Добірка наукової літератури з теми "Polymères – Propriétés électriques – Propriétés mécaniques"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Polymères – Propriétés électriques – Propriétés mécaniques".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Polymères – Propriétés électriques – Propriétés mécaniques"
Gautier, R., C. Petit, V. Bolcato, E. Planus, and F. Marchi. "Nouveaux travaux pratiques en nanotechnologies : étude nano-mécanique de micro/nano-objets mous/souples par AFM." J3eA 18 (2019): 1004. http://dx.doi.org/10.1051/j3ea/20191004.
Повний текст джерелаFayolle, B., and J. Verdu. "Effet du vieillissement chimique sur les propriétés mécaniques des polymères." Matériaux & Techniques 88, no. 11-12 (2000): 3–10. http://dx.doi.org/10.1051/mattech/200088110003.
Повний текст джерелаDjeddi, Fadila, Mouloud Mohellebi, and Ahmed Ouibrahim. "Optimisation des propriétés mécaniques de matériaux polymériques par les mélanges et effet bénéfique du vieillissement thermique." Matériaux & Techniques 107, no. 6 (2019): 604. http://dx.doi.org/10.1051/mattech/2020001.
Повний текст джерелаMayer, Guy, and Gérard Hauchecorne. "Études dynamiques des propriétés mécaniques et électriques des contacts entre solides." Journal de Physique III 6, no. 8 (August 1996): 1005–37. http://dx.doi.org/10.1051/jp3:1996168.
Повний текст джерелаCordelle, Aurélie, Monssef Drissi-Habti, and Aaron Forster. "Effets de l’irradiation aux UV sur les propriétés mécaniques des matériaux composites polymères." Revue des composites et des matériaux avancés 23, no. 2 (August 31, 2013): 295–309. http://dx.doi.org/10.3166/rcma.23.295-309.
Повний текст джерелаFaurie, Damien, Soundes Djaziri, Pierre-Olivier Renault, Eric Le Bourhis, Philippe Goudeau, Guillaume Geandier, and Dominique Thiaudière. "Machine biaxiale sur la ligne de lumière Diffabs pour l’étude des propriétés mécaniques de films minces déposés sur substrats polymères." Matériaux & Techniques 103, no. 6 (2015): 610. http://dx.doi.org/10.1051/mattech/2015057.
Повний текст джерелаFaurie, Damien, Soundes Djaziri, Pierre-Olivier Renault, Eric Le Bourhis, Philippe Goudeau, Guillaume Geandier, and Dominique Thiaudière. "Note de correction : Machine biaxiale sur la ligne de lumière Diffabs pour l’étude des propriétés mécaniques de films minces déposés sur substrats polymères." Matériaux & Techniques 106, no. 2 (2018): 207. http://dx.doi.org/10.1051/mattech/2018040.
Повний текст джерелаBINETRUY, Christophe. "Estimation des propriétés mécaniques des polymères renforcés." Plastiques et composites, January 2014. http://dx.doi.org/10.51257/a-v1-am5310.
Повний текст джерелаDARQUE-CERETTI, Évelyne, Éric FELDER, and Bernard MONASSE. "Étude et analyse des surfaces de polymères solides - Propriétés mécaniques et tribologiques." Frottement, usure et lubrification, April 2016. http://dx.doi.org/10.51257/a-v2-am3279.
Повний текст джерелаAntonini, Thierry. "Contrôle automatisé de matériaux hétérogènes par imagerie TeraHertz." e-journal of nondestructive testing 28, no. 9 (September 2023). http://dx.doi.org/10.58286/28524.
Повний текст джерелаДисертації з теми "Polymères – Propriétés électriques – Propriétés mécaniques"
Probst, Nicolaus. "Etude des propriétés électriques et diélectriques des composites polymères - noirs de carbone : parallélisme entre propriétés électriques et mécaniques." Mulhouse, 1991. http://www.theses.fr/1991MULH0180.
Повний текст джерелаChailan, Jean-François. "Contribution des spectrométries mécanique et diélectrique à l'étude du vieillissement d'élastomères en ambiance nucléaire." Lyon 1, 1993. http://www.theses.fr/1993LYO10236.
Повний текст джерелаDalmas, Florent. "Composites à matrice polymère et nano-renforts flexibles : propriétés mécaniques et électriques." Phd thesis, Grenoble INPG, 2005. http://tel.archives-ouvertes.fr/tel-00012111.
Повний текст джерелаLecoublet, Morgan. "Ρrοpriétés Diélectriques des Μatériaux Biοsοurcés". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR027.
Повний текст джерелаIn a context of sustainable development and public awareness of environmental issues, biobased polymers represent a promising niche in the industrial sector, with a strong growth potential. This is a favorable context for the development of new biobased and/or biodegradable structures suitable for a wide range of dielectric applications, but many limitations still exist to fully benefit from the dielectric performance of biobased polymers. This thesis is part of a broader effort to promote the use of biobased materials in the dielectric field, proposing an advanced study of the multiphysical properties, particularly dielectric properties, of biobased polymers to identify applications in dielectric fields suitable for such materials. In the first phase of the thesis, an advanced literature review identified three biobased polymers with high potential for the dielectric field, i.e. polylactic acid (PLA), polyhydroxybutyrate-co-valerate (PHBV) and cellulose acetate (CA). Their dielectric performance were comparable to conventional synthetic polymers used in electrical insulation, such as polyethylene, polypropylene and epoxy resin. In addition, the literature review also identified three potential strategies to encourage the use of bio-based polymers in electrical insulation, i.e. the development of polymer blends, the creation of bio(nano)composites based on cellulosic fillers, and the use of new processing techniques such as 3D printing. The second phase of the thesis proposes the creation of polymer blends and 3D printing to obtain 3D-printed PLA-based materials for application in electrical insulation. Preliminary results showed that PLA : CA blends were the most promising for the continuation of the project and were therefore chosen for the 3D printing step. The addition of CA improved the mechanical stability of PLA in a rubbery state, but also slightly reduced their electrical insulation capacity. An optimization step using a Taguchi design resulted in 3D-printed polymer blends samples with mechanical rigidity and electrical insulation capacity comparable to low-density polyethylene. The final phase of the thesis proposes to combine the use of cellulose-based bio(nano)composites and 3D printing to obtain PLA-based materials for application in electrical insulation. Two different fillers were used and compared: cellulose microcrystals (MCC) and cellulose nanocrystals (NCC). The results showed that the addition of cellulose fillers improved the mechanical rigidity of the materials, but also slightly reduced their electrical insulation capacity. A factorial design optimization step produced cellulose-reinforced biocomposites with superior mechanical properties to polypropylene, while offering comparable electrical insulation properties. This thesis therefore proposes biobased and even compostable alternatives to polyethylene and polypropylene in the electrical insulation field, through the combined use of different strategies easily applicable on an industrial scale, in line with a sustainable development approach
Capsal, Jean-Fabien. "Elaboration et analyse des propriétés physiques de nanocomposites hybrides ferroélectriques." Toulouse 3, 2008. http://thesesups.ups-tlse.fr/835/.
Повний текст джерелаThe piezoelectric activity of a hybrid ferroelectric nanocomposite, i. E. Polyamide 11/ Barium Titanate (BT), has been investigated for different loadings of BT particles. The BT volume fraction (phi) was ranging from 0. 024 to 0. 4 with a particle size of 50 nm, 100 nm, 300 nm and 700 nm. The influence of polarization mode on the piezoelectric behaviour has been studied. The magnitude of the poling field used in this study is in the same order of magnitude of the one used for bulk BT i. E. Significantly lower than for piezoelectric polymers. The optimum piezoelectric coefficient is reached when the amorphous phase of the polymeric matrix is in the liquid state i. E. ; for a polarization temperature higher than the glass transition and for time constant allowing macromolecular mobility. The composite piezoelectric activity decreases for particles size lower than 300 nm due to the loss of the tetragonal phase. The nanotexture of these particles has been investigated by TEM and HRTEM. A core shell structure has been observed. An increase of the longitudinal piezoelectric strain coefficient d33 with the raising of BT volume fraction was shown. Contrary to inorganic piezoelectric ceramics, the dielectric permittivity of hybrid composites remains moderate although the piezoelectric voltage coefficient of composites is bigger than ceramics
Cârlescu, Vlad. "Caracterizarea statică și dinamică a polimerilor electroactivi dielectrici pentru aplicații mecatronice." Thesis, Artois, 2013. http://www.theses.fr/2013ARTO0204/document.
