Добірка наукової літератури з теми "Polysaccharides marins"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Polysaccharides marins".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Polysaccharides marins"

1

Arnosti, C., M. Wietz, T. Brinkhoff, J. H. Hehemann, D. Probandt, L. Zeugner, and R. Amann. "The Biogeochemistry of Marine Polysaccharides: Sources, Inventories, and Bacterial Drivers of the Carbohydrate Cycle." Annual Review of Marine Science 13, no. 1 (January 3, 2021): 81–108. http://dx.doi.org/10.1146/annurev-marine-032020-012810.

Повний текст джерела
Анотація:
Polysaccharides are major components of macroalgal and phytoplankton biomass and constitute a large fraction of the organic matter produced and degraded in the ocean. Until recently, however, our knowledge of marine polysaccharides was limited due to their great structural complexity, the correspondingly complicated enzymatic machinery used by microbial communities to degrade them, and a lack of readily applied means to isolate andcharacterize polysaccharides in detail. Advances in carbohydrate chemistry, bioinformatics, molecular ecology, and microbiology have led to new insights into the structures of polysaccharides, the means by which they are degraded by bacteria, and the ecology of polysaccharide production and decomposition. Here, we survey current knowledge, discuss recent advances, and present a new conceptual model linking polysaccharide structural complexity and abundance to microbially driven mechanisms of polysaccharide processing. We conclude by highlighting specific future research foci that will shed light on this central but poorly characterized component of the marine carbon cycle.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sun, Ying, Xiaoli Ma, and Hao Hu. "Marine Polysaccharides as a Versatile Biomass for the Construction of Nano Drug Delivery Systems." Marine Drugs 19, no. 6 (June 16, 2021): 345. http://dx.doi.org/10.3390/md19060345.

Повний текст джерела
Анотація:
Marine biomass is a treasure trove of materials. Marine polysaccharides have the characteristics of biocompatibility, biodegradability, non-toxicity, low cost, and abundance. An enormous variety of polysaccharides can be extracted from marine organisms such as algae, crustaceans, and microorganisms. The most studied marine polysaccharides include chitin, chitosan, alginates, hyaluronic acid, fucoidan, carrageenan, agarose, and Ulva. Marine polysaccharides have a wide range of applications in the field of biomedical materials, such as drug delivery, tissue engineering, wound dressings, and sensors. The drug delivery system (DDS) can comprehensively control the distribution of drugs in the organism in space, time, and dosage, thereby increasing the utilization efficiency of drugs, reducing costs, and reducing toxic side effects. The nano-drug delivery system (NDDS), due to its small size, can function at the subcellular level in vivo. The marine polysaccharide-based DDS combines the advantages of polysaccharide materials and nanotechnology, and is suitable as a carrier for different pharmaceutical preparations. This review summarizes the advantages and drawbacks of using marine polysaccharides to construct the NDDS and describes the preparation methods and modification strategies of marine polysaccharide-based nanocarriers.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jing, Xiaodong, Yanzhen Sun, Xiaoli Ma, and Hao Hu. "Marine polysaccharides: green and recyclable resources as wound dressings." Materials Chemistry Frontiers 5, no. 15 (2021): 5595–616. http://dx.doi.org/10.1039/d1qm00561h.

Повний текст джерела
Анотація:
This review summarizes the development and utilization of marine polysaccharides in wound dressings. The commonly used marine polysaccharides are classified, and the types of marine polysaccharide-based wound dressings are described in detail.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Li, Jingyuan, Hong Xiang, Qian Zhang, and Xiaoqing Miao. "Polysaccharide-Based Transdermal Drug Delivery." Pharmaceuticals 15, no. 5 (May 14, 2022): 602. http://dx.doi.org/10.3390/ph15050602.

Повний текст джерела
Анотація:
Materials derived from natural plants and animals have great potential for transdermal drug delivery. Polysaccharides are widely derived from marine, herbal, and microbial sources. Compared with synthetic polymers, polysaccharides have the advantages of non-toxicity and biodegradability, ease of modification, biocompatibility, targeting, and antibacterial properties. Currently, polysaccharide-based transdermal drug delivery vehicles, such as hydrogel, film, microneedle (MN), and tissue scaffolds are being developed. The addition of polysaccharides allows these vehicles to exhibit better-swelling properties, mechanical strength, tensile strength, etc. Due to the stratum corneum’s resistance, the transdermal drug delivery system cannot deliver drugs as efficiently as desired. The charge and hydration of polysaccharides allow them to react with the skin and promote drug penetration. In addition, polysaccharide-based nanotechnology enhances drug utilization efficiency. Various diseases are currently treated by polysaccharide-based transdermal drug delivery devices and exhibit promising futures. The most current knowledge on these excellent materials will be thoroughly discussed by reviewing polysaccharide-based transdermal drug delivery strategies.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhong, Qiwu, Bin Wei, Sijia Wang, Songze Ke, Jianwei Chen, Huawei Zhang, and Hong Wang. "The Antioxidant Activity of Polysaccharides Derived from Marine Organisms: An Overview." Marine Drugs 17, no. 12 (November 29, 2019): 674. http://dx.doi.org/10.3390/md17120674.

Повний текст джерела
Анотація:
Marine-derived antioxidant polysaccharides have aroused extensive attention because of their potential nutritional and therapeutic benefits. However, the comprehensive comparison of identified marine-derived antioxidant polysaccharides is still inaccessible, which would facilitate the discovery of more efficient antioxidants from marine organisms. Thus, this review summarizes the sources, chemical composition, structural characteristics, and antioxidant capacity of marine antioxidant polysaccharides, as well as their protective in vivo effects mediated by antioxidative stress reported in the last few years (2013–2019), and especially highlights the dominant role of marine algae as antioxidant polysaccharide source. In addition, the relationships between the chemical composition and structural characteristics of marine antioxidant polysaccharides with their antioxidant capacity were also discussed. The antioxidant activity was found to be determined by multiple factors, including molecular weight, monosaccharide composition, sulfate position and its degree.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Furusawa, Go, Nor Azura Azami, and Aik-Hong Teh. "Genes for degradation and utilization of uronic acid-containing polysaccharides of a marine bacterium Catenovulum sp. CCB-QB4." PeerJ 9 (March 9, 2021): e10929. http://dx.doi.org/10.7717/peerj.10929.

