Добірка наукової літератури з теми "Predictive Patterns"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Predictive Patterns".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Predictive Patterns"
Tao, Lv, Yongtao Hao, Hao Yijie, and Shen Chunfeng. "K-Line Patterns’ Predictive Power Analysis Using the Methods of Similarity Match and Clustering." Mathematical Problems in Engineering 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/3096917.
Повний текст джерелаKaufmann, Mareile, Simon Egbert, and Matthias Leese. "Predictive Policing and the Politics of Patterns." British Journal of Criminology 59, no. 3 (December 7, 2018): 674–92. http://dx.doi.org/10.1093/bjc/azy060.
Повний текст джерелаRew, Jehyeok, Sungwoo Park, Yongjang Cho, Seungwon Jung, and Eenjun Hwang. "Animal Movement Prediction Based on Predictive Recurrent Neural Network." Sensors 19, no. 20 (October 11, 2019): 4411. http://dx.doi.org/10.3390/s19204411.
Повний текст джерелаPeppler-Lisbach, Cord. "Predictive modelling of historical and recent land-use patterns." Phytocoenologia 33, no. 4 (November 19, 2003): 565–90. http://dx.doi.org/10.1127/0340-269x/2003/0033-0565.
Повний текст джерелаChoi, Minkyu, and Jun Tani. "Predictive Coding for Dynamic Visual Processing: Development of Functional Hierarchy in a Multiple Spatiotemporal Scales RNN Model." Neural Computation 30, no. 1 (January 2018): 237–70. http://dx.doi.org/10.1162/neco_a_01026.
Повний текст джерелаCollins, Tom, Robin Laney, Alistair Willis, and Paul H. Garthwaite. "Modeling Pattern Importance in Chopin's Mazurkas." Music Perception 28, no. 4 (April 1, 2011): 387–414. http://dx.doi.org/10.1525/mp.2011.28.4.387.
Повний текст джерелаDaniel Breslin, Mg Ing Roberto. "ANALYSIS MODEL FOR NON-PREDICTIVE PATTERNS OF NON-IONIZING RADIATIONS." Engineering and Technology Journal 07, no. 12 (December 21, 2022): 1755–68. http://dx.doi.org/10.47191/etj/v7i12.01.
Повний текст джерелаJu, Yeong Jo, Jeong Ran Lim, and Euy Sik Jeon. "Prediction of AI-Based Personal Thermal Comfort in a Car Using Machine-Learning Algorithm." Electronics 11, no. 3 (January 23, 2022): 340. http://dx.doi.org/10.3390/electronics11030340.
Повний текст джерелаChien, Wen T., and W. C. Hung. "Investigation on the Predictive Model for Burr in Laser Cutting Titanium Alloy." Materials Science Forum 526 (October 2006): 133–38. http://dx.doi.org/10.4028/www.scientific.net/msf.526.133.
Повний текст джерелаDing, Jun, Anthony S. Wexler, and Stuart A. Binder-Macleod. "A predictive model of fatigue in human skeletal muscles." Journal of Applied Physiology 89, no. 4 (October 1, 2000): 1322–32. http://dx.doi.org/10.1152/jappl.2000.89.4.1322.
Повний текст джерелаДисертації з теми "Predictive Patterns"
Villaume, Erik. "Predicting customer level risk patterns in non-life insurance." Thesis, KTH, Matematisk statistik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-103590.
Повний текст джерелаFerguson, Haylie Anne. "A GIS Approach to Archaeological Settlement Patterns and Predictive Modeling in Chihuahua, Mexico." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/7069.
Повний текст джерелаFerguson, Megan Caton. "Cetacean population density in the Eastern Pacific Ocean : analyzing patterns with predictive spatial models /." Online version in PDF format, 2005. http://swfsc.noaa.gov/uploadedFiles/Divisions/PRD/Programs/Coastal_Marine_Mammal/Ferguson2005dissertation.pdf.
Повний текст джерелаVita. Includes bibliographical references. Also available online in PDF format via the National Marine Fisheries Service Coastal Marine Mammal Program (CMMP) home page.
Daughtrey, Cannon Stewart. "Pima County's Open Space Ranch Preserves: Predictive Modeling of Site Locations for Three Time Periods at Rancho Seco." Thesis, The University of Arizona, 2014. http://hdl.handle.net/10150/318809.
Повний текст джерелаBrownlow, Briana Nicole. "Patterns of Heart Rate Variability Predictive of Internalizing Symptoms in a Non-Clinical Youth Sample." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1518179804584445.
Повний текст джерелаBeam, Lauren. "Are holding patterns predictive of infant attachment classification in 12 to 18 month old infants?" Click here to access thesis, 2009. http://www.georgiasouthern.edu/etd/archive/spring2009/lauren_d_beam/beam_lauren_d_200905_ms.pdf.
Повний текст джерела"A thesis submitted to the Graduate Faculty of Georgia Southern University in partial fulfillment of the requirements for the degree Master of Science." Directed by Janice Kennedy. ETD. Includes bibliographical references (p. 54-61) and appendices.
Castillo, Guevara Ramon Daniel. "The emergence of cognitive patterns in learning: Implementation of an ecodynamic approach." University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1396531855.
Повний текст джерелаSaha, Sourabh Kumar. "Predictive design and fabrication of complex micro and nano patterns via wrinkling for scalable and affordable manufacturing." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/93860.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 189-193).
There is a demonstrated need for scalable and affordable manufacturing of complex micro and nano scale structures for applications such as fluidics-based medical diagnostics and photonicsbased sensing. Although high-rate patterning of these structures is feasible via template/stamp based processes, scalability and affordability are often limited by expensive and slow template fabrication processes. The purpose of this work was to develop a wrinkling-based manufacturing process that eliminates the need for an expensive and slow template fabrication step. Wrinkling of thin films is a low-cost buckling-driven patterning process that provides an alternate route to manufacturing scale-up. However, this process is currently of limited practical import because predictive design is restricted to a small set of simple/elementary patterns. In this work, predictive models, tools, and techniques were developed to enable the design and fabrication of a variety of complex wrinkled patterns. The shape and size of wrinkled patterns is determined by the interaction among geometry, material properties, and loading. Complexity in wrinkle patterns often arises due to uncontrolled/undesirable non-uniformities in these process parameters. Due to the confounding effect of simultaneously acting non-uniformities, it is difficult to link wrinkle shape/size to process parameters for such systems. To solve this problem, experimental and computational tools were developed to (i) individually tune/control the non-uniformities in these parameters and (ii) probe the effect of these parameters on the wrinkled pattern. The data generated from these tools was then used to link process parameters to pattern complexity. Contributions were made in the following specific areas: (1) Tunable hierarchical wrinkled patterns via geometric pre-patterning Although complex hierarchical wrinkled patterns have been fabricated via geometric prepatterning in the past, predictive design of such patterns is not feasible. This is primarily because of lack of appropriate process models that can accurately capture the physical effect of prepatterns on the wrinkle generation process. Herein, an analytical model was developed and verified to predict the hierarchical patterns that arise due to geometric non-uniformity. This model elucidates and captures the fundamental energetic response of the system to pre-patterns that distinguishes a pre-patterned system from a flat non-patterned system. The ability to capture this essential physics provides valuable insight into the process that is not available via empirical models that are based on a limited data set. This insight enables one to (i) explore the full design space and identify optimal operating regions, (ii) design and fabricate tunable wrinkled patterns that can be deterministically switched across hierarchical and non-hierarchical states and (iii) explain and predict patterns that are theoretically feasible yet practically inaccessible. (2) Period doubling via high compressive strains Although period doubling at high compressive strains has been demonstrated in the past, models that accurately predict the onset of period doubling are not available. This is due to the inability of existing models to capture the nonlinear stress versus strain material response as the physical basis for period doubling. For example, existing models erroneously assume that the onset of period doubling is independent of stiffness moduli. Herein, models driven by finite element analysis were developed to accurately link the onset of period doubling to nonlinearities that arise during large deformations. These models enable one to accurately separate the effect of individual process parameters on the onset of period doubling. This enables one to extract valuable process-relevant information from the observation of the period doubling phenomenon that is otherwise not available. (3) Attractors and repellers as localized material defects for curved wrinkles Curved wrinkles have been demonstrated in the past during equibiaxial compression of nonuniform materials. However, predictive design of target patterns via curved wrinkles is not feasible at present due to the lack of simple yet effective design rules. Generation of such design rules is hindered by the confounding effect of biaxial compression and localized material nonuniformities. Herein, an elegant design rule for in-plane bending of wrinkles has been generated for the case of uniaxial compression. Based on this, the concept of attractors and repellers as distinct localized material defects has been proposed and experimentally verified. Attractors are relatively compliant defects that pull wrinkles toward them; whereas repellers are relatively stiffer defects that push wrinkles away. These defects may be used as the building blocks to locally alter the in-plane orientation of otherwise uniformly aligned wrinkles during uniaxial compression. The set of predictive models generated in this work would enable a designer to perform inverse pattern design of complex wrinkled structures, i.e., to select the appropriate set of process parameters that are required to fabricate the desired pattern. By replacing other expensive processes for complex patterning, this would reduce the time and cost of manufacturing a variety of functional micro and nano scale patterns by a factor of ~10 for low-volume applications and by ~10% for high-volume applications.
by Sourabh Kumar Saha.
Ph. D.
Burton, A. Kim. "Patterns of lumbar sagittal mobility and their predictive value in the natural history of back and sciatic pain." Thesis, University of Huddersfield, 1987. http://eprints.hud.ac.uk/id/eprint/8663/.
Повний текст джерелаChhaya, Mohamed. "Traditional and modern medicine in primary care - prevalence, patterns and predictive factors of utilisation in Makwarela township, Vhembe district, Limpopo." Thesis, Stellenbosch : University of Stellenbosch, 2015. http://hdl.handle.net/10019.1/97229.
Повний текст джерелаКниги з теми "Predictive Patterns"
Leenaars, Antoon A. Suicide notes: Predictive clues and patterns. New York, N.Y: Human Sciences Press, 1988.
Знайти повний текст джерелаG, Moore Donald, and Geological Survey (U.S.), eds. Predictive spatial modeling of narcotic crop growth patterns. Sioux Falls, S.D: U.S. Dept. of the Interior, U.S. Geological Survey, 1986.
Знайти повний текст джерелаG, Moore Donald, and Geological Survey (U.S.), eds. Predictive spatial modeling of narcotic crop growth patterns. Sioux Falls, S.D: U.S. Dept. of the Interior, U.S. Geological Survey, 1986.
Знайти повний текст джерелаBartlett, Sheryl Anne. Predictive and posterior distributions for normal multivariate data with missing monotone patterns. Toronto: University of Toronto, Dept. of Statistics, 1985.
Знайти повний текст джерелаG, Anderson David. Archaeology, history, and predictive modeling research at Fort Polk, 1972-2002. Tuscaloosa: University of Alabama Press, 2003.
Знайти повний текст джерелаDietrich, Daniel S. Predicting radiation characteristics from antenna physical dimensions. Monterey, Calif: Naval Postgraduate School, 1992.
Знайти повний текст джерелаTremblay, Pierre. Patterns in criminal achievement: Wilson and Abrahamse revisited. Montréal: Université de Montréal, 1999.
Знайти повний текст джерела1939-, Wyss Max, Shimazaki K. 1946-, and Ito Akihiko, eds. Seismicity patterns, their statistical significance and physical meaning. Basel: Birkhäuser Verlag, 1999.
Знайти повний текст джерелаLundholm, Steven E. Predicting antenna parameters from antenna physical dimensions. Monterey, Calif: Naval Postgraduate School, 1993.
Знайти повний текст джерелаPham, Duc Truong. Neural Networks for Identification, Prediction and Control. London: Springer London, 1995.
Знайти повний текст джерелаЧастини книг з теми "Predictive Patterns"
Zettersten, Martin. "Learning by predicting: How predictive processing informs language development." In Patterns in Language and Linguistics, edited by Beatrix Busse and Ruth Moehlig-Falke, 255–88. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110596656-010.
Повний текст джерелаHannachi, Abdelwaheb. "Persistent, Predictive and Interpolated Patterns." In Springer Atmospheric Sciences, 171–200. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67073-3_8.
Повний текст джерелаLv, Tao, and Yongtao Hao. "Further Analysis of Candlestick Patterns’ Predictive Power." In Communications in Computer and Information Science, 73–87. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6385-5_7.
Повний текст джерелаFinkelstein, Martin, and Wendiann Sethi. "Patterns of Faculty Internationalization: A Predictive Model." In The Internationalization of the Academy, 237–57. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7278-6_11.
Повний текст джерелаMihelčić, Matej, Sašo Džeroski, Nada Lavrač, and Tomislav Šmuc. "Redescription Mining with Multi-target Predictive Clustering Trees." In New Frontiers in Mining Complex Patterns, 125–43. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39315-5_9.
Повний текст джерелаShen, Cheng-Dong, Tie-Jun Li, and Si-Kun Li. "A Predictive Direction Guided Fast Motion Estimation Algorithm." In Computer Analysis of Images and Patterns, 188–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11556121_24.
Повний текст джерелаTorim, Ants, Innar Liiv, Chahinez Ounoughi, and Sadok Ben Yahia. "Pattern Based Software Architecture for Predictive Maintenance." In Communications in Computer and Information Science, 26–38. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17030-0_3.
Повний текст джерелаNowosielski, Adam. "Two-Letters-Key Keyboard for Predictive Touchless Typing with Head Movements." In Computer Analysis of Images and Patterns, 68–79. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64689-3_6.
Повний текст джерелаPourbafrani, Mahsa, Shreya Kar, Sebastian Kaiser, and Wil M. P. van der Aalst. "Remaining Time Prediction for Processes with Inter-case Dynamics." In Lecture Notes in Business Information Processing, 140–53. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98581-3_11.
Повний текст джерелаLeibovitz, Rotem, Jhonathan Osin, Lior Wolf, Guy Gurevitch, and Talma Hendler. "fMRI Neurofeedback Learning Patterns are Predictive of Personal and Clinical Traits." In Lecture Notes in Computer Science, 282–94. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-16431-6_27.
Повний текст джерелаТези доповідей конференцій з теми "Predictive Patterns"
Ibrahim, Ronny K., Eliathamby Ambikairajah, Branko G. Celler, and Nigel H. Lovell. "Linear predictive modelling of gait patterns." In ICASSP 2009 - 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2009. http://dx.doi.org/10.1109/icassp.2009.4959611.
Повний текст джерелаAthineos, Marios, Hynek Hermansky, and Daniel P. W. Ellis. "LP-TRAP: linear predictive temporal patterns." In Interspeech 2004. ISCA: ISCA, 2004. http://dx.doi.org/10.21437/interspeech.2004-344.
Повний текст джерелаOrtu, Marco, Tracy Hall, Michele Marchesi, Roberto Tonelli, David Bowes, and Giuseppe Destefanis. "Mining Communication Patterns in Software Development." In PROMISE'18: The 14th International Conference on Predictive Models and Data Analytics in Software Engineering. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3273934.3273943.
Повний текст джерелаDey, Tapajit, Yuxing Ma, and Audris Mockus. "Patterns of Effort Contribution and Demand and User Classification based on Participation Patterns in NPM Ecosystem." In PROMISE'19: The Fifteenth International Conference on Predictive Models and Data Analytics in Software Engineering. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3345629.3345634.
Повний текст джерелаRoor, Roman, Michael Karg, Andy Liao, Wenhui Lei, and Alexandra Kirsch. "Predictive ridesharing based on personal mobility patterns." In 2017 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2017. http://dx.doi.org/10.1109/ivs.2017.7995895.
Повний текст джерелаBatal, Iyad, and Milos Hauskrecht. "Constructing classification features using minimal predictive patterns." In the 19th ACM international conference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1871437.1871549.
Повний текст джерелаChitu, Claudia, Mokhloss I. Khadem, and Valentin Sgarciu. "Predictive modeling of occupancy patterns in smart buildings." In 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). IEEE, 2017. http://dx.doi.org/10.1109/idaacs.2017.8095167.
Повний текст джерелаPark, Eunjung, Christos Kartsaklis, and John Cavazos. "HERCULES: Strong Patterns towards More Intelligent Predictive Modeling." In 2014 43nd International Conference on Parallel Processing (ICPP). IEEE, 2014. http://dx.doi.org/10.1109/icpp.2014.26.
Повний текст джерелаKrah, Jens Onno, Tobias Schmidt, and Joachim Holtz. "Predictive Current Control with Synchronous Optimal Pulse Patterns." In 2019 2nd International Conference on Smart Grid and Renewable Energy (SGRE). IEEE, 2019. http://dx.doi.org/10.1109/sgre46976.2019.9021105.
Повний текст джерелаZhang, Wenjing, and Xin Feng. "Predictive temporal patterns detection in multivariate dynamic data system." In 2012 10th World Congress on Intelligent Control and Automation (WCICA 2012). IEEE, 2012. http://dx.doi.org/10.1109/wcica.2012.6357988.
Повний текст джерелаЗвіти організацій з теми "Predictive Patterns"
Shaw, J., D. R. Sharpe, J. Harris, D. Lemkow, and D. Pehleman. Digital landform patterns for glaciated regions of Canada - a predictive model of flowlines based on topographic and LANDSAT 7 data. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2010. http://dx.doi.org/10.4095/286248.
Повний текст джерелаBrodie, Katherine, Ian Conery, Nicholas Cohn, Nicholas Spore, and Margaret Palmsten. Spatial variability of coastal foredune evolution, part A : timescales of months to years. Engineer Research and Development Center (U.S.), July 2021. http://dx.doi.org/10.21079/11681/41322.
Повний текст джерелаJaroszewicz, Thomas, Elizabeth Bleszynski, Marek Bleszynski, and Vladimir Rokhlin. Advanced Antenna Pattern Prediction Software. Fort Belvoir, VA: Defense Technical Information Center, May 2006. http://dx.doi.org/10.21236/ada452136.
Повний текст джерелаPeterson, P. F., and I. K. Paik. MODFLOW 2.0: A program for predicting moderator flow patterns. Office of Scientific and Technical Information (OSTI), July 1991. http://dx.doi.org/10.2172/10158938.
Повний текст джерелаJai, Tun-Min (Catherine). Predicting Consumers' Apparel Purchase Decisions from Brain Activity Patterns. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/itaa_proceedings-180814-377.
Повний текст джерелаPeterson, P. F., and I. K. Paik. MODFLOW 2. 0: A program for predicting moderator flow patterns. Office of Scientific and Technical Information (OSTI), July 1991. http://dx.doi.org/10.2172/5112906.
Повний текст джерелаApiyo, Eric, Zita Ekeocha, Stephen Robert Byrn, and Kari L. Clase. Improving Pharmacovigilliance Quality Management System in the Pharmacy and Poisions Board of Kenya. Purdue University, December 2021. http://dx.doi.org/10.5703/1288284317444.
Повний текст джерелаWideman, Jr., Robert F., Nicholas B. Anthony, Avigdor Cahaner, Alan Shlosberg, Michel Bellaiche, and William B. Roush. Integrated Approach to Evaluating Inherited Predictors of Resistance to Pulmonary Hypertension Syndrome (Ascites) in Fast Growing Broiler Chickens. United States Department of Agriculture, December 2000. http://dx.doi.org/10.32747/2000.7575287.bard.
Повний текст джерелаPeterson, P. F., and I. K. Paik. Code requirements document: MODFLOW 2.1: A program for predicting moderator flow patterns. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/10169804.
Повний текст джерелаMcKenzie, Donald, David L. Peterson, and Ernesto Alvarado. Predicting the effect of fire on large-scale vegetation patterns in North America. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 1996. http://dx.doi.org/10.2737/pnw-rp-489.
Повний текст джерела