Повний текст джерелаThe concept of biomimetism, or bionics, published since 1969, are studying structural and functional patterns of living to transfer them to technics. In nature, the movements are produced by muscles, while the technique uses the engines. Despite the advanced state of conventional actuation technologies such as hydraulic, pneumatic and electric motors, there is a growing demand in the field like mechatronics, robotics and bioengineering for electromechanical actuators with high performance and deformations, flexible, lightweight, high reliability and low cost. The diversity of physical phenomena in smart materials (piezoelectric, electromagnetic and magnetostrictive, shape-memory alloys, electro and magneto-rheological fluids, ferromagnetic shape memory alloys and electroactive polymers) open new opportunities in the design and development unconventional actuators. Due to their high adaptability, the polymers are used increasingly used in many areas. Sensors and actuators based polymers is a promising field of intelligent polymers and are more associated with artificial sensors and actuators in living organisms. Thus, after ’90, a considerable attention in the unconventional actuators based on smart materials was attract by electroactive polymers (EAPs). These materials have a high electromechanical coupling and are also very flexible and very light They deform when they are subjected to an electric field and can generate a current or a field when subjected to a mechanical deformation. Thus, they can be used either as a flexible sensors ans actuators, or generator. The thesis is divided into seven sections and involve the determination of the dielectric, mechanical and electromechanical properties of some silicone based polydiméthylsiloxane (PDMS) with inclusions of SiO2 and TiO2 for use as actuators in mechatronic applications. The dielectric parameters such as dielectric constant loss were determined by dielectric spectroscopy and showed to be similar to those reported in literature. The elastic properties were studied by several mechanical tests, such as uniaxial tension, uniaxial compression and indentation tests of free-standfing circular films. Electromechanical properties of PDMS-SiO2-TiO2 elastomers excited by CD and AC voltages were evaluated by non-destructive methods, such as scanning laser vibrometry. Also, the thesis presents the personal contributions on the implementation of the finite element analysis (FEA) to simulate the deformation of the PDMS-SiO2-TiO2 elastomers subjected to uniaxial tension and compression
Périé, Thomas. "Dispersion de nanotubes de carbone dans les polymères : de la nanostructuration aux composites hautes performances." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://pastel.archives-ouvertes.fr/pastel-00634552.
Повний текст джерелаKechaou, Borhane. "Corrélation entre propriétés diélectriques et mécaniques de composites à matrice époxyde renforcée par des fibres de verres E." Ecully, Ecole centrale de Lyon, 2003. http://bibli.ec-lyon.fr/exl-doc/bkechaou.pdf.
Повний текст джерелаTwo unidirectional glass fiber reinforced polymers composite materials, being different only by the nature of the fiber/matrix interface (sizing), were studied. The approach is based on the fact that any stress, whatever its nature (electric, mechanical, radiative, thermal. . . ), applied to a dielectric material led to an injection of electric charges. These charges can diffuse or be trapped. To simulate these phenomena, the "mirror method" (Scanning Electron Microscopy Mirror Effect SEMME) were used. It is shown that the fiber/matrix interfaces impose a greater instability of the charges, with a double role of motion but also of trapping of the charges along the interface. A composite which has a sizing allowing the diffusion, therefore limiting the localization of the polarization energy, is consequently preferable from the mechanical or tribological point of view
Louis, Christel. "Mélanges de polysulfones avec un élastomère acrylate : caractérisation morphologique et thermo-mécanique." Toulon, 2001. http://www.theses.fr/2001TOUL0002.
Повний текст джерелаZhao, Hang. "Comportement multifonctionnel des composites comportant des nano/micro renforts." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLC020/document.
Повний текст джерелаDue to the outstanding mechanical electrical and thermal properties, carbon nanotubes (CNTs) received worldwide attentions and intensive investigations in last decades. CNTs are greatly potential in applications such as energy storage and microelectronics. The one dimensional structure, high aspect ratio and low density, promote CNTs serving as the excellent fillers in composites field. However, due to the strong interactions, CNTs are usually difficult to be dispersed and aligned in a polymer matrix. Designing the CNTs construction reasonably is an effective way to ameliorate the dispersion states of CNTs in matrix. These specific hybrid constructions allowed CNTs arrays synthesized vertically onto the substrates through catalyst chemical vapor deposition method. These CNT arrays effectively overcome the problem of CNTs aggregation and promote the interconnection among CNTs, leading to a considerable improvement of multi-functional properties of composites. Graphite nanoplatelets (GNPs) served as substrate make their synthesizing products-GNP-CNTs hybrids (GCHs) possess distinct merits of all-carbon composition, totally-conductive coupling structure and the low intrinsic density. These GCHs constructions provide a great improvement in the dielectric and electrical properties of composites. However, the relationship between GCHs organization and synthesizing conditions during CVD process and the influence of the addition of GCHs to internal conductive networks have not been reported in detail. These mentioned issues will be investigated and discussed in this thesis, which is divided into four chapters:The first chapter makes a general review of the structure, properties, application and synthesis of CNTs and GNP substrates, and the main procedures of fabricating composites and surface functionalization of CNTs. Moreover, a short introduction of the development of micro-nano hybrids applied to the functional composites is made. Most importantly, the developing electrical states and (di) electrical characteristics of composites with ever-increasing conducting filler loading are reviewed in detail at the last part.The second chapter discusses firstly the synthesis process through the CCVD approach and the relationship between CVD parameters and the corresponding construction of GCHs, where the temperature, gas composition and reaction time were controlled. The constructions CNT arrays are dependent on the synthesis conditions. Furthermore, the results obtained from analysis can provide a structural foundation for the huge application potential of GCHs constructions. The third chapter introduces the poly(vinylidene fluoride)-based nanocomposites containing GCH particles, the dielectric properties of which are improved more greatly than the ternary composites loading equivalent mixture of GNPs and CNTs. The composites achieved by dispersing GCH particles into matrix using the mechanical melt-mixing process, showing a strongly reduced percolation threshold (5.53 vol %) and the relatively high thermal stability. Their improved dielectric properties can be attributed to the formed microcapacitor networks and the change of crystalline formation of matrix, caused by well-designed CNT arrays constructions. The fourth chapter investigates the advanced GCHs/ polydimethylsilicone (PDMS) composites with high piezo-resistive performance at wide temperature range. The synthesized GCHs can be well dispersed in the matrix through the mechanical blending process. The flexible composite shows an ultra-low percolation threshold (0.64 vol%) and high piezo-resistive sensitivity (gauge factor ~103 and pressure sensitivity ~ 0.6 kPa-1). Particularly, the much improvements of electrical properties achieved in GCHs/PDMS composites compared with composites filled with equivalent CNT, GNP or mixture of CNTs/GNPs. Slight motions of finger can be detected and distinguished accurately using the composites film as typical wearable sensor
Книги з теми "Polymères – Propriétés électriques – Propriétés mécaniques"
Krevelen, D. W. van. Properties of polymers: Their correlation with chemical structure, their numerical estimation and prediction from additive group contributions. 3rd ed. Amsterdam: Elsevier, 1990.
Знайти повний текст джерелаte, Nijenhuis K., ed. Properties of polymers: Their correlation with chemical structure : their numerical estimation and prediction from additive group contributions. 4th ed. Amsterdam: Elsevier, 2009.
Знайти повний текст джерелаRicardo, Díaz-Calleja, ed. Electrical properties of polymers. New York: Marcel Dekker, 2004.
Знайти повний текст джерелаF, Landel Robert, ed. Mechanical properties of polymers and composites. 2nd ed. New York: M. Dekker, 1994.
Знайти повний текст джерелаZoila, Reyes, ed. Electrically conductive organic polymers for advanced applications. Park Ridge, N.J., U.S.A: Noyes Data Corp., 1986.
Знайти повний текст джерелаYoseph, Bar-Cohen, Society of Photo-optical Instrumentation Engineers., American Society of Mechanical Engineers., Interijento Zairyō Shisutemu Fōramu, Jet Propulsion Laboratory (U.S.), and National Science Foundation (U.S.), eds. Electroactive polymer actuators and devices (EAPAD) 2007: 19-22 March 2007, San Diego, California, USA. Bellingham, Wash: SPIE, 2007.
Знайти повний текст джерелаYoseph, Bar-Cohen, Society of Photo-optical Instrumentation Engineers., American Society of Mechanical Engineers., Interijento Zairyō Shisutemu Fōramu, Jet Propulsion Laboratory (U.S.), and National Science Foundation (U.S.), eds. Electroactive polymer actuators and devices (EAPAD) 2007: 19-22 March 2007, San Diego, California, USA. Bellingham, Wash: SPIE, 2007.
Знайти повний текст джерелаYoseph, Bar-Cohen, Society of Photo-optical Instrumentation Engineers., American Society of Mechanical Engineers., Interijento Zairyō Shisutemu Fōramu, Jet Propulsion Laboratory (U.S.), and National Science Foundation (U.S.), eds. Electroactive polymer actuators and devices (EAPAD) 2007: 19-22 March 2007, San Diego, California, USA. Bellingham, Wash: SPIE, 2007.
Знайти повний текст джерелаF, Klimovich A., and Kestelʹman V. N, eds. Electrophysical phenomena in the tribology of polymers. Amsterdam, The Netherlands: Gordon and Breach Science Publishers, 1999.
Знайти повний текст джерелаJ, Baltá-Calleja F., ed. Nano- and micromechanics of polymers. Cincinnati, Ohio: Hanser Publications, 2012.
Знайти повний текст джерелаЧастини книг з теми "Polymères – Propriétés électriques – Propriétés mécaniques"
LU, Xiaoxin, Julien YVONNET, Fabrice DETREZ, and Jinbo BAI. "Modélisation électromécanique non linéaire multi-échelle de nanocomposites graphène-polymère." In Nanocomposites, 167–98. ISTE Group, 2021. http://dx.doi.org/10.51926/iste.9031.ch6.
Повний текст джерелаFontanille, Michel, and Yves Gnanou. "12. Propriétés mécaniques générales des polymères." In Chimie et physico-chimie des polymères, 381–413. Dunod, 2014. http://dx.doi.org/10.3917/dunod.fonta.2014.01.0381.
Повний текст джерелаEtienne, Serge, and Laurent David. "Chapitre 7. Propriétés électriques et optiques." In Introduction à la physique des polymères, 221–62. Dunod, 2012. http://dx.doi.org/10.3917/dunod.etien.2012.01.0221.
Повний текст джерела"6 Effets du vieillissement radiochimique sur les propriétés mécaniques des polymères industriels." In Polymères en ambiance nucléaire, 83–106. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0897-7-009.
Повний текст джерела"6 Effets du vieillissement radiochimique sur les propriétés mécaniques des polymères industriels." In Polymères en ambiance nucléaire, 83–106. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0897-7.c009.
Повний текст джерелаEtienne, Serge, and Laurent David. "Chapitre 9. Propriétés mécaniques ultimes des matériaux polymères à l’état solide." In Introduction à la physique des polymères, 297–350. Dunod, 2012. http://dx.doi.org/10.3917/dunod.etien.2012.01.0297.
Повний текст джерелаBEDOUI, Fahmi, Adoté Sitou BLIVI, Benhui FAN, and Djimédo KONDO. "Effets de taille et propriétés physiques et mécaniques des polymères nanorenforcés." In Nanocomposites, 73–95. ISTE Group, 2021. http://dx.doi.org/10.51926/iste.9031.ch3.
Повний текст джерела