Повний текст джерела
Анотація:
Background Oligosaccharides from polysaccharides containing uronic acids are known to have many useful bioactivities. Thus, polysaccharide lyases (PLs) and glycoside hydrolases (GHs) involved in producing the oligosaccharides have attracted interest in both medical and industrial settings. The numerous polysaccharide lyases and glycoside hydrolases involved in producing the oligosaccharides were isolated from soil and marine microorganisms. Our previous report demonstrated that an agar-degrading bacterium, Catenovulum sp. CCB-QB4, isolated from a coastal area of Penang, Malaysia, possessed 183 glycoside hydrolases and 43 polysaccharide lyases in the genome. We expected that the strain might degrade and use uronic acid-containing polysaccharides as a carbon source, indicating that the strain has a potential for a source of novel genes for degrading the polysaccharides. Methods To confirm the expectation, the QB4 cells were cultured in artificial seawater media with uronic acid-containing polysaccharides, namely alginate, pectin (and saturated galacturonate), ulvan, and gellan gum, and the growth was observed. The genes involved in degradation and utilization of uronic acid-containing polysaccharides were explored in the QB4 genome using CAZy analysis and BlastP analysis. Results The QB4 cells were capable of using these polysaccharides as a carbon source, and especially, the cells exhibited a robust growth in the presence of alginate. 28 PLs and 22 GHs related to the degradation of these polysaccharides were found in the QB4 genome based on the CAZy database. Eleven polysaccharide lyases and 16 glycoside hydrolases contained lipobox motif, indicating that these enzymes play an important role in degrading the polysaccharides. Fourteen of 28 polysaccharide lyases were classified into ulvan lyase, and the QB4 genome possessed the most abundant ulvan lyase genes in the CAZy database. Besides, genes involved in uronic acid metabolisms were also present in the genome. These results were consistent with the cell growth. In the pectin metabolic pathway, the strain had genes for three different pathways. However, the growth experiment using saturated galacturonate exhibited that the strain can only use the pathway related to unsaturated galacturonate.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Carvalhal, Francisca, Ricardo Cristelo, Diana Resende, Madalena Pinto, Emília Sousa, and Marta Correia-da-Silva. "Antithrombotics from the Sea: Polysaccharides and Beyond." Marine Drugs 17, no. 3 (March 16, 2019): 170. http://dx.doi.org/10.3390/md17030170.

Повний текст джерела
Анотація:
Marine organisms exhibit some advantages as a renewable source of potential drugs, far beyond chemotherapics. Particularly, the number of marine natural products with antithrombotic activity has increased in the last few years, and reports show a wide diversity in scaffolds, beyond the polysaccharide framework. While there are several reviews highlighting the anticoagulant and antithrombotic activities of marine-derived sulfated polysaccharides, reports including other molecules are sparse. Therefore, the present paper provides an update of the recent progress in marine-derived sulfated polysaccharides and quotes other scaffolds that are being considered for investigation due to their antithrombotic effect.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shen, Shenghai, Xiaowen Chen, Zhewen Shen, and Hao Chen. "Marine Polysaccharides for Wound Dressings Application: An Overview." Pharmaceutics 13, no. 10 (October 12, 2021): 1666. http://dx.doi.org/10.3390/pharmaceutics13101666.

Повний текст джерела
Анотація:
Wound dressings have become a crucial treatment for wound healing due to their convenience, low cost, and prolonged wound management. As cutting-edge biomaterials, marine polysaccharides are divided from most marine organisms. It possesses various bioactivities, which allowing them to be processed into various forms of wound dressings. Therefore, a comprehensive understanding of the application of marine polysaccharides in wound dressings is particularly important for the studies of wound therapy. In this review, we first introduce the wound healing process and describe the characteristics of modern commonly used dressings. Then, the properties of various marine polysaccharides and their application in wound dressing development are outlined. Finally, strategies for developing and enhancing marine polysaccharide wound dressings are described, and an outlook of these dressings is given. The diverse bioactivities of marine polysaccharides including antibacterial, anti-inflammatory, haemostatic properties, etc., providing excellent wound management and accelerate wound healing. Meanwhile, these biomaterials have higher biocompatibility and biodegradability compared to synthetic ones. On the other hand, marine polysaccharides can be combined with copolymers and active substances to prepare various forms of dressings. Among them, emerging types of dressings such as nanofibers, smart hydrogels and injectable hydrogels are at the research frontier of their development. Therefore, marine polysaccharides are essential materials in wound dressings fabrication and have a promising future.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Souza, Paulo R., Ariel C. de Oliveira, Bruno H. Vilsinski, Matt J. Kipper, and Alessandro F. Martins. "Polysaccharide-Based Materials Created by Physical Processes: From Preparation to Biomedical Applications." Pharmaceutics 13, no. 5 (April 27, 2021): 621. http://dx.doi.org/10.3390/pharmaceutics13050621.

Повний текст джерела
Анотація:
Polysaccharide-based materials created by physical processes have received considerable attention for biomedical applications. These structures are often made by associating charged polyelectrolytes in aqueous solutions, avoiding toxic chemistries (crosslinking agents). We review the principal polysaccharides (glycosaminoglycans, marine polysaccharides, and derivatives) containing ionizable groups in their structures and cellulose (neutral polysaccharide). Physical materials with high stability in aqueous media can be developed depending on the selected strategy. We review strategies, including coacervation, ionotropic gelation, electrospinning, layer-by-layer coating, gelation of polymer blends, solvent evaporation, and freezing–thawing methods, that create polysaccharide-based assemblies via in situ (one-step) methods for biomedical applications. We focus on materials used for growth factor (GFs) delivery, scaffolds, antimicrobial coatings, and wound dressings.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nešić, Aleksandra, Gustavo Cabrera-Barjas, Suzana Dimitrijević-Branković, Sladjana Davidović, Neda Radovanović, and Cédric Delattre. "Prospect of Polysaccharide-Based Materials as Advanced Food Packaging." Molecules 25, no. 1 (December 29, 2019): 135. http://dx.doi.org/10.3390/molecules25010135.

Повний текст джерела
Анотація:
The use of polysaccharide-based materials presents an eco-friendly technological solution, by reducing dependence on fossil resources while reducing a product’s carbon footprint, when compared to conventional plastic packaging materials. This review discusses the potential of polysaccharides as a raw material to produce multifunctional materials for food packaging applications. The covered areas include the recent innovations and properties of the polysaccharide-based materials. Emphasis is given to hemicelluloses, marine polysaccharides, and bacterial exopolysaccharides and their potential application in the latest trends of food packaging materials, including edible coatings, intelligent films, and thermo-insulated aerogel packaging.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Polysaccharides marins"

1

Lelchat, Florian. "Enzymes de dépolymérisation d'exopolysaccharides bactériens marins." Thesis, Brest, 2014. http://www.theses.fr/2014BRES0070/document.

Повний текст джерела
Анотація:
Les exopolysaccharides (EPS) sont des biopolymères pouvant être synthétisés par les Eucaryotes, lesArchées et les Procaryotes. Au niveau bactérien les EPS peuvent être impliqués dans la constitution du biofilm (phénomène de biofouling) lors de la colonisation de nouveaux milieux. Ces biopolymères ont des propriétés physico-chimiques et biologiques spécifiques et innovantes à haut potentiel biotechnologique (agroalimentaire, santé, cosmétique, ingénierie environnementale ...). A l'opposé, leurs rôles écologiques lors de l'établissement de biofilms de souches potentiellement pathogènes peuvent rendre leur éradication compliquée.Les processus de dépolymérisation par voie enzymatique sont nécessaires pour réaliser l'élucidation structurale fine des EPS complexes, pour la production de dérivés bio-actifs calibrés à faible poids moléculaire ou pour empêcher la formation de biofilm. La mise en évidence de ces phénomènes enzymatiques sur des microorganismes modèles peut également permettre de mieux cerner les flux de matière au sein de certains compartiments biologiques en particulier en milieu marin. Néanmoins la complexité et grande diversité de structures des EPS rendent la recherche d’enzymes de dépolymérisation spécifiques difficile.Deux stratégies ont été employées pour trouver des sources d'enzymes.1. La voie bactérienne via l’utilisation de bactéries marines productrices d’EPS.2. La voie virale par la recherche de polysaccharidases de bactériophages marins. En plus d’EPS marins déjà connus, de nouveaux substrats (EPS) originaux ont été produits et caractérisés à partir de batéries marines d’intérêts biotechnologiques et/ou écologiques pour les besoins du projet. Un criblage enzymatique sur 11 souches bactériennes du genre Alteromonas a permis de mettre en évidence que 7 d’entre elles présentaient une activité de dépolymérisation endogène vis-à-vis de leur propre EPS. Une bioprospection a été réalisée afin de constituer une virothèque à partir d’hôtes bactériens producteurs d’EPS dans le but de fournir une source de Cazymes virales potentielles. Sur 33 bactériophages, 10 ont été sélectionnés pour leur capacité à rester infectieux lorsque leurs hôtes synthétisent des EPS. Finalement un système hôte/virus a été sélectionné.Les 5 virus (appelés Carin-1 à 5) infectant Cobetia marina DSMZ 4741 ont été étudiés au niveau de leurs traits de vie. Les capacités de dépolymérisation de Carin-1 et Carin-5 sur l'EPS L6 ont été explorés plus en détail. En parallèle, la structure chimique de l'EPS L6 a été intégralement élucidée
Exopolysaccharides (EPSs) are a class of biopolymer synthesized by Eukarya, Archea and Procarya.Bacterial EPSs are involved in biofilm establishment and biofouling phenomenon. These polymers have physicochemical and biological properties suitable with biotechnological valorization. At the opposite, their involvment in biofouling of pathogenic strains can be problematic.Enzymatic depolymerization process are necessary for EPSs structural elucidation, Bioactive oligosaccharides production or to disrupt polysaccharidic biofilms. The highlight of enzymatic phenomenon can help to understand biogeochimical process in the ocean. Nevertheless the important structural diversity as well as their complexity make the sourcing of specific enzymes difficult.Two strategies were used to find enzymes.1. The bacterial way by using EPS-producing marine strains2. The viral way, with marine bacteriophages.For the need of the study, several EPS-substrates were produced and characterized. The majority of them were totally new. An enzymatic screening on 11 marine Alteromonas strains shown that 6 were able to depolymerize their EPS in an endogenous way. A bioprospection was realized to isolates marine bacteriophages with potential viral Cazymes. 10 out of 33 phages were selectionned for their ability to be infectious with their hosts in EPS production induced. Finally, a host/virus system was chosen. The bacteriophages infecting Cobetia marina DSMZ 4741 (named Carin-1 to 5) were studied. The polysaccharidase activities of Carin-1 and Carin-5 on the L6 EPS were studied more deeply. In parallel, the complete structural elucidation of the L6 EPS was realized
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tsotetzo, Honore. "Valorisation des polysaccharides marins : élaboration de nanocomposites et synthèse de graphène dopé." Thesis, Normandie, 2017. http://www.theses.fr/2017NORMC216/document.

Повний текст джерела
Анотація:
La chimie se doit de développer de nouveaux axes de recherche à la fois respectueux de la nature et s’inscrivant dans une démarche globale éco-compatible. Dans ce contexte, l’utilisation des polymères naturels, notamment les polysaccharides, permet de synthétiser des matériaux innovants des applications dans de nombreux secteurs industriels. L’objectif de ce travail est de valoriser les polysaccharides marins tels que le chitosane et le κ-carraghénane à travers l’exploration de deux axes de recherches. Le premier axe est consacré à l’amélioration des propriétés mécaniques, électriques et de sorption de biopolymères par l’incorporation de graphène. Un protocole original a permis de disperser très efficacement du graphène au sein du chitosane pour la conception de films et d’aérogels nanocomposites. L’analyse des films a mis en évidence une amélioration simultanée de la rigidité, de la résistance, et de l’élongation à rupture, pour de faibles teneurs en graphène. Le seuil de percolation permettant l’obtention d’une conductivité électrique n’a pas été atteint aux faibles taux de charges utilisés. L’étude des aérogels chitosane/graphène a, quant à elle, révélé que l’incorporation de graphène aux aérogels de chitosane permettait d’augmenter leur capacité d’adsorption de colorants.Le deuxième axe concerne l’introduction d’hétéroatomes dans la structure carbonée du graphène. Pour obtenir du graphène dopé en azote et en soufre, des aérogels de polysaccharides marins ont été synthétisés, puis pyrolysés dans des conditions contrôlées. Les aérogels carbonés obtenus sont ensuite exfoliés dans l’eau par l’utilisation d’ultrasons. Les groupements amine du chitosane ont permis d’obtenir avec un haut rendement un graphène dopé avec un taux de 5 % d’azote. De plus, il a été possible de moduler de 5 % à 11 %ce taux d’azote par l’emploi de liquide ionique tel que le [EMIm][dca]. De façon similaire, les groupements sulfate du κ-carraghénane ont permis de doper du graphène en soufre avec un taux d’atomes de soufre de 1,5 %
The chemistry have to develop new research axis both respectful of the nature and joining an eco-compatible global approach. In this context, use natural polysaccharides allow to synthesize innovative materials for applications in many industries fields. The aim of this work is add value to the marine polysaccharide such as chitosan and κ-carrageenan through two research axis.The first axis is consecrated to increase the mechanical, electrical and color sorption properties by introduce graphene filler in biopolymer matrice. An easy and original protocol allowed scattering very effectively graphene in chitosan to design films and aerogels nanocomposites. The analyse of nanocomposite films show an improvement of stiffness, tensile strength and elongation break at the same time with low content of graphene. However, the percolation threshold was not reach to bring electrics properties in films. The study of chitosan/graphene aerogel reveals that graphene allows an increase of color agent adsorbing power such as eosin Y compared with aerogels chitosan.The second axis concerns the introduction of heteroatom in graphene carbon structure. To obtain nitrogen-doped graphene and sulphur-doped graphene, it requires the synthesis of marine polysaccharide aerogel, and their pyrolysis under controlled conditions. The carbon aerogels are exfoliated in water with sonification. Amine groups in chitosan allowed through this process a nitrogen-doped graphene with high yield and nitrogen rate of 5 %. Moreover, it was possible to modulate nitrogen rate with ionic liquid such as [EMIm][dca]. So the nitrogen atom rate increases from 5% to 11%. In similar way, sulfate group in κ-carrageenan gives sulphur-doped graphene with sulphur rate of 1,5%
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jouannin, Claire. "Apport des polysaccharides marins pour la catalyse en phase liquide ionique supportée." Caen, 2012. http://www.theses.fr/2012CAEN2035.

