sensitivity analysis for any model implemented using the GEMPACK suite of software are documented. The procedures described here are based on GTAP Technical Paper number 2 which sets out the theory behind the Gaussian quadrature methods on which the automated procedure is based. The procedures allow modellers to obtain estimates of the means and standard deviations of any endogenous variables of their model. The model only needs to be solved a relatively modest number of times (usually only 2N times if N exogenous inputs are varying); this is considerably fewer than the number of solves required by Monte Carlo methods. The procedure documented here fully automates solving the model as often as is necessary; once the user sets it up and starts it running, no further intervention is required. The document spells out the assumptions which must be made about the distribution of the exogenous inputs for the methods described to be valid. Five examples of systematic sensitivity computations are presented and the accompanying software allows modellers to work through these examples while reading the document. This should leave readers fully prepared to analyse the sensitivity of results for any model implemented in GEMPACK.
7

Allerton, Vicky, Gloria Boice, and Susan Sweet. Automated Interactive Simulation Model (AISIM) Vax Version 5.0 Acceptance Test Procedures. Fort Belvoir, VA: Defense Technical Information Center, April 1987. http://dx.doi.org/10.21236/ada189146.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Li, Honghai, Mitchell Brown, Lihwa Lin, Yan Ding, Tanya Beck, Alejandro Sanchez,, Weiming Wu, Christopher Reed, and Alan Zundel. Coastal Modeling System user's manual. Engineer Research and Development Center (U.S.), April 2024. http://dx.doi.org/10.21079/11681/48392.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Coastal Modeling System (CMS) is a suite of coupled 2D numerical models for simulating nearshore waves, currents, water levels, sediment transport, morphology change, and salinity and temperature. Developed by the Coastal Inlets Research Program of the US Army Corps of Engineers, the CMS provides coastal engineers and scientists a PC-based, easy-to-use, accurate, and efficient tool for understanding of coastal processes and for designing and managing of coastal inlets research, navigation projects, and sediment exchange between inlets and adjacent beaches. The present technical report acts as a user guide for the CMS, which contains comprehensive information on model theory, model setup, and model features. The detailed descriptions include creation of a new project, configuration of model grid, various types of boundary conditions, representation of coastal structures, numerical methods, and coupled simulations of waves, hydrodynamics, and sediment transport. Pre- and post-model data processing and CMS modeling procedures are also described through operation within a graphic user interface—the Surface- water Modeling System.
9

Hlavacek, Vladimir. Modeling, Simulation and Engineering Scale-up Procedures for Design of CVD Reactors. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada284919.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hlavacek, Vladimir. Modeling, Simulation and Engineering Scale-up Procedures for Design of CVD Reactors. Fort Belvoir, VA: Defense Technical Information Center, January 1989. http://dx.doi.org/10.21236/ada285411.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії