Добірка наукової літератури з теми "Powder alloys"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Powder alloys".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Powder alloys"

1

Lykov, P. A., and L. A. Glebov. "Characteristics of Powders from Different Aluminum Alloys for Additive Technologies Obtained by Gas Atomization." Solid State Phenomena 316 (April 2021): 564–69. http://dx.doi.org/10.4028/www.scientific.net/ssp.316.564.

Повний текст джерела
Анотація:
Selective laser melting (SLM) is one of the additive manufacturing technologies that allows us to produce complex shape metallic objects from powder feedstock. Al-alloys are very promising materials in selective laser melting. In this paper, atomized metal powders of various aluminum alloys are investigated: 1) deformable alloys АК4, АК6; 2) cast alloys АК9ph, АК12; 3) deformable hardened alloy D16. As a part of the work, the particle shape, particle size distribution and technical characteristics of the powders were investigated, and also the compliance of materials with the requirements of additive technologies (SLM) was determined.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pereplyotchikov, E. F. "Plasma-powder surfacing of nickel and cobalt alloys on copper and its alloys." Paton Welding Journal 2015, no. 6 (June 28, 2015): 10–13. http://dx.doi.org/10.15407/tpwj2015.06.02.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Manfredi, Diego, and Róbert Bidulský. "Laser powder bed fusion of aluminum alloys." Acta Metallurgica Slovaca 23, no. 3 (September 27, 2017): 276. http://dx.doi.org/10.12776/ams.v23i3.988.

Повний текст джерела
Анотація:
<p class="AMSmaintext">The aim of this study is to analyze and to summarize the results of the processing of aluminum alloys, and in particular of the Al-Si-Mg alloys, by means of the Additive Manufacturing (AM) technique defined as Laser Powder Bed Fusion (L-PBF). This process is gaining interest worldwide thanks to the possibility of obtaining a freeform fabrication coupled with high mechanical strength and hardness related to a very fine microstructure. L-PBF is very complex from a physical point of view, due to the extremely rapid interaction between a concentrated laser source and micrometric metallic powders. This generate very fast melting and subsequent solidification on each layer and on the previously consolidated substrate. The effects of the main process variables on the microstructure and mechanical properties of the final parts are analyzed: from the starting powder properties, such as shape and powder size distribution, to the main process parameters, such as laser power, scanning speed and scanning strategy. Furthermore, some examples of applications for the AlSi10Mg alloy are illustrated.</p>
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Labisz, Krzysztof, and Tomasz Tański. "Laser Surface Treatment of Cast Aluminium-Silicon Alloys." Solid State Phenomena 275 (June 2018): 30–40. http://dx.doi.org/10.4028/www.scientific.net/ssp.275.30.

Повний текст джерела
Анотація:
The reason of performing the investigations carried out in this work was to investigate the microstructure of the laser treated Al-Si-Cu cast aluminium alloy with the ceramic powder particles using High Power Diode Laser (HPDL) for remelting, and/or alloying. First of all the feeding and distribution of the powder in the surface layer of the alloyed and remelted AlSi7Cu material. Very important issue is the determination of the laser treatment parameters, especially the powder feeding rate, laser power, and scan rate to achieve an enhancement of the layer hardness for ensuring this cast aluminium alloy from losing their working properties and to achieve the tool surface is more resistant to wear. The purpose of this work was also to determine technological and technical conditions comparison for the Al2O3 and SiC ceramic powder alloyed into the surface layer with High Power Diode Laser. There are presented also the investigation results about the determination of proper technical condition during the laser treatment, especially the laser head distance and shielding gas influence. The presented results concerns first of all the structure investigation of the obtained surface layer allowing it to achieve an enhanced hardness and wear resistance more resistant for work, special attention was devoted to monitoring of the layer morphology of the investigated material and on the particle occurred. Light (LM) and scanning electron microscopy (SEM) were used to characterize the microstructure of the obtained surface zones - the remelted zone (RZ) and heat affected zone (HAZ), the ceramic powder distribution and intermetallic phases occurred. A wide range of laser power values was applied and implicated with different laser scan rates. The powders in form of ceramic powders used for alloying were chosen with the particle size of ca. 60μm. This study was conducted to investigate the influence carbide and oxide powder addition on structure and mechanical properties as well the and structure changes occurred during the rapid solidification process. The investigation ensures to use laser treatment for alloying/feeding of ceramic powder particles into the surface of light alloys. The scientific reason of this work is the applying of High Power Diode Laser (HPDL) for improvement of aluminium`s mechanical properties, especially the surface hardness. As the main findings was determined that the obtained surface layer is homogeny without cracks and has a comparably higher hardness value compared to non-treated material. The surface hardness increases together with the applied laser power, the highest power applied gives the highest hardness value for the surface. Also the distribution of the ceramic particles is proper, but there a need for further modelling, because the hardness increases in general according to the laser power used so that the highest power applied gives to highest hardness value in the remelted layer, but for other powder amount or alloy the values should be determined separately, and more data would be necessary to create a model for the technique appliance. The practical purpose of this work is to analysis the impact and application possibility of HPDL laser surface treatment on the cast Al-Si-Cu alloys to deliver application possibilities for diverse branches of industry.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ewald, Simon, Fabian Kies, Steffen Hermsen, Maximilian Voshage, Christian Haase, and Johannes Henrich Schleifenbaum. "Rapid Alloy Development of Extremely High-Alloyed Metals Using Powder Blends in Laser Powder Bed Fusion." Materials 12, no. 10 (May 26, 2019): 1706. http://dx.doi.org/10.3390/ma12101706.