Повний текст джерела
Анотація:
L’objectif de cette thèse est d’évaluer l’apport des polysaccharides marins pour la catalyse en phase liquide ionique supportée. Les alginates et le chitosane sont les deux polysaccharides à partir desquels des supports de porosité et de fonctionnalités variées ont été préparés. Deux méthodes d’immobilisation de liquide ionique sur les supports biopolymères ont été utilisées : par adsorption et par confinement. Les catalyseurs en phase liquide ionique supportée sur biopolymère (biopolymère-SILCs) ont été élaborés sous des mises en forme variées de billes, mousses cylindriques et disques, pour des applications en systèmes de type batch ainsi qu’en flux continu. Les propriétés texturales, les charges en liquide ionique et en complexe organométallique ainsi que la stabilité des biopolymère-SILCs ont été déterminées; et les espèces catalytiques actives identifiées. Les performances et les limitations des biopolymère-SILCs ont ensuite été évaluées dans deux réactions modèles pallado-catalysées : la substitution allylique de Tsuji-Trost et l’hydrogénation de composés nitrés aromatiques, cette dernière réaction ayant été réalisée en milieu aqueux. Ces études mettent en évidence l’influence des paramètres d’élaboration des biopolymère-SILCs sur leur structure et sur leur activité catalytique
The objective of this thesis is to evaluate the contribution of marine polysaccharides to the supported ionic liquid catalysis. Alginates and chitosan are the two polysaccharides used to prepare supports with different porosity and functionality. The immobilization of the ionic liquid phase onto the biopolymer supports was performed by two ways: by adsorption and by confinement. Biopolymer supported ionic liquid catalysts (biopolymer-SILCs) were prepared in the form of beads, cylindrical scaffolds and discs, for applications in batch systems as well as in continuous flow. The textural properties, the stability, the ionic liquid and catalyst loadings of the biopolymer-SILCs were determined and the catalytic species identified. The performance and limitations of the biopolymer-SILCs were then evaluated in two model pallado-catalyzed reactions: the allylic substitution of Tsuji-Trost and the hydrogenation of aromatic nitro compounds, this last reaction being performed in aqueous medium. These studies highlight the influence of processing parameters of biopolymer-SILCs on their structure and on their catalytic activity
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jabeen, Mehwish. "Anti-viral activity of marine polysaccharides against respiratory viruses." Thesis, Lyon, 2021. http://www.theses.fr/2021LYSE1325.

Повний текст джерела
Анотація:
Les infections respiratoires virales sont une des principales causes de morbidité et de mortalité dans le monde. Les infections virales du tractus respiratoire (vRTIs) sont dues à différentes familles de virus telles que les picornavirus, les coronavirus (CoV), les ortho- and paramyxovirus, les adénovirus et les herpesvirus. Les vRTIs comptent parmi les maladies les plus fréquentes dans le système de soin médical. Bien que la plupart des symptômes associés à ces virus se résolvent spontanément et ne sont pas létaux, dans certains cas, ils peuvent être associés à des complications menaçant le pronostic vital qui nécessite une hospitalisation et induit de lourdes charges économiques et sociales. Malgré des avancements majeurs dans le domaine de la virologie, il n’existe toujours pas de traitement spécifique ciblé pour la plupart des infections respiratoires virales. Les traitements symptomatiques ou antiviraux restent les outils majeurs contre les vRTIs car il n’existe pas de vaccins efficaces disponible contre la plupart des virus respiratoires, sauf contre la grippe, l’adénovirus et plus récemment contre le SARS-CoV-2. Cependant, le prix et la rapidité de disponibilité de ces vaccins selon la saisonnalité est globalement questionnable. Les traitements approuvés contre les virus respiratoires reposent exclusivement sur des médicaments synthétiques qui ont de potentiels effets secondaires et entraînent l’émergence de résistances virales. Dû au manque de traitement spécifique et de vaccins efficaces, la découverte d’alternatives naturelles, telle que les polysaccharides marins, est indispensable. Les polysaccharides marins sont reconnus dans la littérature scientifique pour leurs nombreuses propriétés antivirales, anti oxydantes, anti tumorales ou immunomodulatrices par exemple. Fait intéressant, les polysaccharides sulfatés (SPS) ont montré des activités antivirales significatives contre différent virus. Leur potentiel antiviral varié est attribué à leur diversité de structures. En dépit de la grande diversité d’algues marines existantes, les SPS ont un mécanisme d’action plutôt similaires basé sur leurs régions anioniques. Ainsi, ils exercent leur propriétés virucides en prévenant l’infection virale. Cependant, cette activité est très dépendante des caractéristiques structurales des SPS qui peuvent également agir à d’autres étapes du cycle viral. Récemment, plusieurs SPS ont montré des activités antivirales prometteuses contre le SARS-CoV-2. Parmi les SPS issus d’algues marines, le fucoidan et le carraghénane sont les polysaccharides à visée antivirale les plus étudiés dû à leur efficacité antivirale à large spectre. L’objectif de ces travaux de these a été d’évaluer l’efficacité antivirale de polysaccharides d’origine marine contre des virus respiratoires. Pour cela, l’activité antivirale de fucoidans de différentes sources ont été évaluées in vitro contre le HRV, le virus de la grippe et le SARS-CoV-2. L’efficacité d’inhibition virale a été quantifiée par TCID50 (50 % Tissue Culture Infectious Dose) et la détermination du mécanisme d’action a été réalisée par modulation de la séquence d’ajout des fucoidans dans le processus d’infection (time of addition assays). Les activités antivirales des polysaccharides testés ont été comparées à des contrôles naturels (Carragelose) et synthétiques (pleconaril, ribavirin). Aucune activité antivirale n’a été mise en évidence contre le HRV (virus non-enveloppé), alors qu’une activité antivirale modérée à forte a été quantifiée contre le virus de la grippe et le SARS-CoV-2 (virus enveloppés). Ces résultats pourraient mettre en avant une plus grande affinité des SPS marins pour les virus enveloppés. De plus, Une activité antivirale plus élevée a été montrée dans les cas des polysaccharides les plus purs, indiquant l’importance du processus de purification et de caractérisation des extraits naturels avant de pouvoir les considérer comme candidats antiviraux d’origine naturelle
Respiratory viral infections are one of the leading causes of morbidilty and mortality worldwide. Viral respiratory tract infections (vRTIs) can be due to several families of viruses such as picornaviruses, coronaviruses (CoV), ortho- and paramyxoviruses, adenoviruses and herpesviruses. vRTIs are among the most common diseases in medical health care. Although most of the symptoms associated with these viruses are self-resolving and non-fatal, they have a huge impact on the quality of life and productivity. In certain cases, they are associated with various life threatening complications that consequently result in hospitalization and associated financial and social burden. Despite massive advancements in virology field, no specific treatment exists for most respiratory viral infections. Symptomatic therapies or anti-viral medications are still the major tools to treat vRTIs as vaccines are currently not yet available for most of the respiratory viruses except against influenza (limited efficacy), adenovirus (restricted use) and more recently, against SARS-CoV-2. However, cost effective production and timely availablity of these vaccines globally is still questionable. Approved therapies against respiratory viruses rely almost exclusively on synthetic drugs that have potential side effects, restricting their use. Besides, these anti-viral agents lack targeted therapeutic activity towards respiratory viruses. and trigger the emergence of viral resistance, that is a major public health problem. Due to the lack of optimal medication and effective vaccines, the search for alternative natural therapies, such as sulfated marine polysaccharides, is indispensable. Marine polysaccharides are very well known in the litrature for their numerous benefits including anti-viral, antioxidant, antitumor, immunomodulatory, vaccine preparation, cell/ gene therapy, drug delivery to biomaterial synthesis. Interestingly, sulphated polysaccharides (SPS) have shown significant anti-viral activities against different viruses. Their distinctive anti-viral potential is attributed to their diverse structure. Despite the large diveristy of marine algae, the SPS mainly act through a similar mechanism: the anionic regions of polysaccharides interact with viral glycoproteins to prevent their attachment to cell membranes. Therefore, they exert virustatic properties by preventing viral infection. However, this activity is dependant on the structural features of SPS which could accordingly act at different stages of viral cycle. Recently, various SPS have shown promising activity agaisnt SARS-CoV-2 and are in further assessment for their use as natural anti-virals. Among the SPS from marine algae, mainly fucoidan and carrageenan have gained huge importance as anti-virals due to their broad spectrum anti-viral efficacy. The objective of this thesis was to evaluate the anti-viral efficacy of marine polysaccharides against respiratory viruses. For this purpose, the anti-viral activity of fucoidan from different sources was assessed against HRV, IV as well as SARS-CoV-2 through in-vitro assays. The viral inhibition efficacy was assessed mainly by Tissue Culture Infectious Dose (TCID50) inhibition assay and the mechanism of inhibition was determined through time of addition assays (TOA). The anti-viral activity of tested polysaccharides was compared with natural (Carragelose) and synthetic anti-virals (pleconaril, ribavarin). No anti-viral activity was seen in case of HRV (non-enveloped virus) whereas, important anti-viral activity was seen against IV and SARS-CoV-2 (enveloped viruses). These results probably highlighted the greater sensitivity of polyanionic marine polysaccharides towards the enveloped viruses. Furthermore, better anti-viral activity was seen in case of pure polysaccharide, highlighting the importance of marine extract purification and characterization before considering their use as drug of natural origin
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mocaër, Pierre-Yves. "From gene to ecosystem : an integrative study of polysaccharide depolymerases bound to marine viruses." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS553.

Повний текст джерела
Анотація:
Les virus constituent une force motrice pour le fonctionnement des écosystèmes marins. En tuant leur hôte par lyse cellulaire, ils influencent la diversité microbienne et les cycles biogéochimiques globaux. Dans cette étude, je me suis intéressé à l’implication des polysaccharide dépolymérases (ou EPS dépolymérases) associées aux virus de bactéries (phages) dans la régulation des activités virales et leurs conséquences sur la biogéochimie océanique. Ces enzymes confèrent aux phages la faculté de dégrader les exopolysaccharides (EPS) excrétés par leurs hôtes avant d’atteindre leurs récepteurs membranaires. Nous avons étudié de façon intégrative, du gène à l’écosystème, les EPS dépolymérases associées à 2 phages modèles (Podoviridae). Une combinaison d’approches a révélé que les gènes codant pour ces activités sont génétiquement éloignés des séquences connues. Une étude approfondie de l’une de ces enzymes (Dpo31, associée au phage de Cobetia marina) suggère son appartenance aux glycoside hydrolases et révèle une architecture moléculaire nouvelle. De plus, une expérience en microcosme a montré que les dépolymérases virales réduisent la biodisponibilité des EPS et participent à la production de matière réfractaire dans le milieu naturel. Compte tenu de la prédominance des virus dans l’océan, ce processus jusqu'ici négligé pourrait avoir des implications biogéochimiques importantes
Viruses represent a driving force for the functioning and evolution of marine ecosystems. Through the lysis of their hosts, viruses profoundly influence the diversity and biogeochemistry of the ocean. In this study, I investigated the implications of polysaccharide depolymerases (or EPS depolymerases) associated to bacterial viruses (phages) in the regulation of viral activities and their consequences on ocean biogeochemistry. They confer to phages the ability to degrade the exopolysaccharides (EPS) excreted by their hosts in order to access their membrane receptors. Here, we studied integratively, from gene to ecosystem, the EPS depolymerases associated to 2 model phages (Podoviridae). A combination of approaches revealed that the genes encoding these activities are genetically distant from known sequences. An in-depth study showed that the enzyme Dpo31 (associated to Cobetia marina phage) is a glycoside hydrolases and revealed a novel molecular architecture. In the ocean, bacterial EPS constitute a significant pool of dissolved organic carbon. A microcosm experiment showed that viral depolymerases reduce the bioavailability of EPS and contribute to the production of refractory matter in the natural environment. Considering the predominance of viruses in the sea, this, so far, neglected process could have important implications for the functioning of the ocean
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Petersen, Kirsten [Verfasser]. "Emulsionsstabilisierung durch marine Polysaccharide / Kirsten Petersen." Kiel : Universitätsbibliothek Kiel, 2013. http://d-nb.info/1045604062/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Labourel, Aurore. "Etudes structurales et fonctionnelles d’enzymes du métabolisme de la laminarine de deux organismes modèles émergeants, l’algue brune Ectocarpus siliculosus et la bactérie marine Zobellia galactanivorans." Paris 6, 2013. http://www.theses.fr/2013PA066728.

Повний текст джерела
Анотація:
La laminarine est le polysaccharide de stockage des algues brunes. Récemment, Ectocarpus siliculosus a été développée comme modèle génétique et génomique des algues brunes. L’analyse de son génome a mis en évidence des gènes candidats impliqués dans le métabolisme central de la laminarine. Afin de réaliser des études fonctionnelles, une stratégie de clonage en moyen débit a été appliquée sur ces différents gènes. Les algues brunes étant une biomasse importante, la laminarine est une source de carbone considérable pour les bactéries marines hétérotrophes. La bactérie marine Zobellia galactanivorans devient actuellement un modèle pour la bioconversion des polysaccharides d’algues. L’annotation de son génome a révélé la présence de 5 laminarinases putatives présentant des architectures modulaires variées. L‘expression hétérologue et la purification des modules catalytiques ZgLamAGH16, ZgLamCGH16, ainsi que celle du CBM6 associé à ZgLamCGH16, ont permis leur caractérisation biochimique. Des mutants inactifs des modules catalytiques ont été obtenus par mutagénèse dirigée, permettant l’obtention de complexes enzymes-substrats. C’est ainsi que la structure 3D de ZgLamAGH16 contient des oligosaccharides de substrats naturels tandis que celle de ZglamCGH16 a été obtenue en complexe avec un thio-hexasaccharide de β-1,3-glucane. L’obtention de la structure de ZgLamCCBM6 associée à des expériences de microcalorimétrie suggère que ce CBM6 peut fixer la laminarine dans ses deux sites de fixation simultanément. L’ensemble de ces résultats sont discutés et intégrés dans un contexte biologique et évolutif
Laminarin is a storage polysaccharide found in brown algae. Ectocarpus siliculosus has been recently established as a genetic and genomic model for brown algae. The analysis of its genome sequence revealed some candidate genes involved in the central metabolism of laminarin. In order to go onto functional studies, I have applied a medium throughput cloning strategy on these genes. Brown algae being an important coastal biomass, laminarin is also a significant carbon source for marine heterotrophic bacteria. The marine bacterium Zobellia galactanivorans is currently being established as a model bacterium for the bioconversion of algal polysaccharides. Its genome sequence encodes 5 putative laminarinases displaying various modular architectures. The heterologous expression and the purification of the catalytic modules ZgLamAGH16, ZgLamCGH16 and those of the carbohydrate-binding module CBM6 appended to ZgLamCCBM6, have enabled their biochemical characterization. Inactive mutants of the catalytic modules were obtained by site directed mutagenesis. They were used to generate enzyme-substrate complexes. The 3D-structure of ZgLamAGH16 was solved by X-ray crystallography, and oligoglucans of natural substrates were present in the catalytic site. ZgLamCGH16 was obtained in complex with a thio-hexasaccharide of β-1,3-glucan. The ZgLamCCBM6 structure associated with microcalorimetry experiments suggests that this CBM6 can bind laminarin simultaneously in its two binding clefts. The whole results are discussed and integrated in a biologic and evolutive context
Стилі APA, Harvard, Vancouver, ISO та ін.
8

January, Grant Garren. "Bioprospecting for bioactive polysaccharides from marine algae endemic to South Africa." University of the Western Cape, 2016. http://hdl.handle.net/11394/5322.

Повний текст джерела
Анотація:
>Magister Scientiae - MSc
Fucoidan is a marine-derived sulphated polysaccharide with bioactive properties ideal for the food, chemical and pharmaceutical industries. The polysaccharide consists largely of L-fucose, has a highly heterogeneous structure and is of diverse origin. Fucoidan was extracted from Ecklonia maxima, Laminaria pallida and Splachnidium rugosum and the effect of different extraction methods on fucoidan heterogeneity was assessed. Extraction methods employed hot water, hydrochloric acid or calcium chloride salt. Fucoidan yield and purity were determined by various colorimetric assays. Highest fucoidan yield was obtained with the hot water extraction method as seen by highest L-fucose content. Splachnidium rugosum extracts contained ~5 times more L-fucose than Ecklonia maxima and Laminaria pallida extracts. The salt extraction method yielded extracts free of contaminants, however L-fucose content in all extracts was >20 times lower. Acid extraction yielded highest levels of uronic acid contamination and liberated sulphate from the fucoidan polysaccharide. The fucose-to-sulphate ratio for Ecklonia maxima was approximately 1:5, whilst the ratios for Splachnidium rugosum and Laminaria pallida were approximately 1:1 and 1:2, respectively. The acid and salt extraction methods removed all traces of protein contaminants, while the hot water method retained very low levels of protein. The extraction method used to isolate fucoidan was a determining factor in yield and purity. Chemical compositional analyses of hot water extracts were assessed by gas chromatography mass spectroscopy. Splachnidium rugosum and Laminaria pallida extracts consisted largely of L-fucose, while Ecklonia maxima fucoidan was characterized with high glucose abundance. Crude hot water and acid extracts from Splachnidium rugosum tissue were fractionated and purified by (anionic) ion exchange chromatography as bioactivity has been correlated to lower molecular weight forms. In water extracts, ion exchange chromatography resulted in close to 90% decrease in L-fucose, sulphate and uronic acid, while protein content increased by 57%. Similar results were reported for acid extracts; however protein content did not change significantly. These results show that method of extraction may affect the composition of fucoidan post-purification. Hot water extraction is recommended due to higher fucoidan yield, as reflected by L-fucose content, and higher sulphate-to-fucose ratio. High protein content after ion exchange chromatography was however of concern. Since mucilage in Splachnidium rugosum thallus was free of protein, fucoidan was precipitated from mucilage with ethanol. Fucoidan yield of mucilage was >15-fold higher than content in purified hot water extracts with a sulphate-to-fucose ratio of ~1:1. The average molecular weight of native fucoidan in mucilage was estimated at 2367 kDa. The polysaccharide was hydrolysed by gamma-irradiation levels of 10-50 kGy to fractions ranging between 60 and 15.5 kDa. Hot water crude fucoidan extracts from Ecklonia maxima, Laminaria pallida, and Splachnidium rugosum were assessed for anti-oxidant activity by measuring the ability to scavenge free radicals and the capacity to reduce copper ions with 2,2-Diphenyl-1-picrylhydrazyl and Cupric Reducing Anti-oxidant Capacity assays, respectively. Ecklonia maxima crude fucoidan displayed highest anti-oxidant activity and capacity, having the potential to scavenge reactive oxygen species as well as the capacity to reduce copper to less toxic forms in mammalian systems. Splachnidium rugosum showed weakest anti-oxidant activity and lowest reducing capacity. The anti-cancer activity of crude and purified hot water Splachnidium rugosum extracts, as well as non-irradiated (native) and gamma-irradiated fucoidan, and commercially procured fucoidan were assessed for anti-cancer activity against MCF-7 breast cancer cells. Splachnidium rugosum crude and purified fucoidan displayed a half maximal inhibitory concentration of 0.7 mg/mL and 0.029 mg/mL, respectively. Low cytotoxicity of crude and purified Splachnidium rugosum fucoidan against non-cancerous breast epithelial cell line MCF-12A was observed, as seen by half maximal inhibitory concentration values of 2 mg/mL and 0.663 mg/mL, respectively. The cancer specific selectivity of purified Splachnidium rugosum fucoidan was therefore much higher as reflected by 10-fold higher selectivity index than that of crude fucoidan. Native and low molecular weight gamma-irradiated fucoidan also showed bioactive properties including anti-cancer activity as seen by the reduction of cell proliferation in vitro, whereas crude fucoidan showed the ability to scavenge free radicals, and the capacity to reduce copper ions.
National Research Foundation (NRF)
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Edwards, Jennifer Lynne. "Genes and proteins involved in polysaccharide colonisation by marine microorganisms." Thesis, University of Liverpool, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.526977.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Panagos, Charalampos. "Structural characterisation of marine glycosaminoglycans and their interactions with proteins." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/17864.

Повний текст джерела
Анотація:
Glycosaminoglycans (GAGs) are a group of structurally related, naturally occurring polysaccharides, found as the carbohydrate moieties of proteoglycans and sometimes as free polysaccharides. GAGs are expressed ubiquitously on animal cell surfaces and within extracellular matrices. All GAGs are sulfated to various degrees, except hyaluronan, which is always non-sulfated. In this project, GAGs and other sulfated carbohydrates were purified from different marine sources and an algae species living in soil, and their structures were characterised, mainly by NMR spectroscopy. Oversulfated dermatan sulfate (DS), fucosylated chondroitin sulfate (fCS) with interesting anti-metastatic properties, a sulfated fucosylated GlcNAc polymer, naturally-occurring cellulose sulfate and a polysaccharide with a repeating disaccharide unit of IdoA-Gal, were some of the more unusual carbohydrates identified. Common GAGs like hyaluronan, chondroitin sulfate A and C, DS and heparin/heparin sulfate-like polysaccharides were also purified from lumpsuckers and ragoworms. Different depolymerisation techniques were also investigated. The effects of Fentontype reaction and photochemical free radical depolymerisation on DS were studied. Elimination of the reducing end IdoA in the case of Fenton-type produced oligosaccharides was established. The oxidisation of reducing end GalNAc to Nacetylgalactosaminic acid, as a result of both depolymerisation techniques, was also identified. In addition, the effect of mild acid hydrolysis on fCS polysaccharides were studied and this technique was deemed unfitting for the depolymerisation of the molecule, as it causes defucosylation and partial desulfation. Finally, human beta-defensin 2 (HBD2) was expressed recombinantly, as a fusion protein with pE-Sumo, in an attempt to design a high yield expression system capable of producing correctly folded protein. The significance of NMR in the identification of the state of the protein and the need for an expression system capable of carrying out correctly the post-translational modifications was demonstrated.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Polysaccharides marins"

1

Marine polysaccharides: Food applications. Boca Raton, FL: CRC Press, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chopin, T. The red alga chondrus crispus stackhouse (Irish moss) and carrageenans: A review. Charlottetown, P.E.I: Fisheries Research Branch, Gulf Region, Dept. of Fisheries and Oceans, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

1934-, Colwell Rita R., Pariser Ernst R, Sinskey Anthony J, and Massachusetts Institute of Technology. Sea Grant College Program., eds. Biotechnology of marine polysaccharides: Proceedings of the Third Annual MIT Sea Grant College Progam Lecture and Seminar. Washington: Hemisphere Pub. Corp., 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fink, Johannes Karl. Marine, waterborne and water-resistant polymers: Chemistry and applications. Hoboken, New Jersey: John Wiley & Sons Inc., 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Marine Polysaccharides. MDPI, 2018. http://dx.doi.org/10.3390/books978-3-03842-898-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Marine Polysaccharides. MDPI, 2018. http://dx.doi.org/10.3390/books978-3-03842-900-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Marine Polysaccharides. MDPI, 2018. http://dx.doi.org/10.3390/books978-3-03842-902-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ahmed, Shakeel, and Aisverya Soundararajan, eds. Marine Polysaccharides. Jenny Stanford Publishing, 2018. http://dx.doi.org/10.1201/9780429058929.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Venugopal, V. Marine Polysaccharides: Food Applications. Taylor & Francis Group, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Venugopal, Vazhiyil. Marine Polysaccharides: Food Applications. Taylor & Francis Group, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Polysaccharides marins"

1

Harding, Stephen E., Michael P. Tombs, Gary G. Adams, Berit Smestad Paulsen, Kari Tvete Inngjerdingen, and Hilde Barsett. "Marine Polysaccharides." In An Introduction to Polysaccharide Biotechnology, 153–92. Second edition / Stephen E. Harding [and five others]. | Boca: CRC Press, 2017. http://dx.doi.org/10.1201/9781315372730-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

de Jesus Raposo, Maria Filomena, Alcina Maria Miranda Bernardo de Morais, and Rui Manuel Santos Costa de Morais. "Bioactivity and Applications of Polysaccharides from Marine Microalgae." In Polysaccharides, 1–38. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03751-6_47-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

de Jesus Raposo, Maria Filomena, Alcina Maria Miranda Bernardo de Morais, and Rui Manuel Santos Costa de Morais. "Bioactivity and Applications of Polysaccharides from Marine Microalgae." In Polysaccharides, 1683–727. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16298-0_47.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lakmal, H. H. Chaminda, Ji-Hyeok Lee, and You-Jin Jeon. "Enzyme-Assisted Extraction of a Marine Algal Polysaccharide, Fucoidan and Bioactivities." In Polysaccharides, 1–11. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03751-6_46-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lakmal, H. H. Chaminda, Ji-Hyeok Lee, and You-Jin Jeon. "Enzyme-Assisted Extraction of a Marine Algal Polysaccharide, Fucoidan and Bioactivities." In Polysaccharides, 1065–77. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16298-0_46.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Subramanian, Vasuki, Perumal Anantharaman, and Kandasamy Kathiresan. "Brown algal polysaccharide." In Marine Glycobiology, 379–92. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315371399-28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lu, Wen-Yu, Hui-Jing Li, and Yan-Chao Wu. "Marine Polysaccharides from Algae." In Marine Biochemistry, 85–109. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003303916-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Xue, Yi-Ting, Chun-Xia Li, Xia Zhao, and Hua-Shi Guan. "HPLC Method for Microanalysis and Pharmacokinetics of Marine Sulfated Polysaccharide, Propylene Glycol Alginate Sodium Sulfate." In Polysaccharides, 1–13. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03751-6_48-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Xue, Yi-Ting, Chun-Xia Li, Xia Zhao, and Hua-Shi Guan. "HPLC Method for Microanalysis and Pharmacokinetics of Marine Sulfated Polysaccharides, Propylene Glycol Alginate Sodium Sulfate." In Polysaccharides, 1251–64. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16298-0_48.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Paul, Riyasree, Sourav Kabiraj, Sreejan Manna, and Sougata Jana. "Marine Polysaccharides in Pharmaceutical Applications." In Marine Biochemistry, 111–36. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003303916-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Polysaccharides marins"

1

Chen, Yin, Kunlai Sun, Yuqin Zhao, Jie Wang, Bin Wang, and Youle Qu. "The Embodiment of Characteristic Teaching of Marine Pharmacology-Marine Seaweed Polysaccharides." In Proceedings of the 2nd International Seminar on Education Research and Social Science (ISERSS 2019). Paris, France: Atlantis Press, 2019. http://dx.doi.org/10.2991/iserss-19.2019.99.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chen, Yin, Kunlai Sun, Yuqin Zhao, Jie Wang, Bin Wang, and Youle Qu. "The Embodiment of Characteristic Teaching of Marine Pharmacology-Marine Seaweed Polysaccharides." In Proceedings of the 2nd International Seminar on Education Research and Social Science (ISERSS 2019). Paris, France: Atlantis Press, 2019. http://dx.doi.org/10.2991/iserss-19.2019.243.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Essa, Hanaa, Mayyada El-Sayed, Hania Guirguis, Dalia Rifaat, and Mohamed Abdelfattah. "Ultrasonically-extracted marine polysaccharides as potential green antioxidant alternatives." In 1st International Electronic Conference on Applied Sciences. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/asec2020-07606.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Delma, Caroline R., Somasundaram S. Thirugnanasambandan, Guruprasad Srinivasan, Sheeja Aravindan, Mohan Natarajan, Terence S. Herman, and Natarajan Aravindan. "Abstract A89: Sulfated polysaccharides from marine brown alga alleviate pancreatic cancer metastasis." In Abstracts: AACR Special Conference on Tumor Invasion and Metastasis - January 20-23, 2013; San Diego, CA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.tim2013-a89.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Portier, R., K. Fujisaki, L. Reily, and C. Henry. "Detoxification of Contaminated Groundwaters using a Marine Polysaccharide/Diatomaceous Earth Packed Bed Biological Reactor." In OCEANS '87. IEEE, 1987. http://dx.doi.org/10.1109/oceans.1987.1160613.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rashmi, V., D. Prabaharan, and L. Uma. "Greener Technology on Value Added Products From Marine Cyanobacteria – An Insight to the Extracellular Polysaccharides Mediated Bioremediation." In 6th Annual International Conference on Sustainable Energy and Environmental Sciences (SEES 2017). Global Science & Technology Forum (GSTF), 2017. http://dx.doi.org/10.5176/2251-189x_sees17.28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

T. R., Keerthi, Amrutha H., and Savitha K. Koilery. "Co-synthesis of citric acid during polysaccharide production by a marine yeast Meyerozyma gulliermondii MBTU-MYWI (JN128648)." In Annual International Conference on Advances in Biotechnology. Global Science & Technology Forum (GSTF), 2014. http://dx.doi.org/10.5176/2251-2489_biotech14.31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Portier, R., K. Fujisaki, L. Reily, and D. McMillin. "Detoxification of Rinsates from Aerial Pesticide Applications Using a Marine Polysaccharide/Diatomaceous Earth Packed Bed Biological Reactor." In OCEANS '87. IEEE, 1987. http://dx.doi.org/10.1109/oceans.1987.1160614.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dalgamouni, Tasneem atef, Shatha Kanji, Maroua Cherif, Rihab Rasheed, Touria Bounnit, Hareb Aljabri, Imen Saadaoui, and Radhouane Ben Hamadou. "Isolation, Cultivation, and Characterization of Novel Local Marine Micro-Algae for Aquaculture Feed Supplement Production." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0037.

Повний текст джерела
Анотація:
Aquaculture is considered as a promising alternative to support the food demands of the everincreasing population. Currently, this sector faces several challenges such as using fishmeal, which is unsustainable and expensive. Therefore, it is necessary to identify an alternative feed component that is sustainable, cost-effective and can provide the essential nutrients required by the fish. In this context, microalgae are considered as a viable source of proteins, lipids, polysaccharides and highvalue products (HVPs) such as essential fatty acids, amino acids and vitamins. They play a vital role in the marine food chain and hence can be easily assimilated by the fish. The current research targeted the isolation, identification and characterization of novel marine microalgae from Qatar coastline to produce aquaculture feed supplement. As the climate poses a number of stress factors, such as high light intensities, temperatures and varying salinities, it is expected that novel microalgae with interesting metabolite profiles can be isolated from the environment for developing aquaculture sector in Qatar. Standard plating methods were used to isolate halophilic strains from field waters. PCR-sequencing was used to identify the novel microalgae, cyanobacteria and diatom isolates. Then a comparative analysis of the growth performance and metabolite content was performed to characterize these strains. Results evidenced that the cyanobacteria strain exhibited the highest biomass productivity of 51.4 mg L-1day-1 whereas the highest lipid content was observed in the novel diatom isolate ranging up to 28.62% and the highest amount of carotenoids was detected in the case of the microalgae. As in conclusion, a rich feed supplement blending the three isolates can be considered as an alternative to fishmeal. As a continuation of this research, the potential strains will be cultivated under various stress to increase their nutritional value.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

John, George, and Charles Maldarelli. "Green Surfactants as Chemical Herders for Maritime Oil Spill Remediation." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/tsgz9344.

Повний текст джерела
Анотація:
The oil slick of a spill on the sea surface can be removed by compressing the oil layer to a sufficient thickness so that it can be burned. The application of chemical surface-active agents known as oil herders are commonly used in open waters to clean and contain oil slicks. In chemical herding, surfactant is dispersed as a monolayer onto the sea surface at the periphery of the oil slick to lower the air/sea surface tension. This causes the slick to contract upon itself. An effective herder is required to significantly lower the tension, and to dampen waves, which can act to break-up the herding monolayer encircling the spill. The focus of this research is to develop herders, which are environmentally friendly and naturally derived green surfactants - a difficult requirement because the marine biota is very sensitive to new chemicals. We have successfully demonstrated the utility of molecules present in the marine environment to lower the surface tension. To this end, we took advantage of the synergism between glycolipids, e.g., MGDG, monogalactosyldiacylglycerol and phytanic acid (an isoprenoid) which are both present in the thylakoid membrane of the chloroplasts of plants. These two molecules in the membrane form a low-tension system through efficient packing. We report measurements of the surface pressure isotherms using a Langmuir trough, and dilatational viscosity using an oscillating pendant drop. We confirm a synergism between MGDG and phytanic acid in mixed monolayers that results in a low tension, and a binding of the polysaccharide to the herding monolayer which results in high dilatational viscosity. Furthermore, we demonstrate pan scale experiments of the efficacy of this herding formulation.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії