Добірка наукової літератури з теми "Probabilistic automaton"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Probabilistic automaton".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Probabilistic automaton"
Sánchez, Joan Andreu, Martha Alicia Rocha, Verónica Romero, and Mauricio Villegas. "On the Derivational Entropy of Left-to-Right Probabilistic Finite-State Automata and Hidden Markov Models." Computational Linguistics 44, no. 1 (March 2018): 17–37. http://dx.doi.org/10.1162/coli_a_00306.
Повний текст джерелаCORTES, CORINNA, MEHRYAR MOHRI, ASHISH RASTOGI, and MICHAEL RILEY. "ON THE COMPUTATION OF THE RELATIVE ENTROPY OF PROBABILISTIC AUTOMATA." International Journal of Foundations of Computer Science 19, no. 01 (February 2008): 219–42. http://dx.doi.org/10.1142/s0129054108005644.
Повний текст джерелаBOCCARA, N., J. NASSER, and M. ROGER. "CRITICAL BEHAVIOR OF A PROBABILISTIC LOCAL AND NONLOCAL SITE-EXCHANGE CELLULAR AUTOMATON." International Journal of Modern Physics C 05, no. 03 (June 1994): 537–45. http://dx.doi.org/10.1142/s0129183194000714.
Повний текст джерелаRajewsky, Nikolaus, and Michael Schreckenberg. "A Probabilistic Cellular Automaton for Evolution." Journal de Physique I 5, no. 9 (September 1995): 1129–34. http://dx.doi.org/10.1051/jp1:1995186.
Повний текст джерелаNishidate, Kazume, Mamoru Baba, Hideyuki Chiba, Takanori Ito, Kouichi Kodama, and Kiyoshi Nishikawa. "Probabilistic Cellular Automaton for Random Walkers." Journal of the Physical Society of Japan 69, no. 5 (May 15, 2000): 1352–55. http://dx.doi.org/10.1143/jpsj.69.1352.
Повний текст джерелаFREIVALDS, RŪSIŅŠ. "NON-CONSTRUCTIVE METHODS FOR FINITE PROBABILISTIC AUTOMATA." International Journal of Foundations of Computer Science 19, no. 03 (June 2008): 565–80. http://dx.doi.org/10.1142/s0129054108005826.
Повний текст джерелаBHATTACHARYYA, PRATIP. "GROWTH OF SURFACES GENERATED BY A PROBABILISTIC CELLULAR AUTOMATION." International Journal of Modern Physics C 10, no. 01 (February 1999): 165–81. http://dx.doi.org/10.1142/s0129183199000115.
Повний текст джерелаBušić, Ana, Jean Mairesse, and Irène Marcovici. "Probabilistic Cellular Automata, Invariant Measures, and Perfect Sampling." Advances in Applied Probability 45, no. 04 (December 2013): 960–80. http://dx.doi.org/10.1017/s0001867800006728.
Повний текст джерелаBušić, Ana, Jean Mairesse, and Irène Marcovici. "Probabilistic Cellular Automata, Invariant Measures, and Perfect Sampling." Advances in Applied Probability 45, no. 4 (December 2013): 960–80. http://dx.doi.org/10.1239/aap/1386857853.
Повний текст джерелаNederhof, Mark-Jan. "A General Technique to Train Language Models on Language Models." Computational Linguistics 31, no. 2 (June 2005): 173–85. http://dx.doi.org/10.1162/0891201054223986.
Повний текст джерелаДисертації з теми "Probabilistic automaton"
Semyonov, S. G., Svitlana Gavrylenko, and Viktor Chelak. "Processing information on the state of a computer system using probabilistic automata." Thesis, Institute of Electrical and Electronics Engineers, 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/40752.
Повний текст джерелаTurnes, Junior Pericles do Prado. "Um modelo para avaliar a validade da hipótese de mistura homogênea em sistemas epidemiológicos." Universidade Presbiteriana Mackenzie, 2014. http://tede.mackenzie.br/jspui/handle/tede/1524.
Повний текст джерелаInstituto Presbiteriano Mackenzie
There are many epidemiological models written in terms of ordinary differential equations (ODE). This approach is based on the homogeneous mixing assumption; that is, the topological structure of the network of social contacts, established by the individuals in the population, is not relevant to forecast the propagation of the studied pathogen. In this work, an epidemiological model formulated in terms of ODE and probabilistic cellular automata (PCA) is proposed to study the spread of contagious diseases that do not conferimmunity. The state variables of this model are the percentages of susceptible individuals, infected individuals and empty space. It is shown that this dynamical system can experience Hopf and transcritical bifurcations. Then, this model is used to evaluate the validity of the homogeneous mixing assumption, by using real data related to the transmission of gonorrhea, hepatitis C virus, human immunodeficiency virus and obesity.
Muitos modelos epidemiológicos são escritos em termos de equações diferenciais ordinárias (EDO). Essa abordagem baseia-se no pressuposto de mistura homogênea; ou seja, a estrutura topológica da rede de contatos sociais, estabelecida pelos indivíduos da população, não é relevante para prever o avanço do patógeno em estudo. Neste trabalho, é proposto um modelo epidemiológico formulado em termos de EDO e de autômato celular probabilista (ACP) para estudar a propagação de doenças contagiosas que não conferem imunidade. As variáveis de estado desse modelo são as porcentagens de indivíduos suscetíveis, de indivíduos infectados e de espaço vazio. Mostra-se que esse sistema dinâmico pode apresentar bifurcações de Hopf e transcrítica. O modelo é , então, usado para avaliar a validade da hipótese de mistura homogênea, usando dados relacionados à transmissão de gonorreia, vírus da hepatite C, vírus da imunodeficiência humana e obesidade.
Casse, Jérôme. "Automates cellulaires probabilistes et processus itérés ad libitum." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0248/document.
Повний текст джерелаThe first part of this thesis is about probabilistic cellular automata (PCA) on the line and with two neighbors. For a given PCA, we look for the set of its invariant distributions. Due to reasons explained in detail in this thesis, it is nowadays unthinkable to get all of them and we concentrate our reections on the invariant Markovian distributions. We establish, first, an algebraic theorem that gives a necessary and sufficient condition for a PCA to have one or more invariant Markovian distributions when the alphabet E is finite. Then, we generalize this result to the case of a polish alphabet E once we have clarified the encountered topological difficulties. Finally, we calculate the 8-vertex model's correlation function for some parameters values using previous results.The second part of this thesis is about infinite iterations of stochastic processes. We establish the convergence of the finite dimensional distributions of the α-stable processes iterated n times, when n goes to infinite, according to parameter of stability and to drift r. Then, we describe the limit distributions. In the iterated Brownian motion case, we show that the limit distributions are linked with iterated functions system
Moraes, Ana Leda Silva. "Avaliando a influência de indivíduos imunes na propagação de doenças contagiosas." Universidade Presbiteriana Mackenzie, 2016. http://tede.mackenzie.br/jspui/handle/tede/1471.
Повний текст джерелаCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
Epidemiology is the science that studies the occurrence of diseases in a population. The results of these studies allow a comprehension of a disease propagation and enable actions in order to control epidemics. There are many mathematical models used in epidemiological studies; in which SIR-like models are the most used. In this model, the population is divided into three groups: S - susceptible individuals to infection, I - infected individuals, and R - recovered individuals. The proposal of this thesis is, based on a new SIR model, taking into consideration the effect of recovered individuals on the propagation of contagious diseases and on the recovery of sick individuals. This can be relevant to the study of propagation of typical diseases in children, since immune individuals can catalyze the encounters among susceptible children and infected children, as well as to contribute to the recovery of sick individuals. The predictive ability of the proposed model is evaluated from the records refering to the incidence of chickenpox in Belgium, Germany and Italy, in a pre-vaccination era.
Epidemiologia é a ciência que estuda as ocorrências de doenças numa população. Os resultados desses estudos permitem uma compreensão do comportamento da incidência da doença e possibilita ações a fim de controlar epidemias. Há vários modelos matemáticos que são utilizados para estudos epidemiológicos, sendo modelos do tipo SIR os mais empregados. Nesse modelo, divide-se a população em três classes: 𝑆 - indivíduos suscetíveis à infecção, 𝐼 - indivíduos infectados, e 𝑅 - indivíduos recuperados. A proposta desta dissertação é, a partir de um novo modelo SIR, levar em consideração o efeito de indivíduos recuperados na propagação de doenças contagiosas e na recuperação de indivíduos doentes. Isso pode ser relevante no estudo da propagação de infecções típicas de crianças, já que indivíduos imunes podem servir como catalisador de encontros entre crianças suscetíveis e crianças infectadas, bem como contribuir para a recuperação de indivíduos doentes. A capacidade preditiva do modelo proposto é avaliada a partir dos registros referentes à incidência de varicela na Alemanha, Bélgica e Itália, numa era pré-vacinação.
Shirmohammadi, Mahsa. "Qualitative analysis of synchronizing probabilistic systems." Thesis, Cachan, Ecole normale supérieure, 2014. http://www.theses.fr/2014DENS0054/document.
Повний текст джерелаMarkov decision processes (MDPs) are finite-state probabilistic systems with bothstrategic and random choices, hence well-established to model the interactions between a controller and its randomly responding environment.An MDP can be mathematically viewed as a one and half player stochastic game played in rounds when the controller chooses an action,and the environment chooses a successor according to a fixedprobability distribution.There are two incomparable views on the behavior of an MDP, when thestrategic choices are fixed. In the traditional view, an MDP is a generator of sequence of states, called the state-outcome; the winning condition of the player is thus expressed as a set of desired sequences of states that are visited during the game, e.g. Borel condition such as reachability.The computational complexity of related decision problems and memory requirement of winning strategies for the state-outcome conditions are well-studied.Recently, MDPs have been viewed as generators of sequences of probability distributions over states, calledthe distribution-outcome. We introduce synchronizing conditions defined on distribution-outcomes,which intuitively requires that the probability mass accumulates insome (group of) state(s), possibly in limit.A probability distribution is p-synchronizing if the probabilitymass is at least p in some state, anda sequence of probability distributions is always, eventually,weakly, or strongly p-synchronizing if respectively all, some, infinitely many, or all but finitely many distributions in the sequence are p-synchronizing.For each synchronizing mode, an MDP can be (i) sure winning if there is a strategy that produces a 1-synchronizing sequence; (ii) almost-sure winning if there is a strategy that produces a sequence that is, for all epsilon > 0, a (1-epsilon)-synchronizing sequence; (iii) limit-sure winning if for all epsilon > 0, there is a strategy that produces a (1-epsilon)-synchronizing sequence.We consider the problem of deciding whether an MDP is winning, for each synchronizing and winning mode: we establish matching upper and lower complexity bounds of the problems, as well as the memory requirementfor optimal winning strategies.As a further contribution, we study synchronization in probabilistic automata (PAs), that are kind of MDPs where controllers are restricted to use only word-strategies; i.e. no ability to observe the history of the system execution, but the number of choices made so far.The synchronizing languages of a PA is then the set of all synchronizing word-strategies: we establish the computational complexity of theemptiness and universality problems for all synchronizing languages in all winning modes.We carry over results for synchronizing problems from MDPs and PAs to two-player turn-based games and non-deterministic finite state automata. Along with the main results, we establish new complexity results foralternating finite automata over a one-letter alphabet.In addition, we study different variants of synchronization for timed andweighted automata, as two instances of infinite-state systems
Weidner, Thomas. "Probabilistic Logic, Probabilistic Regular Expressions, and Constraint Temporal Logic." Doctoral thesis, Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-208732.
Повний текст джерелаLouis, Pierre-Yves. "Increasing coupling for probabilistic cellular automata." Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2006/659/.
Повний текст джерелаKhapko, Taras. "Edge states and transition to turbulence in boundary layers." Doctoral thesis, KTH, Stabilitet, Transition, Kontroll, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186038.
Повний текст джерелаQC 20160429
Kelmendi, Edon. "Two-Player Stochastic Games with Perfect and Zero Information." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0238/document.
Повний текст джерелаWe consider stochastic games that are played on finite graphs. The subject of the first part are two-player stochastic games with perfect information. In such games the two players take turns choosing actions from a finite set, for an infinite duration, resulting in an infinite play. The objective of the game is given by a Borel-measurable and bounded payoff function that maps infinite plays to real numbers. The first player wants to maximize the expected payoff, and the second player has the opposite objective, that of minimizing the expected payoff. We prove that if the payoff function is both shift-invariant and submixing then the game is half-positional. This means that the first player has an optimal strategy that is at the same time pure and memoryless. Both players have perfect information, so the actions are chosen based on the whole history. In the second part we study finite-duration games where the protagonist player has zero information. That is, he gets no feedback from the game and consequently his strategy is a finite word over the set of actions. Probabilistic finite automata can be seen as an example of such a game that has only a single player. First we compare two classes of probabilistic automata: leaktight automata and simple automata, for which the value 1 problem is known to be decidable. We prove that simple automata are a strict subset of leaktight automata. Then we consider half-blind games, which are two player games where the maximizer has zero information and the minimizer is perfectly informed. We define the class of leaktight half-blind games and prove that it has a decidable maxmin reachability problem
Coore, Daniel. "Automatic profiler-driven probabilistic compiler optimization." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/35396.
Повний текст джерелаКниги з теми "Probabilistic automaton"
Louis, Pierre-Yves, and Francesca R. Nardi, eds. Probabilistic Cellular Automata. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-65558-1.
Повний текст джерелаOsnovy teorii veroi͡a︡tnostnykh avtomatov. Moskva: "Nauka," Glav. red. fiziko-matematicheskoĭ lit-ry, 1985.
Знайти повний текст джерелаLee, Won Don. Probabilistic inference. Urbana, Ill: Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1986.
Знайти повний текст джерелаGevarter, William B. Automatic probabilistic knowledge acquisition from data. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1986.
Знайти повний текст джерелаLee, Won Don. Probabilistic inference: Theory and practice. Urbana, Ill: Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1986.
Знайти повний текст джерелаSturm, Jürgen. Approaches to Probabilistic Model Learning for Mobile Manipulation Robots. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Знайти повний текст джерелаEuropean Congress on Intelligent Techniques and Soft Computing (5th 1997 Aachen, Germany). EUFIT '97: 5th European Congress on Intelligent Techniques and Soft Computing : Aachen, Germany , September 8-11, 1997, proceedings. Aachen: Verlag Mainz [for the] ELITE-Foundation, 1997.
Знайти повний текст джерелаEuropean Congress on Fuzzy and Intelligent Technologies. (1st 1993 Aachen, Germany). EUFIT '93: First European congress on fuzzy and intelligent technologies : September 7-10, 1993, Eurogress Aachen, Germany : Proceedings. Aachen: Verlag der Augustinus Buchhandlung for the ELITE-Foundation, 1993.
Знайти повний текст джерелаProbabilistic Cellular Automata: Theory, Applications and Future Perspectives. Springer, 2019.
Знайти повний текст джерелаGoldreich, Oded. Probabilistic Proof Systems: A Primer. Now Publishers, 2008.
Знайти повний текст джерелаЧастини книг з теми "Probabilistic automaton"
Bagnoli, Franco, and Raúl Rechtman. "Regional Synchronization of a Probabilistic Cellular Automaton." In Developments in Language Theory, 255–63. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99813-8_23.
Повний текст джерелаLivi, R., and S. Ruffo. "Probabilistic Cellular Automaton Models for a Fluid Experiment." In New Trends in Nonlinear Dynamics and Pattern-Forming Phenomena, 237–39. New York, NY: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-7479-4_32.
Повний текст джерелаDupont, Pierre, and Lin Chase. "Using symbol clustering to improve probabilistic automaton inference." In Grammatical Inference, 232–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0054079.
Повний текст джерелаOhta, Manabu, Atsuhiro Takasu, and Jun Adachi. "Probabilistic Automaton Model for Fuzzy English-Text Retrieval." In Research and Advanced Technology for Digital Libraries, 35–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-45268-0_4.
Повний текст джерелаBagnoli, Franco, Fabio Franci, and Raúl Rechtman. "Opinion Formation and Phase Transitions in a Probabilistic Cellular Automaton with Two Absorbing States." In Lecture Notes in Computer Science, 249–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45830-1_24.
Повний текст джерелаEtessami, Kousha. "Analysis of probabilistic processes and automata theory." In Handbook of Automata Theory, 1343–82. Zuerich, Switzerland: European Mathematical Society Publishing House, 2021. http://dx.doi.org/10.4171/automata-1/36.
Повний текст джерелаRaabe, Dierk, and Richard C. Becker. "Coupling of a Crystal Plasticity Finite Element Model with a Probabilistic Cellular Automaton for Simulating Primary Static Recrystallization in Aluminum." In Microstructures, Mechanical Properties and Processes - Computer Simulation and Modelling, 1–8. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527606157.ch1.
Повний текст джерелаWeidner, Thomas. "Probabilistic Automata and Probabilistic Logic." In Mathematical Foundations of Computer Science 2012, 813–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32589-2_70.
Повний текст джерелаSegala, Roberto. "Testing probabilistic automata." In CONCUR '96: Concurrency Theory, 299–314. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/3-540-61604-7_62.
Повний текст джерелаHuberman, B. A. "Probabilistic Cellular Automata." In Springer Proceedings in Physics, 129–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-93289-2_5.
Повний текст джерелаТези доповідей конференцій з теми "Probabilistic automaton"
Rezagholizadeh, Mehdi, Pouya Mehrannia, Asiyeh Barzegar, Alireza Fereidunian, Behzad Moshiri, and Hamid Lesani. "A probabilistic partial order theory approach to IT infrastructure selection for Smart Grid." In 2013 13th International Conference on Control, Automaton and Systems (ICCAS 2013). IEEE, 2013. http://dx.doi.org/10.1109/iccas.2013.6703983.
Повний текст джерелаLiu, Zhao, Huan Zhang, Taide Tan, Changxiong Qin, and Jing Fan. "A Cellular Automaton Model and its Application on Emotional Infections." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36136.
Повний текст джерелаAsami, Atsushi, Tatsuki Yamada, and Yohei Saika. "Probabilistic inference of environmental factors via time series analysis using mean-field theory of ising model." In 2013 13th International Conference on Control, Automaton and Systems (ICCAS). IEEE, 2013. http://dx.doi.org/10.1109/iccas.2013.6704168.
Повний текст джерелаRataj, Artur. "From a model-based robotic application to a probabilistic timed automaton with only C/C++ development." In ROSCon2019FR. Mountain View, CA: Open Robotics, 2019. http://dx.doi.org/10.36288/roscon2019fr-900323.
Повний текст джерелаRataj, Artur. "From a model-based robotic application to a probabilistic timed automaton with only C/C++ development." In ROSCon2019FR. Mountain View, CA: Open Robotics, 2019. http://dx.doi.org/10.36288/roscon2019fr-900867.
Повний текст джерелаWu, Zhenhua, and Sheng-Jen Hsieh. "Design and Validation of Fault Diagnoser Based on Finite State Automaton and Sequential Function Chart for PLC Based Manufacturing System." In ASME/ISCIE 2012 International Symposium on Flexible Automation. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/isfa2012-7159.
Повний текст джерелаOsawa, Naoki, Yasuhide Kanou, Yasumi Kawamura, Atsushi Takada, Kazuhiko Shiotani, Seiru Takeno, Shino Katayama, and Kristov Ivan William. "Development of Under-Film Corrosion Simulation Method Based on Cellular Automaton." In ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/omae2016-54508.
Повний текст джерелаHahn, Ernst Moritz, and Holger Hermanns. "Rewarding probabilistic hybrid automata." In the 16th international conference. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2461328.2461375.
Повний текст джерелаLu, Lu, and Jianhui Yu. "Analysis of Automatic Depressurization System Stage 4 Valves Inadvertent Actuation Scenario for a Certain Passive Power Plant." In 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-15841.
Повний текст джерелаVatan, Farrokh. "Distribution functions of probabilistic automata." In the thirty-third annual ACM symposium. New York, New York, USA: ACM Press, 2001. http://dx.doi.org/10.1145/380752.380872.
Повний текст джерелаЗвіти організацій з теми "Probabilistic automaton"
Cortes, Corinna, Mehryar Mohri, Ashish Rastogi, and Michael Riles. On the Computation of the Relative Entropy of Probabilistic Automata. Fort Belvoir, VA: Defense Technical Information Center, January 2007. http://dx.doi.org/10.21236/ada606160.
Повний текст джерелаSmolka, Scott A. Semantic Theories and Automated Tools for Real-Time and Probabilistic Concurrent Systems. Fort Belvoir, VA: Defense Technical Information Center, May 1997. http://dx.doi.org/10.21236/ada329736.
Повний текст джерелаClark, G. A., M. E. Glinsky, K. R. S. Devi, J. H. Robinson, P. K. Z. Cheng, and G. E. Ford. Automatic event picking in pre-stack migrated gathers using a probabilistic neural network. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/394450.
Повний текст джерелаSanderson, Dylan, and Mark Gravens. Representative Storm Selection Tool : an automated procedure for the selection of representative storm events from a probabilistic database. Coastal and Hydraulics Laboratory (U.S.), May 2018. http://dx.doi.org/10.21079/11681/26829.
Повний текст джерела