Повний текст джерела
Анотація:
The design of new alloys by and for metal additive manufacturing (AM) is an emerging field of research. Currently, pre-alloyed powders are used in metal AM, which are expensive and inflexible in terms of varying chemical composition. The present study describes the adaption of rapid alloy development in laser powder bed fusion (LPBF) by using elemental powder blends. This enables an agile and resource-efficient approach to designing and screening new alloys through fast generation of alloys with varying chemical compositions. This method was evaluated on the new and chemically complex materials group of multi-principal element alloys (MPEAs), also known as high-entropy alloys (HEAs). MPEAs constitute ideal candidates for the introduced methodology due to the large space for possible alloys. First, process parameters for LPBF with powder blends containing at least five different elemental powders were developed. Secondly, the influence of processing parameters and the resulting energy density input on the homogeneity of the manufactured parts were investigated. Microstructural characterization was carried out by optical microscopy, electron backscatter diffraction (EBSD), and energy-dispersive X-ray spectroscopy (EDS), while mechanical properties were evaluated using tensile testing. Finally, the applicability of powder blends in LPBF was demonstrated through the manufacture of geometrically complex lattice structures with energy absorption functionality.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yang, Fei, Brian Gabbitas, Ajit Pal Singh, Stella Raynova, Hui Yang Lu, and Barry Robinson. "Preparation of Titanium Alloy Parts by Powder Compact Extrusion of a Powder Mixture and Scaled up Manufacture." Key Engineering Materials 704 (August 2016): 75–84. http://dx.doi.org/10.4028/www.scientific.net/kem.704.75.

Повний текст джерела
Анотація:
Blended Elemental Powder Metallurgy (BE-PM) is a very attractive method for producing titanium alloys, which can be near-net shape formed with compositional freedom. However, a minimization of oxygen pick-up during processing into manufactured parts is a big challenge for powder metallurgy of titanium alloys. In this paper, different approaches for preparing titanium alloy parts by powder compact extrusion with 0.05-0.1wt.% of oxygen pick-up during manufacturing are discussed. The starting materials were a powder mixture of HDH titanium powder, other elemental powders and a master alloy powder. Different titanium alloys and composites, such as Ti-6Al-4V, Ti-4Al-4Sn-4Mo-0.5Si, Ti-5Al-5V-5Mo-3Cr, and Ti-5Al-5V-5Mo-3Cr-5vol%TiB, with different profiles such as round and rectangular bars, a wedge profile, wire and tubes have been successfully manufactured on a laboratory and pilot-plant scale. Furthermore, a possible route for scaling up the titanium processing capabilities in the University of Waikato has also been discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Povarova, K. B., O. A. Skachkov, N. K. Kazanskaya, A. A. Drozdov, A. E. Morozov, and O. N. Makarevich. "NiAl powder alloys: I. Production of NiAl powders." Russian Metallurgy (Metally) 2011, no. 9 (September 2011): 844–52. http://dx.doi.org/10.1134/s0036029511090199.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Radev, D. D. "Nickel-Containing Alloys for Medical Application Obtained by Methods of Mechanochemistry and Powder Metallurgy." ISRN Metallurgy 2012 (November 14, 2012): 1–6. http://dx.doi.org/10.5402/2012/464089.

Повний текст джерела
Анотація:
The methods of mechanochemistry, in combination with cold pressing and pressureless sintering, were used to obtain the most popular nickel-based and nickel-containing alloys used in dentistry and implantology. It was shown that the intense mechanical treatment of Ni, Ti, and Cr powders used as reagents, and the application of the above-mentioned simple powder metallurgical technique for densification allows obtaining NiCr and NiTi alloys with controlled structural properties. The nickel-based dental alloys obtained by mechanically activated sintering possess excellent mechanical, technological, and aesthetic properties. These alloys are suitable as dental restorative materials and for production of porcelain veneered constructions like crowns and bridges using the so-called metal-to-ceramic dental technique. It was shown that the method of mechanically assisted synthesis allows obtaining nanosized NiTi alloy at significantly lower temperature in comparison with the traditional high-temperature alloying. It was also shown that after 40 hours intense mechanical treatment of reagents, a direct synthesis of NiTi alloy proceeds. The product has excellent sinterability which enables to produce bodies with controlled porosity appropriate for application in implantology.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Znamenskii, L. G., A. N. Franchuk, and A. A. Yuzhakova. "Nanostructured Materials in Preparation Casting Alloys." Materials Science Forum 946 (February 2019): 668–72. http://dx.doi.org/10.4028/www.scientific.net/msf.946.668.

Повний текст джерела
Анотація:
The article deals with technologies of refining and inoculating casting alloys with the use of nanostructured diamond powder, as well as stimulation technique on molten metal including processing of the liquid alloy with nanosecond electromagnetic pulses. The developed method of cast iron inoculation allows to eliminate the flare and to increase the physical and mechanical properties of the castings through the grain refining and the decrease of chilling tendency during crystallization of the liquid alloy. Inoculating of aluminium alloys by high-melting particles of a nanostructured diamond powder leads to the grinding of structural constituents, including conditions for dispersing hardening intermetallics during postbaking of such castings. As a result, foundry and physicomechanical properties of castings are significantly improved.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Stráský, J., J. Kozlík, K. Bartha, D. Preisler, and T. Chráska. "Sintering of Ti-based biomedical alloys with increased oxygen content from elemental powders." MATEC Web of Conferences 321 (2020): 05010. http://dx.doi.org/10.1051/matecconf/202032105010.

Повний текст джерела
Анотація:
Revived interest for beta Ti alloys with increased oxygen content is motivated by the prospect of achieving material with low modulus and high strength simultaneously. Fine tuning of amount of oxygen and beta stabilizing elements is critical for achieving good mechanical properties. This study shows that powder metallurgy method of spark plasma sintering is capable of producing Ti-Nb-Zr-O alloys from elemental powders. This simple approach allows for quick sampling and production of several alloys with various chemical composition. Elemental powders were mixed with appropriate amount of titanium dioxide to achieve Ti-29Nb-7Zr-0.7O alloy. Sintering was performed at 1400 - 1500 °C for 15 – 30 minutes.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Powder alloys"

1

Caliskan, Necmettin Kaan. "Powder Metallurgy Of W-ni-cu Alloys." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/2/12607576/index.pdf.

Повний текст джерела
Анотація:
In the present study
the effects of the powder metallurgical parameters such as the mixing method, compaction pressure, initial tungsten (W) particle size, composition, sintering temperature and sintering time on the sintering behavior of selected high density W-Ni-Cu alloys were investigated. The alloys were produced through conventional powder metallurgy route of mixing, cold compaction and sintering. The total solute (Ni-Cu) content in the produced alloys was kept constant at 10 wt%, while the copper concentration of the solutes was varied from 2.5 wt% to 10 wt%. Mainly liquid phase sintering method was applied in the production of the alloys. The results of the study were based on the density measurements, microstructural characterizations including optical and scanning electron microscopy and mechanical characterizations including hardness measurements. The results showed that the nature of the mixing method applied in the preparation of the powder mixtures has a considerable effect on the final sintered state of W-Ni-Cu alloys. Within the experimental limits of the study, the compaction v pressure and initial W particle size did not seem to affect the densification behavior. It was found that the sintering behavior of W-Ni-Cu alloys investigated in this study was essentially dominated by the Ni content in the alloy and the sintering temperature. A high degree of densification was observed in these alloys with an increase in the Ni content and sintering temperature which was suggested to be due to an increase in the solubility and diffusivity of W in the binder matrix phase with an increase in these parameters, leading to an increase in the overall sintering kinetics. Based on the results obtained in the present study, a model explaining the kinetics of the diffusional processes governing the densification and coarsening behavior of W-Ni-Cu alloys was proposed.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Montgomery, Colt James. "The Effect of Alloys, Powder, and Overhanging Geometries in Laser Powder Bed Additive Manufacturing." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/1112.

Повний текст джерела
Анотація:
Additive manufacturing (AM) shows great promise for the manufacturing of next-generation engineering structures by enabling the production of engineered cellular structures, overhangs, and reducing waste. Melt-pool geometry prediction and control is critical for widespread implementation of laser powder bed processes due to speed and accuracy requirements. The process mapping approach used in previous work for different alloys and additive manufacturing processes is applied to the selective laser powder bed process for IN625 and 17-4 stainless steel alloys. The ability to predict the resulting steady state melt-pool geometry in terms of process parameters, specifically power and velocity, is explored in detail numerically and experimentally verified. A finite element model was created that simulates powder at the macro scale. This model correlates well with current experiments in showing that small amounts of powder relative to melt-pool depth have negligible effects on resulting geometry. Results indicate that the effect of powder may be negligible when comparing steady state widths of the no powder and one layer of powder cases. The work in this thesis investigates the effect of powder on the resulting steady-state melt-pool geometries for IN625 and 17-4 alloys. This analysis has been extended to the production of overhanging and cellular structures. The successful analysis will allow for better predictions and possible correction for cellular structure production issues as well as overhanging features.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Kun. "The microstructure and properties of hipped powder Ti alloys." Thesis, University of Birmingham, 2010. http://etheses.bham.ac.uk//id/eprint/856/.

Повний текст джерела
Анотація:
In the present study, the effect of hot isostatic pressing (HIPping) variables such as HIPping temperature, HIPping cycle and powder particle size, on the microstructure and mechanical properties of HIPped samples of two Ti alloys have been assessed. Powders of the most commonly used (α + β) alloy, Ti-6Al-4V and one specific beta alloy, Ti-25V-15Cr-2Al-0.2C wt% (burn resistant titanium alloy, BuRTi) were studied. The Ti-6Al-4V powder was made by the plasma rotating electrode process (PREP). BuRTi powders, which were made both by gas atomisation and by PREP were HIPped to investigate the influence of the initial structure of the powder on the microstructure and associated mechanical properties of the HIPped alloy. The PREP Ti-6Al-4V powder was shown to be fully martensitic in the as-atomised condition. The gas-atomised and PREP powders of BuRTi showed very different as-atomised structures, but in both cases the structure was, as expected single phase beta, with the carbon retained insolution. The individual particles of gas-atomised BuRTi powder were always polycrystalline, although there was a significant scatter in grain sizes within different particles. In contrast the individual particles in the PREP powder were either coarse grained polycrystals or single crystals. These differences led to significant differences in the microstructures and properties of HIPped samples. It was found that HIPping of Ti-6Al-4V samples resulted in the formation of equiaxed regions and lath-like microstructure. The small equiaxed regions are formed by recrystallisation which occurs at original particle boundaries where most of the deformation occurs during HIPping; the lath-like microstructure is formed by simply tempering the (less deformed) original alpha prime martensite within the central part of original particles. Among the three HIPping temperatures used, samples machined from powder HIPped at 930°C exhibited a better balance of properties than those HIPped at 880°C or 1020°C. The fatigue properties of samples HIPped at 930°C, made using different HIPping procedures were compared. It was found that samples which contain the as-HIPped surface, which were made using a new HIPping procedure, have better fatigue properties than samples with as-HIPped, machined or electro-polished surfaces which were produced by conventional HIPping . The properties of optimally HIPped Ti-6Al-4V samples are as good as or better than ingot-route samples. In the case of BuRTi the original single crystals or coarse grained polycrystals in the PREP powder are retained after HIPping and limited grain growth occurs in the gas-atomised samples. The tensile strength is comparable for the gas-atomised and PREP samples, but samples tested to failure showed a significant scatter in ductility (a larger scatter in the PREP powder samples) and all fracture surfaces contained large circular fracture initiation sites, with larger sites associated with lower ductility. Initiation occurs in the centre of these circular regions in large grains or in adjacent grains which have similar orientations and the failed region expands symmetrically in powder samples where no texture is expected. The fatigue properties of the PREP samples are much lower whereas the fatigue properties of the gas atomised samples are better than those of samples from ingot route. This behaviour is associated with obvious facetted failure sites in the PREP powder samples where it is suggested that the coarser microstructure has allowed persistent slip to occur leading to localised deformation and to premature failure. These observations are discussed in terms of the potential of net shape HIPping for the production of engineering components and in this context the fact that a new HIPping schedule has been developed during this study, where the fatigue properties of samples containing an as-HIPped surface are excellent, is very significant.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zeagler, Andrew. "On a Bimodal Distribution of Grain Size in Mechanically Alloyed Bulk Tungsten Heavy Alloys." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/77119.

Повний текст джерела
Анотація:
Elemental W and Ni powders were mechanically alloyed in a SPEX mill with WC grinding media for durations ranging from 5 to 50 hours, then compacted samples were sintered in hydrogen to generate bulk tungsten heavy alloys with 2, 4 and 6 wt.% Ni. Evidence of a bimodal grain size distribution was seen in X-ray diffractograms of sintered samples and confirmed by scanning electron microscopy. Grain sizes in the small-grained regions ranged from 200–600 nm; those in the large-grained regions ranged from 1–2 µm. Furthermore, the volume fraction of the small-grained region increased linearly as milling time increased. A slice from a sintered sample was prepared for examination by TEM, in which particles 30–100 nm in diameter were regularly observed on the boundaries of the 200–600 nm grains. EDS point analysis showed that the particles are WC. Therefore it is concluded that heterogeneously distributed contamination from the grinding media is continually incorporated during mechanical alloying and, during sintering, inhibits grain growth through Zener pinning. Densities of sintered samples increased as milling time increased to a maximum of almost 96% of the theoretical value. Density increases with respect to milling time were initially great but diminished upon further milling. While the samples with 4 and 6 wt.% Ni both approached 96% of the theoretical density value by 50 hours of milling, densities in the samples with 2 wt.% Ni were considerably lower. Thus it appears that the Ni that becomes incorporated into the bcc W structure during mechanical alloying activates W diffusion during sintering, though there is a limit to the amount of Ni that the W structure can accommodate. This is evinced in W lattice parameter values from the as-milled powders; while the lattice parameter drops considerable from 2 to 4 wt.% Ni, the difference between 4 and 6 wt.% Ni is much smaller and the Ni content limit surely falls between the two values. Otherwise-equivalent samples with added WC powder were also produced, but did not increase the volume fraction of the small-grained region – probably because the particles remained large and were homogeneously distributed.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Walde, Caitlin. "Thermal Processing of Powder Aluminum Alloys for Additive Manufacturing Applications." Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-dissertations/498.

Повний текст джерела
Анотація:
For additive manufacturing, research has shown that the chemistry and microstructural properties of the feedstock powder can significantly affect the properties of the consolidated material. Thermal treatment and recycling parameters for powders used in both solid and liquid state processes can further affect the microstructure and properties of the consolidated parts. Understanding the powder microstructure and effects of powder pre-treatment can aid in optimizing the properties of the final consolidated part. This research proposes a method for the characterization and optimization of powder pre-processing thermal parameters using aluminum alloy powder as examples. Light microscopy, electron microscopy, and hardness were used to evaluate each condition.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Igharo, M. "The characteristics of titanium-nickel alloys produced by powder technology." Thesis, Open University, 1987. http://oro.open.ac.uk/54610/.

Повний текст джерела
Анотація:
A range of titanium-nickel alloys near the equiatomic composition have been processed by cold compaction and vacuum sintering. The effects of compaction pressure, sintering temperature and powder particle size on dimensional changes and densities of sintered compacts are presented. The influence of composition and heat treatment on micro hardness and transformation temperature (Ms) is described. During sintering, anisotropy of dimensional change occurs, with expansion in the radial and contraction in the axial direction of cylindrical compacts. Greater porosity is found in the sintered samples compared to that in the as-pressed condition. It is proposed that these observations are connected with the dissimilar interdiffusion rates of Ti and Ni, the segregation of powder particles in the green compacts and the occurrence of a transient liquid phase during sintering above 955°C. Subsequent hot isostatic pressing of the sintered material allows densification to near full density. The transformation temperatures and hardness of TiNi alloys containing excess amounts of nickel (> 51 at -% Ni) are sensitive to cooling rate after solid state heat treatment, which is in contrast with samples of the exact equiatomic composition. This phenomenon has been related to the decrease in the homogeneity range of TiNi compound with temperature, resulting in either the formation of second phase precipitates in the slow cooled samples or the production of a supersaturated structure in water quenched material. The pressed and sintered specimens display a well defined shape memory behaviour. The extent of shape recovery observed, following deformation and heating through the reverse transformation range, is explained in terms of the volume of pores in the sintered compacts. Ribbons of equiatomic TiNi alloy have been rapidly solidified by the chill block melt spinning technique under an argon atmosphere. The effects of rapid solidification processing and subsequent heat treatments on the transformation behaviour are presented. The crystal structures at room temperature have been analysed by X-ray powder diffraction and thin foil transmission electron microscopy. Some of the ribbons have been chopped and ball milled to produce prealloyed particulate from which compacts have been prepared by cold compaction followed by vacuum sintering. The consolidation response of the prealloyed powder is compared with that of elemental blends. The grain size of the rapidly solidified material is found to beat least an order of magnitude smaller than those observed in wrought specimens. The s temperature of TiNi alloy is depressed by rapid solidification processing, thus allowing the R-phase to be observed in addition to the high temperature parent phase. This depression has been correlated with the fine grain structure of the spun ribbon. Sintering temperatures in excess of those employed for elemental blends are required for the prealloyed particles. This is related to the dominant effect of the alloy formation energy in elemental powders sample. However, while the volume of porosity increases with sintering temperature in elemental mixture compacts, densification takes place in the case of RS prealloyed specimens. In spite of the need for a higher sintering temperature for RS prealloyed compacts,the resulting grain size is smaller.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

LICAUSI, MARIE-PIERRE. "Analysis of tribocorrosion behavior of biomedical powder metallurgy titanium alloys." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/90448.

Повний текст джерела
Анотація:
Titanium and its alloys have been widely used in oral implantology due to their mechanical properties, corrosion resistance and biocompatibility. However, under in vivo conditions the implants are subjected to the tribocorrosion phenomenon, which consists in the degradation mechanisms due to the combined effect of wear and corrosion. This process contributes to limiting the life span of the implant and may generate clinical problems in patients as metallic ions are released. Another cause of dental implant failure may be the loosening of the implant as metal does not promote osseointegration. The powder-metallurgy process is a promising alternative to the traditional casting fabrication process of titanium alloys for bone implants design, as the porous structure would allow the bone to grow into the pores. This would result in a better fixation of the metal implant without the need of sandblasting /acid etching the surface. The present Doctoral thesis aims at describing the corrosion and tribocorrosion behavior of titanium alloys and their degradation mechanisms when processed by powder metallurgy, as a possible alternative to standard casting for dental implant application. For this, model Ti6Al4V titanium alloy and possible substitute Ti6Al7Nb alloy, where Vanadium has been replaced by Niobium in order to avoid cytotoxicity of the resulting biomaterial, have been studied. Electrochemical and tribo-electrochemical characterization of the biomaterials have been carried out under different physico-chemical conditions with biological relevance (in artificial saliva (AS) with different fluoride content, pH and oxidising conditions) which noticeably influences the degradation mechanisms of the studied materials. A new tribocorrosion technique that allows measuring the galvanic potential and current between the wear track (anode) and the passive material (cathode) through Zero-Resistance Ammetry (ZRA) has been also used to elucidate tribocorrosion mechanisms of the model Ti6Al4V cast alloy in AS. The ZRA technique for tribocorrosion allowed predicting the real depassivated area and therefore, the deviation of the wear mechanisms from Archard wear law at Open Circuit Potential (OCP). All alloys show passivity in artificial saliva although active dissolution occurs in presence of high fluoride concentration (1000 ppm) and acidic conditions, pH 3. The degradation mechanism of sintered alloys is mainly governed by the mechanical wear in AS and only determined by the active dissolution when fluorides are added to acidified artificial saliva (pH 3). Wear was found to be governed by the prevailing oxidizing condition (simulated by changes in the electrode potential). Ti6Al4V alloy processed by powder metallurgy showed a similar tribocorrosion resistance when compared to commercially available cast alloy suggesting that powder metallurgy is a promising fabrication process for implant applications. The influence of the alloying elements, Al and Nb, on the corrosion and tribocorrosion behavior of different titanium alloys, Ti6Al7Nb, Ti7Nb and Ti6Al has been studied and in all cases, the corrosion resistance is improved when compared to pure titanium. Wear damage was found to be critically affected by the ductility of the material, thus by the alloying element. Ti6Al7Nb showed a better corrosion resistance and similar tribocorrosion behaviour when compared to Ti6Al4V. The results of this thesis have shown that Ti6Al7Nb obtained by Powder metallurgy is a promising biomedical alloy for oral implants. Wear damage of sintered Ti alloys depends on the electrochemical potential and their tribocorrosion behaviour is critically affected by a high content of fluoride found in common daily dental health care products.
El titanio y sus aleaciones han sido utilizados en implantología oral debido a sus propiedades mecánicas, resistencia a la corrosión y biocompatibilidad. Sin embargo, bajo condiciones in vivo los implantes están sometidos al fenómeno de tribocorrosión, que consiste en mecanismos de degradación debido al efecto combinado de desgaste y corrosión. Este proceso disminuye la vida útil del implante y genera problemas clínicos a medida que se liberan iones metálicos. La pérdida de fijación del implante es otra causa de fracaso del implante, por falta de osteointegración. El proceso de pulvimetalurgia es una alternativa prometedora al proceso tradicional de fabricación (colada, forja) de aleaciones de titanio para el diseño de implantes óseos, ya que la estructura porosa permitiría que el hueso crezca dentro de los poros, dando lugar a una mejor fijación del implante. La presente tesis doctoral pretende describir el comportamiento frente a la corrosión y tribocorrosión de las aleaciones de titanio y sus mecanismos de degradación cuando se procesan mediante pulvimetalurgia, como una posible alternativa a la colada estándar para la aplicación de implantes dentales. Se ha estudiado el modelo de aleación de titanio Ti6Al4V y posible sustitución por la aleación Ti6Al7Nb, donde el Vanadio ha sido sustituido por Niobio para evitar la citotoxicidad del biomaterial. La caracterización electroquímica y tribo-electroquímica de los biomateriales se ha llevado a cabo en diferentes condiciones físico-químicas con relevancia biológica (en saliva artificial (AS) con fluoruro, pH y condiciones oxidantes) que influye notablemente en los mecanismos de degradación de los materiales estudiados. También se ha utilizado una nueva técnica de tribocorrosión que permite medir el potencial galvánico y la corriente entre la pista de desgaste (ánodo) y el material pasivo (cátodo) a través de la ametría de resistencia cero (Zero-Resistence Ammetry, ZRA) para elucidar los mecanismos de tribocorrosión de la aleación de forja Ti6Al4V en AS. La técnica ZRA para tribocorrosión permitió predecir el área real despasivada y, por tanto, la desviación de los mecanismos de desgaste de la ley de desgaste de Archard en OCP. Las aleaciones muestran pasividad en AS, aunque la disolución activa se produce en presencia de alta concentración de fluoruro (1000 ppm) y condiciones ácidas, pH 3. El mecanismo de degradación de las aleaciones sinterizadas se rige principalmente por el desgaste mecánico en AS y sólo determinado por la disolución activa cuando se añaden fluoruros a la saliva artificial acidificada (pH3). Se encontró que el desgaste se rige por la condición oxidante predominante (simulada por cambios en el potencial de electrodo). La aleación Ti6Al4V procesada por pulvimetalurgia mostró una resistencia similar a la tribocorrosión cuando se comparó con la aleación forjada comercial disponible, lo que sugiere que la pulimetalurgia es un prometedor proceso de fabricación para aplicaciones de implantes. Se ha estudiado la influencia de los elementos aleantes Al y Nb sobre el comportamiento de corrosión y tribocorrosión de diferentes aleaciones de titanio Ti6Al7Nb, Ti7Nb y Ti6Al y en todos los casos la resistencia a la corrosión se mejora en comparación con el titanio puro. El daño de desgaste está afectado críticamente por la ductilidad del material, por lo tanto, por el elemento de aleación. La aleación Ti6Al7Nb mostró una mejor resistencia a la corrosión y un comportamiento similar de tribocorrosión en comparación con la aleación Ti6Al4V. Los resultados de esta tesis han demostrado que el Ti6Al7Nb obtenido por pulvimetalurgia es una prometedora aleación biomédica para implantes orales. El deterioro del desgaste de las aleaciones de Ti sinterizadas depende del potencial electroquímico y su comportamiento a tribocorrosión se ve afectado de manera crítica por un alto contenido de ion flúor
El titani i els seus aliatges s'han utilitzat en l'implantologia oral degut a les seves propietats mecàniques, resistència a la corrosió i biocompatibilitat. No obstant això, en condicions in vivo els implants són sotmesos al fenomen de tribocorrosió, que consisteix en els mecanismes de degradació causats per l'efecte combinat de desgast i corrosió. Aquest procés contribueix a limitar la vida útil de l'implant i pot generar problemes clínics com l'alliberament d'ions metàl¿lics. Una altra causa de fracàs de l'implant dental pot ser la pèrdua de fixació de l'implant, ja que el metall no promou l'osteointegració. El procés de pulvimetal¿lúrgia és una alternativa prometedora al procés tradicional de fabricació (colada i forja) d'aliatges de titani per al disseny d'implants ossis, ja que l'estructura porosa permetria que l'os creixca dins dels porus. Això donaria lloc a una millor fixació de l'implant metàl¿lic. La present tesi doctoral pretén descriure el comportament enfront de la corrosió i tribocorrosió dels aliatges de titani i els seus mecanismes de degradació quan es processen mitjançant pulverimetal¿lúrgia, com una possible alternativa a la fabricació estàndard per forja per a l'aplicació d'implants dentals. Per a això, s'ha estudiat el model d'aliatge de titani Ti6Al4V i possible substitució per l'aliatge Ti6Al7Nb, on el vanadi ha estat substituït per niobi per evitar la citotoxicitat del biomaterial resultant. La caracterització electroquímica i tribo-electroquímica dels biomaterials s'ha dut a terme en diferents condicions fisicoquímiques amb rellevància biològica (en saliva artificial (AS) amb fluorur, pH i condicions oxidants) que influix notablement en els mecanismes de degradació dels materials estudiats. També s'ha utilitzat una nova tècnica de tribocorrosió que permet mesurar el potencial galvànic i el corrent entre la pista de desgast (ànode) i el material passiu (càtode) a través de la ametria de resistència zero (Zero-Resistence Ammetry, ZRA) per elucidar els mecanismes de tribocorrosió de l'aliatge de forja Ti6Al4V en AS. La tècnica ZRA per tribocorrosió va permetre predir l'àrea real despassivada i, per tant, la desviació dels mecanismes de desgast de la llei de desgast de Archard en OCP. Tots els aliatges mostren passivitat en la saliva artificial, tot i que la dissolució activa es produix en presència d'alta concentració de fluorur (1000 ppm) i condicions àcides, pH 3. El mecanisme de degradació dels aliatges sinteritzats es regix principalment pel desgast mecànic en AS i només determinat per la dissolució activa quan s'afegixen fluorurs a la saliva artificial acidificada (pH 3). Es va trobar que el desgast es regix per la condició oxidant predominant (simulada per canvis en el potencial d'elèctrode). L'aliatge Ti6Al4V processada per pulverimetal¿lúrgia va mostrar una resistència similar a la tribocorrosió quan es va comparar amb l'aliatge forjada comercial disponible, el que suggerix que la pulverimetal¿lúrgia és un prometedor procés de fabricació per a aplicacions d'implants. S'ha estudiat la influència dels elements d'aliatge Al i Nb sobre el comportament de corrosió i tribocorrosió de diferents aliatges de titani Ti6Al7Nb, Ti7Nb i Ti6Al i en tots els casos la resistència a la corrosió es millora en comparació amb el titani pur. Es va trobar que el dany de desgast està afectat críticament per la ductilitat del material, per tant, per l'element d'aliatge. L'aliatge Ti6Al7Nb va mostrar una millor resistència a la corrosió i un comportament similar de tribocorrosió en comparació amb l'aliatge Ti6Al4V. Els resultats d'aquesta tesi han demostrat que el Ti6Al7Nb obtingut per pulverimetal¿lúrgia és un prometedor aliatge biomèdic per a implants orals. El deteriorament del desgast dels aliatges de Ti sinteritzats depèn del potencial electroquímic i el seu comportament a tribocorrosió es veu afectat de manera crí
Licausi, M. (2017). Analysis of tribocorrosion behavior of biomedical powder metallurgy titanium alloys [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90448
TESIS
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Çelik, Emrah Güden Mustafa Thesis advisor. "Preparation and characterization of sintered Ti-6A1-4V powder compacts/." [s.l.]: [s.n.], 2004. http://library.iyte.edu.tr/tezler/master/malzemebilimivemuh/T000472.doc.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

ALMEIDA, FILHO AMERICO de. "Elaboração e estudos de recristalização de ligas alumínio-magnésio-tório e alumínio-magnésio-nióbio." reponame:Repositório Institucional do IPEN, 2005. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11345.

Повний текст джерела
Анотація:
Made available in DSpace on 2014-10-09T12:50:54Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T13:58:07Z (GMT). No. of bitstreams: 1 11108.pdf: 32426138 bytes, checksum: e0fd60a0b29703462d6537e5ea445860 (MD5)
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kent, Damon. "Age hardening of sintered Al-Cu-Mg-Si-Sn alloys /." St. Lucia, Qld, 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17893.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Powder alloys"

1

Upadhyaya, G. S. Manganese in powder metallurgy alloys. Paris: Manganese Centre, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fine, ME, and EA Starke, eds. Rapidly Solidified Powder Aluminum Alloys. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1986. http://dx.doi.org/10.1520/stp890-eb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhongguo you se jin shu gong ye xie hui, ed. Tong ji tong he jin fen mo yu zhi pin. Changsha Shi: Zhongnan da xue chu ban she, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ant͡siferov, V. N. Poroshkovye legirovannye stali. 2nd ed. Moskva: "Metallurgii͡a", 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Birt, Michael J. The fatigue response of high-strength powder route aluminium alloys. Birmingham: University of Birmingham, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ghambari, Mohammad. Powder metallurgy alloys for internal combustion engine valve seat inserts. Birmingham: University of Birmingham, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Powder Metallurgy Aluminum & Light Alloys for Automotive Applications Conference (2nd 2000 Troy, Mich.). Powder Metallurgy Aluminum & Light Alloys for Automotive Applications Conference: Proceedings of the Second International Conference on Powder Metallurgy Aluminum & Light Alloys for Automotive Applications. Princeton, N.J: Metal Powder Industries Federation, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tkachenko, T. V. Vduvanie poroshkoobraznykh materialov v zhelezouglerodistye rasplavy: Bibliograficheskai͡a︡ informat͡s︡ii͡a︡. Kiev: NTT͡S︡ "MORIS", 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

M, Barinov S., Ivanov V. S, and Rykalin N. N, eds. Struktura i razrushenie materialov iz poroshkov tugoplavkikh soedineniĭ. Moskva: Izd-vo "Nauka", 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

J, Hildeman Gregory, Koczak Michael J, Metallurgical Society of AIME, and Metallurgical Society of AIME. Fall Meeting, eds. High strength powder metallurgy aluminum alloys II: Proceedings of a TMS-AIME Symposium on "Aluminum Powder Metallurgy" held at the TMS-AIME Fall Meeting, Toronto, Canada, October 13-17 1985. Warrendale, PA: Metallurgical Society, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Powder alloys"

1

Robles Hernandez, Francisco C., Jose Martin Herrera Ramírez, and Robert Mackay. "Powder Metallurgy." In Al-Si Alloys, 83–110. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58380-8_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hummert, K., H. Müller, and C. Spiegelhauer. "Spray forming: Copper alloys." In Powder Metallurgy Data, 247–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/10689123_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hummert, K., H. Müller, and C. Spiegelhauer. "Spray forming: Aluminum alloys." In Powder Metallurgy Data, 258–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/10689123_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Herrera Ramirez, Jose Martin, Raul Perez Bustamante, Cesar Augusto Isaza Merino, and Ana Maria Arizmendi Morquecho. "Powder Metallurgy." In Unconventional Techniques for the Production of Light Alloys and Composites, 33–48. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48122-3_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Prashanth, K. G., K. B. Surreddi, S. Scudino, M. Samadi Khoshkhoo, Z. Wang, D. J. Sordelet, and J. Eckert. "Powder Metallurgy of High Strength Al90.4Gd4.4Ni4.3Co0.9 Gas-atomized Powder." In ICAA13: 13th International Conference on Aluminum Alloys, 1017–22. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118495292.ch152.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Carreño-Morelli, Efrain, Sebastien Martinerie, and J. Eric Bidaux. "Three-Dimensional Printing of Shape Memory Alloys." In Progress in Powder Metallurgy, 477–80. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-419-7.477.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hagiwara, Masuo, and Satoshi Emura. "Blended Elemental P/M Synthesis of Titanium Alloys and Titanium Alloy-Based Particulate Composites." In Progress in Powder Metallurgy, 777–80. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-419-7.777.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ordoñez, S., L. Carvajal, V. Martínez, C. Agurto, J. Marín, L. Olivares, and I. Iturriza. "Fracture Toughness of SiC-Cu Based Alloys Cermets." In Advanced Powder Technology IV, 350–56. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-984-9.350.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lin, Kuan Hong, Chen Siang Hsu, and Shun Tian Lin. "Microstructures of W-Mo-Ni-Fe Heavy Alloys." In Progress in Powder Metallurgy, 1273–76. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-419-7.1273.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Islam, Syed Humail, Xuan Hui Qu, Farid Akhtar, Pei Zhong Feng, and Xin Bo He. "Microstructure and Tensile Properties of Tungsten Heavy Alloys." In Progress in Powder Metallurgy, 561–64. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-419-7.561.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Powder alloys"

1

Bourguignon, L. L., D. P. Agarwal, R. M. German, S. Farooq, and S. T. Lin. "Powder metallurgy fabrication of palladium contact alloys." In Electrical Contacts, 1988., Proceedings of the Thirty Fourth Meeting of the IEEE Holm Conference on Electrical Contacts. IEEE, 1988. http://dx.doi.org/10.1109/holm.1988.16127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Henriques, Vinicius Andre Rodrigues, Jose Luis de Oliveira, Edevaldo Faria Diniz, and Thales Gorla Lemos. "Densification of titanium alloys obtained by powder metallurgy." In SAE Brasil 2010 Congress and Exhibit. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2010. http://dx.doi.org/10.4271/2010-36-0235.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

DuMola, R. J., and G. R. Heath. "New Developments in the Plasma Transferred Arc Process." In ITSC 1997, edited by C. C. Berndt. ASM International, 1997. http://dx.doi.org/10.31399/asm.cp.itsc1997p0427.

Повний текст джерела
Анотація:
Abstract The plasma transferred arc process continues to be the coating method of choice for the application of cobalt base alloys onto valve and valve trim. Although new applications have been developed over the years, the process remains largely associated with the application of high performance, highly alloyed powders for relatively small parts or small areas of large parts. The use of the plasma transferred arc process for large volume application has been limited by the robustness and performance characteristics of the equipment and the use of cobalt. A new plasma transferred arc system (power source, torch and process controller) has been developed which allows the application of powder metal alloys at deposition rates of up to 40 pounds per hour. In addition, there has been a development of new non-cobalt powder alloys with excellent mixed corrosion and wear resistance properties. These capabilities have rendered the process technically and economically viable for large and demanding applications in the mining, power utility and steel industries. The new PTA system and the recent developments in powder alloys will be discussed. Reference will be made to specific applications in target industries.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kurata, Yuji, Hitoshi Yokota, and Tetsuya Suzuki. "Development of Aluminum Alloy Coating for Advanced Nuclear Systems Using Lead Alloys." In ASME 2011 Small Modular Reactors Symposium. ASMEDC, 2011. http://dx.doi.org/10.1115/smr2011-6545.

Повний текст джерела
Анотація:
Small and medium reactors using lead alloys as coolant are one of the promising reactor concepts with improved safety because of their thermal-physical and chemical properties. This paper focuses on development of Al-alloy coating for nuclear systems using liquid lead-bismuth eutectic (LBE). Since corrosion attack becomes severe against structural steels at high temperatures in liquid LBE, it is necessary to improve corrosion resistance of steels. An Al-alloy coating method using Al, Ti and Fe powders, and laser beam heating has been developed. Main defects formed in an Al-powder-alloy coating process are surface defects and cracks. Conditions required to avoid these defects are employment of the laser beam scanning rate of 20 mm/min and adjustment of the Al concentration in the coating layer. According to results of the corrosion tests at 550°C in liquid LBE, the Al-alloy coating layers on 316SS protect severe corrosion attack such as grain boundary corrosion and LBE penetration observed in 316SS without coating. The good corrosion resistance of the Al-alloy coating is based on the thin Al-oxide film which can be regenerated in liquid LBE. From the viewpoints of the soundness of produced Al-powder-alloy coating layers and preservation of their corrosion resistance, it is estimated that the range of the adequate Al concentration in the coating layer is from 4 to 12 wt%.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mocarski, Stan, D. W. (Bill) Hall, Russell A. Chernenkoff, David A. Yeager, and Charles O. McHugh. "Master Alloys to Obtain Premixed Hardenable Powder Metal Steels." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1996. http://dx.doi.org/10.4271/960388.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pramono, Andika W., Lutviasari Nuraini, Riza Iskandar, Fadli Rohman, Ika Kartika, Franciska P. Lestari, Aprilia Erryani, and Daniela Zander. "Biodegradable Mg-Ca-Zn alloys synthesized by powder metallurgy." In PROCEEDINGS OF THE 4TH INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS (ISMM2020): Accelerating Research and Innovation on Metallurgy and Materials for Inclusive and Sustainable Industry. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0060715.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Henriques, Vinicius André Rodrigues, Elizeu do Nascimento Filho, João Guilherme Jacon de Salvo, and Eduardo Tavares Galvani. "Titanium Alloys Production by Powder Metallurgy for Automotive Applications." In SAE BRASIL 2021 Web Forum. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2022. http://dx.doi.org/10.4271/2021-36-0100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Schoeffel, Kevin C., and Yung C. Shin. "Laser Cladding of Two Hardfacing Alloys Onto Cylindrical Low Alloy Steel Substrates With a High Power Direct Diode Laser." In ASME 2007 International Manufacturing Science and Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/msec2007-31112.

Повний текст джерела
Анотація:
Blown-powder laser cladding is an efficient method for enhancing the surface properties of engineering components while preserving the properties of the base material. High power direct diode lasers (HPDDLs) offer wide beams with nearly uniform intensity distribution, allowing the deposition of wide clad tracks with flatter profiles than those produced with a Gaussian beam. In this work, a 4.0 kW HPDDL is used to perform blown-powder cladding on AISI 4140 and AISI 5150 steel shafts. The first part of the experiments concerns two-layer circumferential tracks created from two commonly used hardfacing alloys: Stellite 6 (Co-Cr alloy) and Nistelle 625 (Ni-Cr alloy). The effects of laser power and powder feed rate on the clad geometry are assessed. Increasing the powder feed rate and holding constant all other parameters decreases the track width-to-thickness aspect ratio. All tracks exhibit dendrite microstructures that are characteristic of powder-based clad tracks. The tracks exhibit no cracks or porosity. Energy dispersive X-ray (EDX) analysis reveals dilution of five percent or less between the clad and substrate materials. The second part of the experiments concerns overlapping of single-layer clad tracks in a continuous helical pattern on the substrate to form a layer that covers a large area. Clad layer thickness and inter-track porosity are measured to determine the optimum degree of overlap for producing a high-quality clad layer. The thickness of the resulting Stellite 6 and Nistelle 625 clad layers decreases as the overlap percentage decreases. No inter-track, interfacial, or bulk pores are present for any tests, comprising overlap percentages of 50% and lower.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

"Reduction of the substitutional disorder by heat treatments in Mn2-xCoxVAl Heusler alloys." In Powder Metallurgy and Advanced Materials. Materials Research Forum LLC, 2018. http://dx.doi.org/10.21741/9781945291999-25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chen, J., E. V. Abdulmenova, and S. N. Kulkov. "Powder sintering and dilatometric studies of Fe-Ni invar alloys." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PHYSICAL MESOMECHANICS. MATERIALS WITH MULTILEVEL HIERARCHICAL STRUCTURE AND INTELLIGENT MANUFACTURING TECHNOLOGY. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0034243.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Powder alloys"

1

McEvily, A. J. The Fatigue of Powder Metallurgy Alloys. Fort Belvoir, VA: Defense Technical Information Center, March 1985. http://dx.doi.org/10.21236/ada158591.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Schuh, Christopher A. Thermodynamic Stabilization of Powder-Route Nanocrystalline Tungsten Alloys. Fort Belvoir, VA: Defense Technical Information Center, April 2013. http://dx.doi.org/10.21236/ada578217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Turgut, Zafer, John C. Horwath, and Richard T. Fingers. Powder Metallurgy Processing of High-Strength FeCo Alloys (Preprint). Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada488099.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fraser, Hamish L. Rapid Solidification Processing and Powder Metallurgy of Al Alloys. Fort Belvoir, VA: Defense Technical Information Center, October 1986. http://dx.doi.org/10.21236/ada174553.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lazarus, L. J. Milling and Drilling Evaluation of Stainless Steel Powder Metallurgy Alloys. Office of Scientific and Technical Information (OSTI), December 2001. http://dx.doi.org/10.2172/789448.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jones, Tyrone, and Katsuyoshi Kondoh. Initial Evaluation of Advanced Powder Metallurgy Magnesium Alloys for Armor Development. Fort Belvoir, VA: Defense Technical Information Center, May 2009. http://dx.doi.org/10.21236/ada500566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Prichard, Paul D. The structure-property relationships of powder processed Fe-Al-Si alloys. Office of Scientific and Technical Information (OSTI), February 1998. http://dx.doi.org/10.2172/654137.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ritchie, Robert O. Fatigue Behavior of Long and Short Cracks in Wrought and Powder Aluminum Alloys. Fort Belvoir, VA: Defense Technical Information Center, November 1985. http://dx.doi.org/10.21236/ada166466.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tomova, Zlatina, Angelina Vlahova, Christo Kissov, Rada Kazakova, and Dimitar D. Radev. Corrosion Resistance and Biocompatibility of Multicomponent Ni- and Co ‑ Base Dental Alloys Obtained by Methods of Powder Metallurgy. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, July 2018. http://dx.doi.org/10.7546/crabs.2018.07.05.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jacob, Gregor. Prediction of solidification phases in Cr-Ni stainless steel alloys manufactured by laser based powder bed fusion process. Gaithersburg, MD: National Institute of Standards and Technology, March 2018. http://dx.doi.org/10.6028/nist.ams.100-14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії