Добірка наукової літератури з теми "Polyclonale"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Polyclonale".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Polyclonale"

1

Larbouret, Christel, Marie-Alix Poul, and Thierry Chardès. "Imiter la réponse immunitaire humorale polyclonale." médecine/sciences 35, no. 12 (December 2019): 1083–91. http://dx.doi.org/10.1051/medsci/2019216.

Повний текст джерела
Анотація:
Les anticorps monoclonaux ont révolutionné le traitement de nombreuses maladies mais leur efficacité clinique reste limitée dans certains cas. Des associations d’anticorps se liant à une même cible (homo-combinaisons) ou à plusieurs cibles différentes (hétéro-combinaisons), mimant ainsi une réponse immunitaire humorale polyclonale, ont conduit à une amélioration thérapeutique dans des essais précliniques et cliniques, essentiellement en cancérologie et en infectiologie. Ces combinaisons augmentent l’efficacité des réponses biologiques et court-circuitent les mécanismes de résistances observés lors d’une monothérapie par anticorps. Le procédé de formulation et d’administration des combinaisons d’anticorps le plus fréquent est une formulation séparée, avec injection séquentielle de chaque anticorps « principe actif ». Alternativement, se développent des formulations combinées, où les anticorps produits séparément sont mélangés avant administration, ou produits simultanément par une lignée cellulaire unique ou un mélange de lignées cellulaires correspondant à une master-bank cellulaire polyclonale. La réglementation, la toxicité et la séquence d’injection des mélanges oligoclonaux restent des points à éclaircir et à optimiser pour un meilleur effet thérapeutique.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Le Lostec, Z., P. Mornet, H. Mossafa, F. Drupt, V. Asnafi, E. de Raucourts, and J. Y. Peltier. "Lymphocytose polyclonale persistante chez une femme tabagique." La Revue de Médecine Interne 23 (May 2002): 127s—128s. http://dx.doi.org/10.1016/s0248-8663(02)80260-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Belmecheri, F., A. Benyamine, A. Murati, J. M. Schiano De Colella, D. Olive, R. Bouabdallah, and P. J. Weiller. "La lymphocytose T polyclonale, un syndrome parathymique très rare." La Revue de Médecine Interne 38 (June 2017): A213—A214. http://dx.doi.org/10.1016/j.revmed.2017.03.316.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

de Jaureguiberry, J. P., D. Pignon, M. Galzin, P. Carli, D. Jaubert, and A. Chagnon. "Lymphocytose B polyclonale persistante à lymphocytes binucléés chez un homme." La Revue de Médecine Interne 18, no. 3 (March 1997): 258. http://dx.doi.org/10.1016/s0248-8663(97)89307-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Théodose, Raphaëlle, Georges Jung, Anne Debecker, Valérie Gauduchon, and Philippe Hénon. "Cas clinique au laboratoire hyperlymphocytose chronique polyclonale à noyaux binucléés." Revue Française des Laboratoires 1998, no. 307 (November 1998): 75–77. http://dx.doi.org/10.1016/s0338-9898(98)80223-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Garrigues, P., M. H. Tugler, C. Jockey, and D. Champetier de Ribes. "Anémie hémolytique auto-immune révélant une lymphocytose polyclonale à lymphocytes binucléés." La Revue de Médecine Interne 34 (December 2013): A121—A122. http://dx.doi.org/10.1016/j.revmed.2013.10.210.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Guignant, C., A. Mambie, M. Diouf, C. Roumier, C. Roche-Lestienne, B. Gruson, B. Gubler, et al. "Lymphocytose polyclonale à lymphocytes binucléés : une cause de déficit immunitaire humoral ?" La Revue de Médecine Interne 37 (June 2016): A49—A50. http://dx.doi.org/10.1016/j.revmed.2016.04.256.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Soetart, Nicolas, and Laetitia Jaillardon. "Caractériser une gammapathie : intérêts de l’immunoélectrophorèse." Le Nouveau Praticien Vétérinaire canine & féline 16, no. 72 (2019): 65–67. http://dx.doi.org/10.1051/npvcafe/72065.

Повний текст джерела
Анотація:
De nombreuses maladies peuvent être responsables d’une augmentation de la production d’immunoglobulines. La distinction entre une augmentation polyclonale (plusieurs types d’immunoglobulines produites) et une augmentation monoclonale (un seul type d’immunoglobuline produite, traduisant une prolifération d’un seul clone de cellules lymphoïdes B fortement évocatrice d’une origine néoplasique) est indispensable pour préciser le diagnostic. Lorsque l’observation du tracé électrophorétique ne permet pas d’établir cette distinction, le recours à une immunoélectrophorèse, en identifiant les types d’immunoglobulines présentes dans le sérum, est nécessaire.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Himberlin, C., B. Kolb, P. Delaby, A. M. Blaise, P. Y. Le Berruyer, S. Daliphard, and J. L. Pennaforte. "La lymphocytose polyclonale avec lymphocytes sanguins binucléés : Une entité à ne pas méconnaître." La Revue de Médecine Interne 23 (December 2002): 592s—593s. http://dx.doi.org/10.1016/s0248-8663(02)80478-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Granel, B., P. Disdier, J. Serratrice, A. M. Hubert, M. C. Alessi, H. Cannoni, K. Mazodier, et al. "Hyperlymphocytose B polyclonale des tabagiques et anticorps antiphospholipides : à propos de trois cas." La Revue de Médecine Interne 21 (December 2000): 483. http://dx.doi.org/10.1016/s0248-8663(00)90042-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Polyclonale"

1

FARRUGIA, ERIC-JEAN. "Hypergammaglobulinemies polyclonales : etude de cent cas dans un service de medecine interne." Toulouse 3, 1991. http://www.theses.fr/1991TOU31072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Massinga, Loembé Marguerite. "Caractérisation phénotypique et fonctionnelle des lymphocytes B dans la lymphocytose polyclonale chronique B." Thesis, Université Laval, 2004. http://www.theses.ulaval.ca/2004/22193/22193.pdf.

