Добірка наукової літератури з теми "Polymers"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Polymers".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Polymers"
Hili, Ryan, Chun Guo, Dehui Kong, and Yi Lei. "Expanding the Chemical Diversity of DNA." Synlett 29, no. 11 (March 20, 2018): 1405–14. http://dx.doi.org/10.1055/s-0036-1591959.
Повний текст джерелаChen, Guang, Lei Tao, and Ying Li. "Predicting Polymers’ Glass Transition Temperature by a Chemical Language Processing Model." Polymers 13, no. 11 (June 7, 2021): 1898. http://dx.doi.org/10.3390/polym13111898.
Повний текст джерелаBrostow, Witold, Hanna Fałtynowicz, Osman Gencel, Andrei Grigoriev, Haley E. Hagg Lobland, and Danny Zhang. "Mechanical and Tribological Properties of Polymers and Polymer-Based Composites." Chemistry & Chemical Technology 14, no. 4 (December 15, 2020): 514–20. http://dx.doi.org/10.23939/chcht14.04.514.
Повний текст джерелаChen, Jian Fang, and Ai Hua Ling. "Design and Synthesis of a Miktoarm Star PMMAZO-(PCL)2 Copolymer." Advanced Materials Research 332-334 (September 2011): 2089–92. http://dx.doi.org/10.4028/www.scientific.net/amr.332-334.2089.
Повний текст джерелаMartens, C. M., R. Tuinier, and M. Vis. "Depletion interaction mediated by semiflexible polymers." Journal of Chemical Physics 157, no. 15 (October 21, 2022): 154102. http://dx.doi.org/10.1063/5.0112015.
Повний текст джерелаShahzadi, Maria, Taimoor Hassan, and Sana Saeed. "Application of Natural Polymers in Wound Dressings." Pakistan Journal of Medical and Health Sciences 16, no. 10 (October 30, 2022): 1–2. http://dx.doi.org/10.53350/pjmhs2216101.
Повний текст джерелаCaldona, Eugene B., Ernesto I. Borrego, Ketki E. Shelar, Karl M. Mukeba, and Dennis W. Smith. "Ring-Forming Polymerization toward Perfluorocyclobutyl and Ortho-Diynylarene-Derived Materials: From Synthesis to Practical Applications." Materials 14, no. 6 (March 18, 2021): 1486. http://dx.doi.org/10.3390/ma14061486.
Повний текст джерелаEwert, Ernest, Izabela Pospieszna-Markiewicz, Martyna Szymańska, Adrianna Kurkiewicz, Agnieszka Belter, Maciej Kubicki, Violetta Patroniak, Marta A. Fik-Jaskółka, and Giovanni N. Roviello. "New N4-Donor Ligands as Supramolecular Guests for DNA and RNA: Synthesis, Structural Characterization, In Silico, Spectrophotometric and Antimicrobial Studies." Molecules 28, no. 1 (January 3, 2023): 400. http://dx.doi.org/10.3390/molecules28010400.
Повний текст джерелаBecskereki, Gergely, George Horvai, and Blanka Tóth. "The Selectivity of Molecularly Imprinted Polymers." Polymers 13, no. 11 (May 28, 2021): 1781. http://dx.doi.org/10.3390/polym13111781.
Повний текст джерелаChang, L. L., D. L. Raudenbush, and S. K. Dentel. "Aerobic and anaerobic biodegradability of a flocculant polymer." Water Science and Technology 44, no. 2-3 (July 1, 2001): 461–68. http://dx.doi.org/10.2166/wst.2001.0802.
Повний текст джерелаДисертації з теми "Polymers"
Schlindwein, Walkiria Santos. "Conducting polymers and polymer electrolytes." Thesis, University of Leicester, 1990. http://hdl.handle.net/2381/33889.
Повний текст джерелаMuangpil, Sairoong. "Functionalised polymers and nanoparticle/polymer blends." Thesis, University of Bristol, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.654111.
Повний текст джерелаChester, Shawn Alexander. "Mechanics of amorphous polymers and polymer gels." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/68898.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (p. 345-356).
Many applications of amorphous polymers require a thermo-mechanically coupled large-deformation elasto-viscoplasticity theory which models the strain rate and temperature dependent response of amorphous polymeric materials in a temperature range which spans the glass transition temperature of the material. We have formulated such a theory, and also numerically implemented our theory in a finite element program. The material parameters in the theory have been calibrated for poly(methyl methacrylate), polycarbonate, and Zeonex - a cyclo-olefin polymer. The predictive capabilities of the constitutive theory and its numerical implementation have been validated by comparing the results from a suite of validation experiments against corresponding results from numerical simulations. Amorphous chemically-crosslinked polymers form a relatively new class of thermallyactuated shape-memory polymers. Several biomedical applications for thermally-actuated shape-memory polymers have been proposed/demonstrated in the recent literature. However, actual use of such polymers and devices made from these materials is still quite limited. For the variety of proposed applications to be realized with some confidence in their performance, it is important to develop a constitutive theory for the thermo-mechanical response of these materials and a numerical simulation-based design capability which, when supported with experimental data, will allow for the prediction of the response of devices made from these materials under service conditions. We have developed such a theory and a numerical simulation capability, and demonstrated its utility for modeling the thermo-mechanical response of the shape-memory polymer tBA-PEGDMA. An elastomeric gel is a cross-linked polymer network swollen with a solvent, and certain thermally-responsive gels can undergo large reversible volume changes as they are cycled about a critical temperature. We have developed a thermodynamically-consistent continuum-level theory to describe the coupled mechanical-deformation, fluid permeation, and heat transfer of such gels. We have numerically implemented our theory in a finite element program by writing thermo-chemo-mechanically coupled elements. We show that our theory is capable of simulating swelling, squeezing of fluid by applied mechanical forces, and thermally-responsive swelling/de-swelling of such materials.
by Shawn Alexander Chester.
Ph.D.
Mohagheghian, Iman. "Impact response of polymers and polymer nanocomposites." Thesis, University of Cambridge, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648854.
Повний текст джерелаSun, Shuangyi. "Alkoxyphenacyl Polymers: A Novel Photodegradable Polymer Platform." University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1424234383.
Повний текст джерелаMichal, Brian. "Multi-Functional Stimuli-Responsive Polymers." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1459440396.
Повний текст джерелаSmartt, William Mark. "Formation of microporous polymer via thermally-induced phase transformations in polymer solutions." Diss., Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/32853.
Повний текст джерелаAmalou, Zhor. "Contribution à l'étude de la structure semi-cristalline des polymères à chaînes semi-rigides." Doctoral thesis, Universite Libre de Bruxelles, 2006. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210832.
Повний текст джерелаDans ce travail, une contribution originale est apportée à cette étude, et cela en combinant diverses techniques expérimentales permettant des mesures calorifiques et structurales en températures et temps réels. L’intérêt c’est porté sur les polymères linéaires aromatiques tels que le polyéthylènes teréphthalate, PET, et le polytriméthylène téréphthalate, PTT, caractérisés par une température de transition vitreuse supérieure à l’ambiante ( Tg > 50°) et une température de fusion élevée (Tm>220°C), offrant ainsi une assez large gamme de température de cristallisation (Tm-Tg). L’étude de la structure semi-cristalline du PET à l’échelle du nanomètre et de la relaxation des phases amorphes présentes dans sa structure est facilitée par l’utilisation d’un diluant amorphe tel que le polyétherimide (PEI), qui forme un mélange miscible avec le PET.
L’utilisation de microscopie de force atomique AFM à haute température a permis d’observer la cristallisation isotherme de PET en temps réel et de décrire ainsi la cristallisation secondaire comme un processus d'épaississement des piles lamellaires. De plus, l’analyse de la structure semi-cristalline du PET et du PTT, dans l’espace direct, sont en faveur d’un modèle structural homogène, où l’épaisseur lamellaire moyenne est légèrement inférieure à l’épaisseur moyenne des régions amorphes interlamellaires. Ces résultats ont permis, d’une part, d’apporter une meilleure interprétation aux données obtenues par diffusion des rayons X aux petits angles (SAXS), et d’autre part, d’ interpréter le comportement de fusion multiple caractéristique des polymères semi-cristallin à chaînes semi-rigides par le seul processus de fusion-recristallisation. Dans l’étude investiguée sur les mélanges PET/PEI et sur le PTT pur, on montre que la cinétique d’un tel processus est particulièrement rapide comparée à la cristallisation. De plus, les observations par AFM et par microscopie optique de même que les mesures SAXS en temps réel ont montré la simultanéité et la compétition existant entre la fusion des cristaux et leur réorganisation durant la chauffe. Par ailleurs, la relaxation des régions amorphes interlamellaires, souvent considérées comme rigides, a pu être mise en évidence par les mesures AFM et SAXS réalisées à haute température sur des échantillons de PET/PEI semi-cristallins.
Doctorat en sciences, Spécialisation physique
info:eu-repo/semantics/nonPublished
Cooke, Richard Hunter III. "THE ENHANCEMENT OF PEROXIDE-CURED FLUOROELASTOMER RUBBER TO METAL BONDING." Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1377022145.
Повний текст джерелаYang, Lianyun. "Novel Ferroelectric Behavior in Poly(vinylidene fluoride-co-trifluoroethylene)-Based Random Copolymers." Case Western Reserve University School of Graduate Studies / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=case1431686125.
Повний текст джерелаКниги з теми "Polymers"
Powell, Peter C. Engineering with polymers. 2nd ed. Cheltenham: Stanley Thornes, 1998.
Знайти повний текст джерелаGodovsky, Yu K., K. Horie, A. Kaneda, N. Kinjo, L. F. Kosyanchuk, Yu S. Lipatov, T. E. Lipatova, et al. Speciality Polymers/Polymer Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0017962.
Повний текст джерелаAkelah, A. Functionalized polymers and their applications. London: Chapman and Hall, 1990.
Знайти повний текст джерелаRubinson, Judith F., and Harry B. Mark, eds. Conducting Polymers and Polymer Electrolytes. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2003-0832.
Повний текст джерелаChiellini, Emo, Junzo Sunamoto, Claudio Migliaresi, Raphael M. Ottenbrite, and Daniel Cohn, eds. Biomedical Polymers and Polymer Therapeutics. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/b112950.
Повний текст джерелаI, Kroschwitz Jacqueline, ed. Polymers: Polymer characterization and analysis. New York: Wiley, 1990.
Знайти повний текст джерелаEmo, Chiellini, and International Symposium on Frontiers in Biomedical Polymers including Polymer Therapeutics: From Laboratory to Clinical Practice (3rd : 1999 : Shiga, Japan), eds. Biomedical polymers and polymer therapeutics. New York: Kluwer Academic/Plenum Publishers, 2001.
Знайти повний текст джерелаDonald, A. M. Liquid crystalline polymers. Cambridge [England]: Cambridge University Press, 1992.
Знайти повний текст джерелаEfremovich, Zaikov Gennadiĭ, Bouchachenko A. L, and Ivanov V. B, eds. Aging of polymers, polymer blends and polymer composites. New York: Nova Science Publishers, 2002.
Знайти повний текст джерелаEfremovich, Zaikov Gennadiĭ, Bouchachenko A. L, and Ivanov V. B, eds. Aging of polymers, polymer blends, and polymer composites. New York: Nova Science Publishers, 2002.
Знайти повний текст джерелаЧастини книг з теми "Polymers"
Xanthos, Marino. "Polymers and Polymer Composites." In Functional Fillers for Plastics, 1–16. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527605096.ch1.
Повний текст джерелаXanthos, Marino. "Polymers and Polymer Composites." In Functional Fillers for Plastics, 1–18. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527629848.ch1.
Повний текст джерелаVoisey, K. T. "Polymers and Polymer Composites." In The Engineer’s Guide to Materials, 97–124. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-62937-2_6.
Повний текст джерелаCzarnecki, Lech, Dionys Van Gemert, Ru Wang, and Mahmoud Reda Taha. "Searching for a New C-PC Development Paradigm." In Springer Proceedings in Materials, 3–21. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72955-3_1.
Повний текст джерелаParisi, Ortensia Ilaria, Manuela Curcio, and Francesco Puoci. "Polymer Chemistry and Synthetic Polymers." In Advanced Polymers in Medicine, 1–31. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12478-0_1.
Повний текст джерелаBhatia, Saurabh. "Natural Polymers vs Synthetic Polymer." In Natural Polymer Drug Delivery Systems, 95–118. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41129-3_3.
Повний текст джерелаBrandrup, Johannes, and Wiesbaden. "Polymers, Polymer Recycling, and Sustainability." In Plastics and the Environment, 521–62. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2004. http://dx.doi.org/10.1002/0471721557.ch13.
Повний текст джерелаWalton, David J., and J. Phillip Lorimer. "General principles and historical aspects." In Polymers. Oxford University Press, 2000. http://dx.doi.org/10.1093/hesc/9780198503897.003.0001.
Повний текст джерелаHan, Chang Dae. "Rheology of Particulate-Filled Polymers, Nanocomposites, and Fiber-Reinforced Thermoplastic Composites." In Rheology and Processing of Polymeric Materials: Volume 1: Polymer Rheology. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780195187823.003.0018.
Повний текст джерелаHan, Chang Dae. "Relationships Between Polymer Rheology and Polymer Processing." In Rheology and Processing of Polymeric Materials: Volume 1: Polymer Rheology. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780195187823.003.0005.
Повний текст джерелаТези доповідей конференцій з теми "Polymers"
Kim, Bumjoon J. "Design of electroactive polymers for intrinsically-stretchable polymer solar cells." In Organic, Hybrid, and Perovskite Photovoltaics XXV, edited by Gang Li and Natalie Stingelin, 41. SPIE, 2024. http://dx.doi.org/10.1117/12.3029279.
Повний текст джерелаLiu, Y. S., H. S. Cole, and H. R. Philipp. "Interactions of excimer lasers with polymers." In International Laser Science Conference. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/ils.1986.fb2.
Повний текст джерелаZhang, Yadong, Liming Wang, Tatsuo Wada, and Hiroyuki Sasabe. "Carbazole Main-Chain Polymers with Di-Acceptor-Substituents for Nonlinear Optics." In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/otfa.1993.wd.8.
Повний текст джерелаInganas, Olle, Soumyadeb Ghosh, Emil J. Samuelsen, Knut E. Aasmundtveit, Leif A. A. Pettersson, and Tomas Johansson. "Model polymers for polymer actuators." In 1999 Symposium on Smart Structures and Materials, edited by Yoseph Bar-Cohen. SPIE, 1999. http://dx.doi.org/10.1117/12.349712.
Повний текст джерелаBurland, D. M., R. G. Devoe, M. C. Jurich, V. Y. Lee, R. D. Miller, C. R. Moylan, J. I. Thackara, R. J. Twieg, T. Verbiest, and W. Volksen. "Incorporation of Thermally Stable Nonlinear Optical Polymers into Electrooptic Devices." In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.wa.3.
Повний текст джерелаKippelen, B., K. Meerholz, B. L. Volodin, Sandalphon, and N. Peyghambarian. "High Efficiency Photorefractive Polymers." In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.wgg.2.
Повний текст джерелаLevenson, R., J. Liang, C. Rossier, M. Van Beylen, C. Samyn, F. Foll, Rousseau, and J. Zyss. "Stability-Efficiency Trade-Off in Non-Linear Optical Polymers." In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/otfa.1993.wd.6.
Повний текст джерелаWagner, Eva, Kathryn Uhrich, and Thomas Twardowski. "Processing Considerations for Salicylic Acid-Based Polymers." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-55130.
Повний текст джерелаChe, H., P. Vo, and S. Yue. "Metallization of Various Polymers by Cold Spray." In ITSC2017, edited by A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen, and C. A. Widener. DVS Media GmbH, 2017. http://dx.doi.org/10.31399/asm.cp.itsc2017p0098.
Повний текст джерелаMöhlmann, G. R., W. H. G. Horsthuis, M. B. J. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach, and N. McFadyen. "Optically Nonlinear Polymers in Guided Wave Electro-Optic Devices." In Nonlinear Guided-Wave Phenomena. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/nlgwp.1989.fb4.
Повний текст джерелаЗвіти організацій з теми "Polymers"
Stavland, Arne, Siv Marie Åsen, Arild Lohne, Olav Aursjø, and Aksel Hiorth. Recommended polymer workflow: Lab (cm and m scale). University of Stavanger, November 2021. http://dx.doi.org/10.31265/usps.201.
Повний текст джерелаLambeth, Robert H., Randy A. Mrozek, Joseph L. Lenhart, Yelena R. Sliozberg, and Jan W. Andzelm. Branched Polymers for Enhancing Polymer Gel Strength and Toughness. Fort Belvoir, VA: Defense Technical Information Center, February 2013. http://dx.doi.org/10.21236/ada577092.
Повний текст джерелаBohnert, G. W. Conductive Polymers. Office of Scientific and Technical Information (OSTI), November 2002. http://dx.doi.org/10.2172/804936.
Повний текст джерелаSalovey, Ronald, and John J. Aklonis. The Behavior of Polymers Filled with Monodisperse Polymeric Beads. Fort Belvoir, VA: Defense Technical Information Center, November 1991. http://dx.doi.org/10.21236/ada242732.
Повний текст джерелаPang, Yi. Exploring novel silicon-containing polymers---From preceramic polymers to conducting polymers with nonlinear optical properties. Office of Scientific and Technical Information (OSTI), October 1991. http://dx.doi.org/10.2172/5097635.
Повний текст джерелаRussell, Thomas P. Interfacial Behavior of Polymers: Using Interfaces to Manipulate Polymers. Office of Scientific and Technical Information (OSTI), February 2015. http://dx.doi.org/10.2172/1171152.
Повний текст джерелаLotufo, Guilherme, Mandy Michalsen, Danny Reible, Philip Gschwend, Upal Ghosh, Alan Kennedy, Kristen Kerns, et al. Interlaboratory study of polyethylene and polydimethylsiloxane polymeric samplers for ex situ measurement of freely dissolved hydrophobic organic compounds in sediment porewater. Engineer Research and Development Center (U.S.), May 2024. http://dx.doi.org/10.21079/11681/48512.
Повний текст джерелаKempel, Leo, and Shanker Balasubramaniam. RF Polymers II. Fort Belvoir, VA: Defense Technical Information Center, March 2009. http://dx.doi.org/10.21236/ada495291.
Повний текст джерелаPhillips, Shawn H., Timothy S. Haddad, Rusty L. Blanski, Andre Y. Lee, and Richard A. Vaia. Molecularly Reinforced Polymers. Fort Belvoir, VA: Defense Technical Information Center, June 2001. http://dx.doi.org/10.21236/ada409917.
Повний текст джерелаGordon, III, Runt Bernard, Painter James P., and Paul C. New Conducting Polymers. Fort Belvoir, VA: Defense Technical Information Center, June 1988. http://dx.doi.org/10.21236/ada197009.
Повний текст джерела