Повний текст джерела
Анотація:
La lymphocytose polyclonale chronique B (LPCB) est un syndrome peu connu caractérisé par une élévation polyclonale du nombre de lymphocytes B et de l’IgM sérique. Elle se distingue des pathologies lymphoïdes classiques par son origine polyclonale, sa grande stabilité ainsi que sa symptomatologie discrète et affecte majoritairement des femmes fumeuses. La présence de caractéristiques morphologiques et cytogénétiques distinctives, notamment cellules binucléées et anomalies génétiques (réarrangements bcl2/Ig multiples, isochromosome +i(3q)), guide le diagnostic initial. Ces particularités associées à un processus de transformation maligne contrastent avec l’apparente bénignité de la LPCB. Néanmoins, elles n’ont pas permis la délimitation précise de la population B impliquée dans la lymphocytose. Nos travaux avaient pour but d’identifier la population et les mécanismes impliqués dans l’émergence du syndrome, et éventuellement d’estimer les risques de progression clinique. En premier lieu, l’évaluation détaillée du profil immunologique des lymphocytes sanguins chez plusieurs patientes nous a permis de circonscrire formellement la lymphocytose aux cellules B IgD+IgM+CD27+. Mettant à profit les récentes avancées techniques et théoriques concernant la biologie du développement chez le lymphocyte B mature, nous avons entrepris l’analyse moléculaire des régions variables des gènes des immunoglobulines. Ces investigations ont confirmé le statut mémoire des cellules B en expansion dans la LPCB. Elles n’ont toutefois pas révélé la signature moléculaire résultant de sélection antigénique, processus central de la réponse immunitaire T-dépendante. Parallèlement, nos études fonctionnelles ont attesté de l’intégrité des molécules CD40 et AID, deux régulateurs clés de la maturation chez le lymphocyte B. Il ressort de nos analyses qu’un défaut dans la régulation de la réponse immunitaire, permettant le contournement de la sélection antigénique dans les centres germinatifs, plutôt qu’un blocage de différenciation cellulaire, serait probablement à l’origine de la lymphocytose. Alternativement, ces cellules pourraient être dérivées d’une population nouvellement caractérisée, les lymphocytes B mémoires de la zone marginale splénique, aussi retrouvés dans le sang, provenant présumement d’une voie de diversification indépendante des centres germinatifs. En conclusion, nos résultats ont permis de préciser le portrait diagnostique de la LPCB et de délimiter de nouvelles pistes de recherche touchant tant les aspects cliniques que la biologie fondamentale du syndrome.
Persistent polyclonal B cell lymphocytosis (PPBL) is an unusual haematological disorder, mainly detected in adult female smokers, that shares features of both benignity (polyclonal expansion, polyconal IgM secretion, lack of clinical symptoms, stable and mostly uneventful course); and features of malignancy (atypical binucleated cells, multiple bcl-2/Ig translocations, chromosome 3 anomalies, bone marrow involvement). Still, these morphological and clonal genetic anomalies have not been restricted to a distinctive B cell subset, and the apparent heterogeneity of the involved cellular population has long impeded further characterization of the syndrome. The aim of our research was to formally identify the population involved in the lymphocytosis, to gain some insight into the mechanisms at play in its development and to evaluate the risk for subsequent transformation in patients. Over the recent years, technical inputs from the molecular field have largely contributed to a better discrimination of the various B cells subsets and, by extension, of B cell lymphoid disorders. Thus, detailed immunophenotypic studies conducted in numerous PPBL patients allowed us to definitely circumscribe the disorder to IgD+IgM+CD27+ B lymphocytes, whereas exhaustive molecular analysis of immunoglobulin genes’ variable regions has corroborated the memory status of these cells. Yet, molecular signature of the antigenic selection process, the characteristic of a T-dependent immune response, was not detected. Sequencing of the CD40 and AID genes, key regulators in the diversification and affinity maturation of the immunoglobulin receptor, was additionally carried out and expression of both molecules was assessed. No anomaly was evidenced for either gene. In light of those observations, we conclude that a differentiation block in PPBL B lymphocytes is unlikely. Rather, we propose that defects in the affinity maturation process, namely impairment of the antigenic selection mechanism, allows the survival of low affinity IgD+IgM+CD27+ memory B lymphocytes in PPBL patients. Conversely, these cells could be related to the as yet scantily characterized IgD+IgM+CD27+ memory B cell subset from the splenic MZ, also found in the blood, and presumably derived from a germinal centre independent diversification pathway. Altogether, our results contributed to the elaboration of an accurate clinical definition for PPBL, and delineated avenues for future investigations regarding both the pathological aspects of the disorder and its purely fundamental biologic ramifications.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dueymes, Maryvonne. "Approche expérimentale du traitement des glomérulonéphrites lupiques par immunomodulation de la stimulation polyclonale." Lyon 1, 1989. http://www.theses.fr/1989LYO1H082.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Delamotte, Pierre. "Deciphering the metabolic bases of Drosophila intestinal tumors." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL064.

Повний текст джерела
Анотація:
Le métabolisme tumoral est étudié en raison de son importance dans la compréhension du fonctionnement des tumeurs et du développement de traitements anticancéreux. L’état des recherches actuelles prévoit, suivant le tissu et le stade de développement, le métabolisme des cellules tumorales, recensant ainsi les voies métaboliques empruntées par les tumeurs. Ces modèles restent néanmoins limités à des situations précises, et une compréhension globale des capacités métaboliques des cellules tumorales ainsi que leurs évolutions au cours du développement des tumeurs demeurent incompris. Mon projet de thèse consiste à caractériser les besoins métaboliques d’un modèle de tumeurs intestinales de drosophile. Ces tumeurs sont génétiquement induites par recombinaison somatique des cellules souches intestinales de façon contrôlée et reproductible. Premièrement, un criblage ARNi par cytométrie en flux a révélé, à différents niveaux, le besoin de plusieurs voies métaboliques pour soutenir la croissance tumorale. Une expérience de séquençage d’ARNm de cellules uniques de tumeurs isolées a confirmé ces résultats tout en révélant l’existence de groupes très conservés de cellules métaboliquement spécialisées au sein des tumeurs. L’utilisation de sondes métaboliques exprimées par les cellules tumorales nous a permis de confirmer l’hétérogénéité des tumeurs en imagerie d’une part, et de mettre en évidence une détermination métabolique des cellules avant la formation de tumeurs. Deuxièmement, la nature polyclonale des tumeurs a été démontrée par à l’aide d’outils de traçage du lignage cellulaire. Enfin, l’utilisation combinée d’un criblage ARNi par cytométrie en flux et d’outils de traçage du lignage cellulaire a mis en évidence l’importance du processus de migration cellulaire dans la croissance tumorale. Notre étude propose un modèle décrivant la formation des tumeurs, et leurs choix métaboliques – à l’échelle de la cellule – dans le cadre de tumeurs du tube digestif de la drosophile. Le concept de fusion de cellules tumorales issues d’évènements mutationnels différents, permettant l’obtention de tumeurs polyclonales pourrait constituer une nouvelle étape de progression tumorale dans certains types de cancers. Les résultats obtenus concernant les voies métaboliques préférentielles de ces cellules tumorales, leur besoin de migrer de de s’associer en tumeurs polyclonales constituent tout autant de pistes afin de développer ou de perfectionner des approches thérapeutiques contre le cancer
Tumor metabolism is extensively studied since its understanding is a milestone in developing efficient anti-cancer treatment. The current assumption in the field of tumor metabolism is a defined metabolism and tumor behavior for each type of tissue, providing a broad repertoire of cancer metabolic options. This vision is, however, limited to specific tumoral contexts so that the full metabolic capabilities of tumor cells or their metabolic evolutions throughout time remain unclear. My project aims to characterize metabolic requirements in a Drosophila midgut tumor model. These tumors are genetically induced by somatic recombination of intestinal stem cells in a controllable and reproducible manner. First, a cytometry-based RNAi screening has pointed, to various degrees, several metabolic pathways relevant to tumor growth. A single-cell RNA sequencing performed on isolated tumoral tissue not only confirmed this result but also showed metabolically specialized, highly conserved cell clusters. The use of genetically-encoded biosensors, allowed us to show metabolic heterogeneity within tumors and metabolic choices in cells before tumor formation. Second, the use of cell lineage tools on tumor cells reveals an obligatory polyclonality in this tumor model. Third, the combined use of cytometry-based RNAi screening and microscopy cell lineage tools demonstrate cell motility is a required process to form these tumors. Our study proposes a model for tumor formation and describes the metabolic pathways - at the cell resolution - performed in a Drosophila midgut tumor model. Importantly, the gathering of newly emerged cancer cells could constitute a new and critical step in tumor progression for polyclonal tumors. The experiments addressing preferential metabolic routes in tumors at early and late stages, cell motility, and cell gathering to tumors constitute as many potential targets to enrich current anti-cancer treatment and develop novel curative and preventing drugs
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ryckman, Carle. "Analyse moléculaire de l'expression du virus Epstein-Barr dans la lymphocytose polyclonale chronique B." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ31792.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Massinga, Loembé Marguerite. "La lymphocytose polyclonale chronique B, étude in vitro des propriétés biologiques des lymphocytes T et B." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0012/MQ41959.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ouedraogo, David Eric. "Exploration du réservoir EBV chez les patients infectés par le VIH : implications pathologiques." Thesis, Montpellier 1, 2013. http://www.theses.fr/2013MON1T001.

Повний текст джерела
Анотація:
Les lymphocytes B mémoires circulants incluant ceux infectés par EBV de façon latente retournent périodiquement vers les territoires lymphoïdes secondaires où ils subissent une différenciation en cellules productrices d'immunoglobulines permettant au virus d'initier la réplication virale. Cependant, le suivi et la gestion de la réactivation de EBV et son association avec des néoplasies lymphoïdes chez les sujets infectés par le VIH restent un sujet de controverse et nécessite une meilleure compréhension des mécanismes impliqués. Dans cette étude, nous avons proposé de nouveaux outils biologiques pour la quantification de l'ADN EBV permettant la discrimination entre le réservoir latent et le cycle lytique du virus. Nous avons montré que la taille de ces réservoirs est étroitement associée à une activation polyclonale plus ou moins importante des cellules B. Nous avons également observé une association entre les marqueurs d'activation immunitaire et de réactivation de EBV avec la survenue de lymphome B. En outre, nous avons décrit l'évolution de gammapathies monoclonales chez des sujets infectés par le VIH sous traitement antirétroviral, et la persistante du pic monoclonal d'immunoglobulines était associée à des charges virales EBV plus élevés. Par conséquent, l'activation des lymphocytes B et subséquemment la réactivation EBV joueraient vraisemblablement les rôles principaux dans la survenue de tumeurs bénignes ou malignes des lymphocytes B au cours de l'infection VIH
It is assumed that circulating memory B cells including those latently infected by EBV return periodically to lymphoid nodes where they are stimulates and undergo differentiation into immunoglobulin-producing cells allowing the virus to initiate viral replication. However, the monitoring and the management of EBV reactivation and it association with lymphoid malignancies in HIV-infected patients are still being controversies and need a better understanding of the probable mechanisms involved. In this study, we proposed novel biological tools for EBV DNA quantification allowing discriminating latent and lytic reservoir. We showed that the EBV reservoir levels are closely associated with the polyclonal B-cell activation. We also observed an association between immune activation and EBV reactivation markers with the occurrence of B-cell lymphoma. Moreover, we described a long term evolution of monoclonal gammapathies in HIV-infected subjects and the persistence of the immunoglobulis monoclonal pike was found to be associated with higher EBV reservoir levels. Therefore, the B-cell activation and subsequently EBV reactivation likely play the main roles on the occurrence of B lymphocytes malignancies during HIV infection
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chamond, Nathalie. "Quand un mitogène est une enzyme. ." Paris 6, 2003. http://www.theses.fr/2003PA066048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Leclercq, Lise. "Analyse du mode d'action du lymphocyte T "helper" : son rôle dans les phases précoces de l'activation de la cellule B et sa contribution à la régulation isotypique." Paris 7, 1985. http://www.theses.fr/1985PA077058.

Повний текст джерела
Анотація:
Lors d'une stimulation par un antigène protéique soluble, les lymphocytes B reconnaissent l'antigène grâce à leurs immunoglobulines (Ig) de surface et collaborent avec des lymphocytes T helper (Th) également spécifiques de cet antigène. Ces interactions cellulaires complexes conduisent la cellule B à produire des anticorps qui représentent la forme soluble de l'Ig de surface. Bien que tous dirigés contre l'antigène, ces anticorps peuvent néanmoins appartenir à différentes classes que l'on appelle isotypes et qui se distinguent par la nature de leur région constante. Notre travail réalisé dans un modèle murin utilisant des clones de lymphocytes Th spécifiques d'un antigène synthétique, le GAT (poly (G1u60 Ala30 Tyr ¹º)), a tenté d'analyser le mode d'action du lymphocyte Th, en particulier son rôle dans les phases précoces de l'activation de la cellule B et sa contribution à la régulation isotypique. Après avoir testé différents clones de lymphocytes Th pour leur capacité à induire une stimulation polyclonale de lymphocytes B vierges, nous avons concentré nos efforts sur le clone le plus actif, appelé 52. 3. Nous avons préparé du surnageant (SN) de culture du clone 52. 3 activé et montré que les lymphocytes B au repos, syngéniques ou allogéniques, prolifèrent en présence de ce SN et en l'absence de tout autre stimulus tel que celui délivré par des anticorps anti-Ig. Par cytométrie de flux, nous avons démontré qu'après stimulation avec du SN du clone 52. 3, la quasi-totalité des lymphocytes B hyperexpriment les antigènes Ia, augmentent de taille (30% d'entre eux devenant blastiques) et passent de G₀ en G₁, mais que seuls 20% d'entre eux atteignent les phases S et G₂/M du cycle cellulaire. Ces résultats nous ont conduits à postuler l'existence dans le SN d'une lymphokine agissant sur les lymphocytes B au repos en provoquant leur passage du stage G₀ au stade G₁ du cycle cellulaire et ceci d'une manière qui n'est pas restreinte par les gènes du complexe majeur d'histocompatibilité (CMH). Après stimulation avec le clone de lymphocytes Th 52. 3, des lymphocytes B spléniques IgM⁺ IgG⁻ (isolés par passage au trieur de cellules) sont capables de produire, en plus de l'isotype dominant IgM, des Ig appartenant aux différentes sous-classes d'IgG (avec une nette prédominance des IgG1). Des résultats analogues concernant la sécrétion des IgA ont été obtenus avec des lymphocytes IgM⁺ IgA⁻ isolés par adhérence sur une boîte recouverte d'anticorps anti-IgA. La stimulation de cellules B IgM⁺ IgG⁻ IgA⁻ par du SN du clone 52. 3 induit une réponse plus faible que celle induite par les cellules 52. 3 elles-mêmes, mais elle conduit néanmoins à une production des isotypes IgM, IgG et IgA. Parmi l'isotype IgG la sous-classe IgGi est dominante. Les expériences conduites sur des cellules B IgM⁺ IgG⁻ IgA⁻ semblent indiquer que des cellules Th spécifiques d'isotype ne sont pas indispensables pour qu'une cellule B primaire stimulée par une cellule Th spécifique d'un antigène produise des anticorps d'un isotype autre que IgM.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Callet-Bauchu, Évelyne. "Apport des techniques de cytogénétique moléculaire dans le démembrement des lymphomes malins non hodgkiniens diffus à petites cellules B et des lymphocytoses B polyclonales à lymphocytes binuclées." Lyon 1, 1998. http://www.theses.fr/1998LYO1T073.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Polyclonale"

1

Gray, Lynn. Dynamic antibody industry, including polyclonals and monoclonals. Norwalk, CT: Business Communications Co., 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rotheim, Philip. The dynamic antibody industry, including polyclonals and monoclonals. Norwalk, CT: Business Communications Co., 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Schmandt, Rosemarie Elizabeth. Production of polyclonal antibodies to protein kinase C. Ottawa: National Library of Canada, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Croll, Andrew David. The regulation of polyclonal mitogen-stimulated human gamma- interferon production. [s.l.]: typescript, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rotheim, Philip. The dynamic monoclonal and polyclonal antibody business: Products, applications, and markets. Norwalk, CT: Business Communications Co., 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Farooq, Muhammad. Glycosylation of monoclonal and polyclonal human IgG: Influences of protein structure and physiological environments. Birmingham: University of Birmingham, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Farooq, Muhammad. Glycosylation of monoclonal and polyclonal human IgG: Influences of protein structure and physiological environments. Birmingham: University of Birmingham, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Likitdecharote, Banchorn. Detection of mycoplasma infections in swine by culture and immunological methods using polyclonal and monoclonal antibodies. Hannover: [s.n.], 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Boucher, Guillaume. Kinetic studies of alternative substrates for existing polyclonal catalytic antibodies. 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Infectious molecular clones encoding the HIV clade C envelope and neutralizing polyclonal antibodies. 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Polyclonale"

1

Jákó, János. "Polyclonal gammopathies." In Gammopathy, 79–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84929-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pruett, Stephen B. "Polyclonal Activators." In Encyclopedia of Immunotoxicology, 708–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-54596-2_1190.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nakazawa, Masami, and Dongyou Liu. "Polyclonal Antibodies." In Handbook of Molecular Biotechnology, 252–60. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003055211-27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Resmini, Marina, Elizabeth L. Ostler, Keith Brocklehurst, and Gerard Gallacher. "Polyclonal Catalytic Antibodies." In Catalytic Antibodies, 470–90. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603662.ch17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pihl, Tina H., Kristin E. Illigen, and Gunnar Houen. "Polyclonal Peptide Antisera." In Methods in Molecular Biology, 103–7. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2999-3_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pihl, Tina H., Kristin E. Engelhart, and Gunnar Houen. "Polyclonal Peptide Antisera." In Methods in Molecular Biology, 129–33. New York, NY: Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-3914-6_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bailey, Graham S. "Raising of Polyclonal Antisera." In Springer Protocols Handbooks, 695–98. Totowa, NJ: Humana Press, 1996. http://dx.doi.org/10.1007/978-1-60327-259-9_120.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chatenoud, Lucienne. "Polyclonal and Monoclonal Antibodies." In Therapeutic Immunosuppression, 55–80. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0765-8_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Green, Jonathan A., and Margaret M. Manson. "Production of Polyclonal Antisera." In Immunochemical Protocols, 1–4. Totowa, NJ: Humana Press, 1998. http://dx.doi.org/10.1007/978-1-59259-257-9_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Real, Francisco X., Carme Bolós, and Egbert Oosterwijk. "Polyclonal and Monoclonal Techniques." In Glycoprotein Methods and Protocols, 353–68. Totowa, NJ: Humana Press, 2000. http://dx.doi.org/10.1385/1-59259-048-9:353.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Polyclonale"

1

Huang, Xuan-Yun, Dong-Mei Huang, and You-Qiong Cai. "Prepared polyclonal antibody of the semicarbazide." In 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 2015). Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/ic3me-15.2015.90.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cervantes, Ana Jazmín Otero, Cynthia Rodríguez-Nava, Karen Cortés Sarabia, Luz Del Carmen Alarcón Romero, Isela Parra Rojas, and Amalia Vences Velazquez. "P1.02 Production of polyclonals antibodies againstgardnerella vaginalis." In STI and HIV World Congress Abstracts, July 9–12 2017, Rio de Janeiro, Brazil. BMJ Publishing Group Ltd, 2017. http://dx.doi.org/10.1136/sextrans-2017-053264.110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Ma, Bai Lin, Jiao Li-cheng, and Chen Chang-guo. "Intrusion Detection Based on Adaptive Polyclonal Clustering." In 2006 International Conference on Computational Intelligence and Security. IEEE, 2006. http://dx.doi.org/10.1109/iccias.2006.294205.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Assaat, L. D., T. A. Ivandini, and E. Saepudin. "Purification and characterization of polyclonal antibody against acrylamide." In PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2017 (ISCPMS2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5064103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Maddipati, Ravikanth, and Ben Z. Stanger. "Abstract 4135: A polyclonal origin for pancreatic cancer metastases." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-4135.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Guntupalli, R., Jing Hu, Ramji S. Lakshmanan, Jiehui Wan, Shichu Huang, Hong Yang, James M. Barbaree, T. S. Huang, and Bryan A. Chin. "Detection of Salmonella typhimurium using polyclonal antibody immobilized magnetostrictive biosensors." In Defense and Security Symposium, edited by Edward M. Carapezza. SPIE, 2006. http://dx.doi.org/10.1117/12.665919.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wu, Yan, Jingjing Gao, Sulan Yu, and Shengjun Wang. "Expression of EV71-VP1 Protein and Preparation of Its Polyclonal Antibody." In 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2009. http://dx.doi.org/10.1109/icbbe.2009.5162834.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

El-Badry, Nader, Safwat El-Haddad, and Ahmed Hussien. "Production and Evaluation of Polyclonal Antisera for Detection of Ralstonia solanacearum." In Proceedings of the II International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2007). WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812837554_0018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Smith, Catherine C., Amy Paguirigan, Chen-Shan Chin, Michael Brown, Wendy Parker, Mark J. Levis, Alexander E. Perl, et al. "Abstract NG02: Polyclonal and heterogeneous resistance to targeted therapy in leukemia." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-ng02.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sarabia, Karen Cortés, Ana Jazmín Otero Cervantes, Cynthia Rodríguez Nava, Iris Paola Guzmán Guzmán;, Isela Parra Rojas, and Amalia Vences Velazquez. "P1.28 Production of a polyclonal antibody against the vaginolysin ofgardnerella vaginalis." In STI and HIV World Congress Abstracts, July 9–12 2017, Rio de Janeiro, Brazil. BMJ Publishing Group Ltd, 2017. http://dx.doi.org/10.1136/sextrans-2017-053264.136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Polyclonale"

1

Borgford, Thor. Human-based Polyclonal Antibodies to Ricin. Fort Belvoir, VA: Defense Technical Information Center, May 2010. http://dx.doi.org/10.21236/ada533217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sharon, Jacqueline. Recombinant Polyclonal Antibody Libraries for Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, September 2000. http://dx.doi.org/10.21236/ada397043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gershoni, Jonathan M., David E. Swayne, Tal Pupko, Shimon Perk, Alexander Panshin, Avishai Lublin, and Natalia Golander. Discovery and reconstitution of cross-reactive vaccine targets for H5 and H9 avian influenza. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7699854.bard.

Повний текст джерела
Анотація:
Research objectives: Identification of highly conserved B-cell epitopes common to either H5 or H9 subtypes of AI Reconstruction of conserved epitopes from (1) as recombinantimmunogens, and testing their suitability to be used as universal vaccine components by measuring their binding to Influenza vaccinated sera of birds Vaccination of chickens with reconstituted epitopes and evaluation of successful vaccination, clinical protection and viral replication Development of a platform to investigate the dynamics of immune response towards infection or an epitope based vaccine Estimate our ability to focus the immune response towards an epitope-based vaccine using the tool we have developed in (D) Summary: This study is a multi-disciplinary study of four-way collaboration; The SERPL, USDA, Kimron-Israel, and two groups at TAU with the purpose of evaluating the production and implementation of epitope based vaccines against avian influenza (AI). Systematic analysis of the influenza viral spike led to the production of a highly conserved epitope situated at the hinge of the HA antigen designated “cluster 300” (c300). This epitope consists of a total of 31 residues and was initially expressed as a fusion protein of the Protein 8 major protein of the bacteriophagefd. Two versions of the c300 were produced to correspond to the H5 and H9 antigens respectively as well as scrambled versions that were identical with regard to amino acid composition yet with varied linear sequence (these served as negative controls). The recombinantimmunogens were produced first as phage fusions and then subsequently as fusions with maltose binding protein (MBP) or glutathioneS-transferase (GST). The latter were used to immunize and boost chickens at SERPL and Kimron. Furthermore, vaccinated and control chickens were challenged with concordant influenza strains at Kimron and SEPRL. Polyclonal sera were obtained for further analyses at TAU and computational bioinformatics analyses in collaboration with Prof. Pupko. Moreover, the degree of protection afforded by the vaccination was determined. Unfortunately, no protection could be demonstrated. In parallel to the main theme of the study, the TAU team (Gershoni and Pupko) designed and developed a novel methodology for the systematic analysis of the antibody composition of polyclonal sera (Deep Panning) which is essential for the analyses of the humoral response towards vaccination and challenge. Deep Panning is currently being used to monitor the polyclonal sera derived from the vaccination studies conducted at the SEPRL and Kimron.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Barefoot, Susan F., Bonita A. Glatz, Nathan Gollop, and Thomas A. Hughes. Bacteriocin Markers for Propionibacteria Gene Transfer Systems. United States Department of Agriculture, June 2000. http://dx.doi.org/10.32747/2000.7573993.bard.

Повний текст джерела
Анотація:
The antibotulinal baceriocins, propionicin PLG-1 and jenseniin G., were the first to be identified, purified and characterized for the dairy propionibaceria and are produced by Propionibacterium thoenii P127 and P. thoenii/jensenii P126, respectively. Objectives of this project were to (a) produce polyclonal antibodies for detection, comparison and monitoring of propionicin PLG-1; (b) identify, clone and characterize the propionicin PLG-1 (plg-1) and jenseniin G (jnG) genes; and (3) develop gene transfer systems for dairy propionibacteria using them as models. Polyclonal antibodies for detection, comparison and monitoring of propionicin PLG-1 were produced in rabbits. Anti-PLG-1 antiserum had high titers (256,000 to 512,000), neutralized PLG-1 activity, and detected purified PLG-1 at 0.10 mg/ml (indirect ELISA) and 0.033 mg/ml (competitive indirect ELISA). Thirty-nine of 158 strains (most P. thoenii or P. jensenii) yielded cross-reacting material; four strains of P. thoenii, including two previously unidentified bacteriocin producers, showed biological activity. Eight propionicin-negative P127 mutants produced neither ELISA response nor biological activity. Western blot analyses of supernates detected a PLG-1 band at 9.1 kDa and two additional protein bands with apparent molecular weights of 16.2 and 27.5 kDa. PLG-1 polyclonal antibodies were used for detection of jenseniin G. PLG-1 antibodies neutralized jenseniin G activity and detected a jenseniin G-sized, 3.5 kDa peptide. Preliminary immunoprecipitation of crude preparations with PLG-1 antibodies yielded three proteins including an active 3-4 kDa band. Propionicin PLG-1 antibodies were used to screen a P. jensenii/thoenii P126 genomic expression library. Complete sequencing of a cloned insert identified by PLG-1 antibodies revealed a putative response regulator, transport protein, transmembrane protein and an open reading frame (ORF) potentially encoding jenseniin G. PCR cloning of the putative plg-1 gene yielded a 1,100 bp fragment with a 355 bp ORF encoding 118 amino acids; the deduced N-terminus was similar to the known PLG-1 N-terminus. The 118 amino acid sequence deduced from the putative plg-1 gene was larger than PLG-1 possibly due to post-translational processing. The product of the putative plg-1 gene had a calculated molecular weight of 12.8 kDa, a pI of 11.7, 14 negatively charged residues (Asp+Glu) and 24 positively charged residues (Arg+Lys). The putative plg-1 gene was expressed as an inducible fusion protein with a six-histidine residue tag. Metal affinity chromatography of the fused protein yielded a homogeneous product. The fused purified protein sequence matched the deduced putative plg-1 gene sequence. The data preliminarily suggest that both the plg-1 and jnG genes have been identified and cloned. Demonstrating that antibodies can be produced for propionicin PLG-1 and that those antibodies can be used to detect, monitor and compare activity throughout growth and purification was an important step towards monitoring PLG-1 concentrations in food systems. The unexpected but fortunate cross-reactivity of PLG-1 antibodies with jenseniin G led to selective recovery of jenseniin G by immunoprecipitation. Further refinement of this separation technique could lead to powerful affinity methods for rapid, specific separation of the two bacteriocins and thus facilitate their availability for industrial or pharmaceutical uses. Preliminary identification of genes encoding the two dairy propionibacteria bacteriocins must be confirmed; further analysis will provide means for understanding how they work, for increasing their production and for manipulating the peptides to increase their target species. Further development of these systems would contribute to basic knowledge about dairy propionibacteria and has potential for improving other industrially significant characteristics.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Loebenstein, Gad, William Dawson, and Abed Gera. Association of the IVR Gene with Virus Localization and Resistance. United States Department of Agriculture, August 1995. http://dx.doi.org/10.32747/1995.7604922.bard.

Повний текст джерела
Анотація:
We have reported that localization of TMV in tobacco cultivars with the N gene, is associated with a 23 K protein (IVR) that inhibited replication of several plant viruses. This protein was also found in induced resistant tissue of Nicotiana glutinosa x Nicotiana debneyi. During the present grant we found that TMV production is enhanced in protoplasts and plants of local lesion responding tobacco cultivars exposed to 35oC, parallel to an almost complete suppression of the production of IVR. We also found that IVR is associated with resistance mechanisms in pepper cultivars. We succeeded to clone the IVR gene. In the first attempt we isolated a clone - "101" which had a specific insert of 372 bp (the full length gene for the IVR protein of 23 kD should be around 700 bp). However, attempts to isolate the full length gene did not give clear cut results, and we decided not to continue with this clone. The amino acid sequence of the N-terminus of IVR was determined and an antiserum was prepared against a synthetic peptide representing amino acids residues 1-20 of IVR. Using this antiserum as well as our polyclonal antiserum to IVR a new clone NC-330 was isolated using lamba-ZAP library. This NC-330 clone has an insert of about 1 kB with an open reading frame of 596 bp. This clone had 86.6% homology with the first 15 amino acids of the N-terminal part of IVR and 61.6% homology with the first 23 amino acids of IVR. In the QIA expression system and western blotting of the expressed protein, a clear band of about 21 kD was obtained with IVR antiserum. This clone was used for transformation of Samsun tobacco plants and we have presently plantlets which were rooted on medium containing kanamycin. Hybridization with this clone was also obtained with RNA from induced resistant tissue of Samsun NN but not with RNA from healthy control tissue of Samsun NN, or infected or healthy tissue of Samsun. This further strengthens the previous data that the NC 330 clone codes for IVR. In the U.S. it was shown that IVR is induced in plants containing the N' gene when infected with mutants of TMV that elicit the HR. This is a defined system in which the elicitor is known to be due to permutations of the coat protein which can vary in elicitor strength. The objective was to understand how IVR synthesis is induced after recognition of elicitor coat protein in the signal transduction pathway that leads to HR. We developed systems to manipulate induction of IVR by modifying the elicitor and are using these elicitor molecules to isolate the corresponding plant receptor molecules. A "far-western" procedure was developed that found a protein from N' plants that specifically bind to elicitor coat proteins. This protein is being purified and sequenced. This objective has not been completed and is still in progress. We have reported that localization of TMV in tobacco cultivars with the N gene, is associated with a 23 K protein (IVR) that inhibited replication of several plant viruses. This protein was also found in induced resistant tissue of Nicotiana glutinosa x Nicotiana debneyi.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Or, Etti, Tai-Ping Sun, Amnon Lichter, and Avichai Perl. Characterization and Manipulation of the Primary Components in Gibberellin Signaling in the Grape Berry. United States Department of Agriculture, January 2010. http://dx.doi.org/10.32747/2010.7592649.bard.

Повний текст джерела
Анотація:
Seedless cultivars dominate the table grape industry. In these cultivars it is mandatory to apply gibberellin (GA) to stimulate berry development to a commercially acceptable size. These cultivars differ in their sensitivity to GA application, and it frequently results in adverse effects such as decreased bud fertility and increased fruit drop. Our long term goals are to (1) understand the molecular basis for the differential sensitivity and identify markers for selection of sensitive cultivars (2) to develop new strategies for targeted manipulation of the grape berry response to GA that will eliminate the need in GA application and the undesirable effects of GA on the vine, while maintaining its desirable effects on the berry. Both strategies are expected to reduce production cost and meet growing consumer demand for reduced use of chemicals. This approach relies on a comprehensive characterization of the central components in the GA signaling cascade in the berry. Several key components in the GA signaling pathway were identified in Arabidopsis and rice, including the GA receptors, GID1s, and a family of DELLA proteins that are the major negative regulators of the GA response. GA activates its response pathway by binding to GID1s, which then target DELLAs for degradation via interaction with SLY, a DELLA specific F-box protein. In grape, only one DELLA gene was characterized prior to this study, which plays a major role in inhibiting GA-promoted stem growth and GA-repressed floral induction but it does not regulate fruit growth. Therefore, we speculated that other DELLA family member(s) may control GA responses in berry, and their identification and manipulation may result in GA-independent berry growth. In the current study we isolated two additional VvDELLA family members, two VvGID1 genes and two VvSLY genes. Arabidopsis anti-AtRGA polyclonal antibodies recognized all three purified VvDELLA proteins, but its interaction with VvDELLA3 was weaker. Overexpression of the VvDELLAs, the VvGID1s, and the VvSLYs in the Arabidopsis mutants ga1-3/rga-24, gid1a-2/1c-2 and sly1-10, respectively, rescued the various mutant phenotypes. In vitro GAdependent physical interaction was shown between the VvDELLAs and the VvGID1s, and GAindependent interaction was shown between the VvDELLAs and VvSLYs. Interestingly, VvDELLA3 did not interact with VvGID1b. Together, the results indicate that the identified grape homologs serve as functional DELLA repressors, receptors and DELLA-interacting F-box proteins. Expression analyses revealed that (1) VvDELLA2 was expressed in all the analyzed tissues and was the most abundant (2) VvDELLA1 was low expressed in berries, confirming former study (3) Except in carpels and very young berries, VvDELLA3 levels were the lowest in most tissues. (4) Expression of both VvGID1s was detected in all the grape tissues, but VvGID1b transcript levels were significantly higher than VvGID1a. (5) In general, both VvDELLAs and VvGID1s transcripts levels increased as tissues aged. Unfertilized and recently fertilized carpels did not follow this trend, suggesting different regulatory mechanism of GA signaling in these stages. Characterization of the response to GA of various organs in three seedless cultivars revealed differential response of the berries and rachis. Interestingly, VvDELLA3 transcript levels in the GA-unresponsive berries of cv. Spring blush were significantly higher compared to their levels in the highly responsive berries of cv. Black finger. Assuming that VvDELLA2 and VvDELLA3 are regulating berry size, constructs carrying potential dominant mutations in each gene were created. Furthermore, constitutive silencing of these genes by mIR is underway, to reveal the effect of each gene on the berry phenotype.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Christopher, David A., and Avihai Danon. Plant Adaptation to Light Stress: Genetic Regulatory Mechanisms. United States Department of Agriculture, May 2004. http://dx.doi.org/10.32747/2004.7586534.bard.

Повний текст джерела
Анотація:
Original Objectives: 1. Purify and biochemically characterize RB60 orthologs in higher plant chloroplasts; 2. Clone the gene(s) encoding plant RB60 orthologs and determine their structure and expression; 3. Manipulate the expression of RB60; 4. Assay the effects of altered RB60 expression on thylakoid biogenesis and photosynthetic function in plants exposed to different light conditions. In addition, we also examined the gene structure and expression of RB60 orthologs in the non-vascular plant, Physcomitrella patens and cloned the poly(A)-binding protein orthologue (43 kDa RB47-like protein). This protein is believed to a partner that interacts with RB60 to bind to the psbA5' UTR. Thus, to obtain a comprehensive view of RB60 function requires analysis of its biochemical partners such as RB43. Background & Achievements: High levels of sunlight reduce photosynthesis in plants by damaging the photo system II reaction center (PSII) subunits, such as D1 (encoded by the chloroplast tpsbAgene). When the rate of D1 synthesis is less than the rate of photo damage, photo inhibition occurs and plant growth is decreased. Plants use light-activated translation and enhanced psbAmRNA stability to maintain D1 synthesis and replace the photo damaged 01. Despite the importance to photosynthetic capacity, these mechanisms are poorly understood in plants. One intriguing model derived from the algal chloroplast system, Chlamydomonas, implicates the role of three proteins (RB60, RB47, RB38) that bind to the psbAmRNA 5' untranslated leader (5' UTR) in the light to activate translation or enhance mRNA stability. RB60 is the key enzyme, protein D1sulfide isomerase (Pill), that regulates the psbA-RN :Binding proteins (RB's) by way of light-mediated redox potentials generated by the photosystems. However, proteins with these functions have not been described from higher plants. We provided compelling evidence for the existence of RB60, RB47 and RB38 orthologs in the vascular plant, Arabidopsis. Using gel mobility shift, Rnase protection and UV-crosslinking assays, we have shown that a dithiol redox mechanism which resembles a Pill (RB60) activity regulates the interaction of 43- and 30-kDa proteins with a thermolabile stem-loop in the 5' UTR of the psbAmRNA from Arabidopsis. We discovered, in Arabidopsis, the PD1 gene family consists of II members that differ in polypeptide length from 361 to 566 amino acids, presence of signal peptides, KDEL motifs, and the number and positions of thioredoxin domains. PD1's catalyze the reversible formation an disomerization of disulfide bonds necessary for the proper folding, assembly, activity, and secretion of numerous enzymes and structural proteins. PD1's have also evolved novel cellular redox functions, as single enzymes and as subunits of protein complexes in organelles. We provide evidence that at least one Pill is localized to the chloroplast. We have used PDI-specific polyclonal and monoclonal antisera to characterize the PD1 (55 kDa) in the chloroplast that is unevenly distributed between the stroma and pellet (containing membranes, DNA, polysomes, starch), being three-fold more abundant in the pellet phase. PD1-55 levels increase with light intensity and it assembles into a high molecular weight complex of ~230 kDa as determined on native blue gels. In vitro translation of all 11 different Pill's followed by microsomal membrane processing reactions were used to differentiate among PD1's localized in the endoplasmic reticulum or other organelles. These results will provide.1e insights into redox regulatory mechanisms involved in adaptation of the photosynthetic apparatus to light stress. Elucidating the genetic mechanisms and factors regulating chloroplast photosynthetic genes is important for developing strategies to improve photosynthetic efficiency, crop productivity and adaptation to high light environments.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

McClure, Michael A., Yitzhak Spiegel, David M. Bird, R. Salomon, and R. H. C. Curtis. Functional Analysis of Root-Knot Nematode Surface Coat Proteins to Develop Rational Targets for Plantibodies. United States Department of Agriculture, October 2001. http://dx.doi.org/10.32747/2001.7575284.bard.

Повний текст джерела
Анотація:
The goal of this research was to provide a better understanding of the interface between root-knot nematodes, Meloidogyne spp., and their host in order to develop rational targets for plantibodies and other novel methods of nematode control directed against the nematode surface coat (SC). Specific objectives were: 1. To produce additional monoclonal SC antibodies for use in Objectives 2, 3, and 4 and as candidates for development of plantibodies. 2. To determine the production and distribution of SC proteins during the infection process. 3. To use biochemical and immunological methods to perturbate the root-knot nematode SC in order to identify SC components that will serve as targets for rationally designed plantibodies. 4. To develop SC-mutant nematodes as additional tools for defining the role of the SC during infection. The external cuticular layer of nematodes is the epicuticle. In many nematodes, it is covered by a fuzzy material termed "surface coat" (SC). Since the SC is the outermost layer, it may playa role in the interaction between the nematode and its surroundings during all life stages in soil and during pathogenesis. The SC is composed mainly of proteins, carbohydrates (which can be part of glycoproteins), and lipids. SC proteins and glycoproteins have been labeled and extracted from preparasitic second-stage juveniles and adult females of Meloidogyne and specific antibodies have been raised against surface antigens. Antibodies can be used to gain more information about surface function and to isolate genes encoding for surface antigens. Characterization of surface antigens and their roles in different life-stages may be an important step towards the development of alternative control. Nevertheless, the role of the plant- parasitic nematode's surface in plant-nematode interaction is still not understood. Carbohydrates or carbohydrate-recognition domains (CROs) on the nematode surface may interact with CROs or carbohydrate molecules, on root surfaces or exudates, or be active after the nematode has penetrated into the root. Surface antigens undoubtedly play an important role in interactions with microorganisms that adhere to the nematodes. Polyclonal (PC) and monoclonal (MC) antibodies raised against Meloidogyne javanica, M. incognita and other plant-parasitic nematodes, were used to characterize the surface coat and secreted-excreted products of M. javanica and M. incognita. Some of the MC and PC antibodies raised against M. incognita showed cross-reactivity with the surface coat of M. javanica. Further characterization, in planta, of the epitopes recognized by the antibodies, showed that they were present in the parasitic juvenile stages and that the surface coat is shed during root penetration by the nematode and its migration between root cells. At the molecular level, we have followed two lines of experimentation. The first has been to identify genes encoding surface coat (SC) molecules, and we have isolated and characterized a small family of mucin genes from M. incognita. Our second approach has been to study host genes that respond to the nematode, and in particular, to the SC. Our previous work has identified a large suite of genes expressed in Lycopersicon esculentum giant cells, including the partial cDNA clone DB#131, which encodes a serine/threonine protein kinase. Isolation and predicted translation of the mature cDNA revealed a frame shift mutation in the translated region of nematode sensitive plants. By using primers homologous to conserved region of DB#131 we have identified the orthologues from three (nematode-resistant) Lycopersicon peruvianum strains and found that these plants lacked the mutation.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Morrison, Mark, and Joshuah Miron. Molecular-Based Analysis of Cellulose Binding Proteins Involved with Adherence to Cellulose by Ruminococcus albus. United States Department of Agriculture, November 2000. http://dx.doi.org/10.32747/2000.7695844.bard.

Повний текст джерела
Анотація:
At the beginning of this project, it was clear that R. albus adhered tightly to cellulose and its efficient degradation of this polysaccharide was dependent on micromolar concentrations of phenylacetic acid (PAA) and phenylpropionic acid (PPA). The objectives for our research were: i) to identify how many different kinds of cellulose binding proteins are produced by Ruminococcus albus; ii) to isolate and clone the genes encoding some of these proteins from the same bacterium; iii) to determine where these various proteins were located and; iv) quantify the relative importance of these proteins in affecting the rate and extent to which the bacterium becomes attached to cellulose. BARD support has facilitated a number of breakthroughs relevant to our fundamental understanding of the adhesion process. First, R. albus possesses multiple mechanisms for adhesion to cellulose. The P.I.'s laboratory has discovered a novel cellulose-binding protein (CbpC) that belongs to the Pil-protein family, and in particular, the type 4 fimbrial proteins. We have also obtained genetic and biochemical evidence demonstrating that, in addition to CbpC-mediated adhesion, R. albus also produces a cellulosome-like complex for adhesion. These breakthroughs resulted from the isolation (in Israel and the US) of spontaneously arising mutants of R. albus strains SY3 and 8, which were completely or partially defective in adhesion to cellulose, respectively. While the SY3 mutant strain was incapable of growth with cellulose as the sole carbon source, the strain 8 mutants showed varying abilities to degrade and grow with cellulose. Biochemical and gene cloning experiments have been used in Israel and the US, respectively, to identify what are believed to be key components of a cellulosome. This combination of cellulose adhesion mechanisms has not been identified previously in any bacterium. Second, differential display, reverse transcription polymerase chain reaction (DD RT-PCR) has been developed for use with R. albus. A major limitation to cellulose research has been the intractability of cellulolytic bacteria to genetic manipulation by techniques such as transposon mutagenesis and gene displacement. The P.I.'s successfully developed DD RT- PCR, which expanded the scope of our research beyond the original objectives of the project, and a subset of the transcripts conditionally expressed in response to PAA and PPA have been identified and characterized. Third, proteins immunochemically related to the CbpC protein of R. albus 8 are present in other R. albus strains and F. intestinalis, Western immunoblots have been used to examine additional strains of R. albus, as well as other cellulolytic bacteria of ruminant origin, for production of proteins immunochemically related to the CbpC protein. The results of these experiments showed that R. albus strains SY3, 7 and B199 all possess a protein of ~25 kDa which cross-reacts with polyclonal anti-CbpC antiserum. Several strains of Butyrivibrio fibrisolvens, Ruminococcus flavefaciens strains C- 94 and FD-1, and Fibrobacter succinogenes S85 produced no proteins that cross-react with the same antiserum. Surprisingly though, F. intestinalis strain DR7 does possess a protein(s) of relatively large molecular mass (~200 kDa) that was strongly cross-reactive with the anti- CbpC antiserum. Scientifically, our studies have helped expand the scope of our fundamental understanding of adhesion mechanisms in cellulose-degrading bacteria, and validated the use of RNA-based techniques to examine physiological responses in bacteria that are nor amenable to genetic manipulations. Because efficient fiber hydrolysis by many anaerobic bacteria requires both tight adhesion to substrate and a stable cellulosome, we believe our findings are also the first step in providing the resources needed to achieve our long-term goal of increasing fiber digestibility in animals.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Epel, Bernard L., Roger N. Beachy, A. Katz, G. Kotlinzky, M. Erlanger, A. Yahalom, M. Erlanger, and J. Szecsi. Isolation and Characterization of Plasmodesmata Components by Association with Tobacco Mosaic Virus Movement Proteins Fused with the Green Fluorescent Protein from Aequorea victoria. United States Department of Agriculture, September 1999. http://dx.doi.org/10.32747/1999.7573996.bard.

Повний текст джерела
Анотація:
The coordination and regulation of growth and development in multicellular organisms is dependent, in part, on the controlled short and long-distance transport of signaling molecule: In plants, symplastic communication is provided by trans-wall co-axial membranous tunnels termed plasmodesmata (Pd). Plant viruses spread cell-to-cell by altering Pd. This movement scenario necessitates a targeting mechanism that delivers the virus to a Pd and a transport mechanism to move the virion or viral nucleic acid through the Pd channel. The identity of host proteins with which MP interacts, the mechanism of the targeting of the MP to the Pd and biochemical information on how Pd are alter are questions which have been dealt with during this BARD project. The research objectives of the two labs were to continue their biochemical, cellular and molecular studies of Pd composition and function by employing infectious modified clones of TMV in which MP is fused with GFP. We examined Pd composition, and studied the intra- and intercellular targeting mechanism of MP during the infection cycle. Most of the goals we set for ourselves were met. The Israeli PI and collaborators (Oparka et al., 1999) demonstrated that Pd permeability is under developmental control, that Pd in sink tissues indiscriminately traffic proteins of sizes of up to 50 kDa and that during the sink to source transition there is a substantial decrease in Pd permeability. It was shown that companion cells in source phloem tissue export proteins which traffic in phloem and which unload in sink tissue and move cell to cell. The TAU group employing MP:GFP as a fluorescence probe for optimized the procedure for Pd isolation. At least two proteins kinases found to be associated with Pd isolated from source leaves of N. benthamiana, one being a calcium dependent protein kinase. A number of proteins were microsequenced and identified. Polyclonal antibodies were generated against proteins in a purified Pd fraction. A T-7 phage display library was created and used to "biopan" for Pd genes using these antibodies. Selected isolates are being sequenced. The TAU group also examined whether the subcellular targeting of MP:GFP was dependent on processes that occurred only in the presence of the virus or whether targeting was a property indigenous to MP. Mutant non-functional movement proteins were also employed to study partial reactions. Subcellular targeting and movement were shown to be properties indigenous to MP and that these processes do not require other viral elements. The data also suggest post-translational modification of MP is required before the MP can move cell to cell. The USA group monitored the development of the infection and local movement of TMV in N. benthamiana, using viral constructs expressing GFP either fused to the MP of TMV or expressing GFP as a free protein. The fusion protein and/or the free GFP were expressed from either the movement protein subgenomic promoter or from the subgenomic promoter of the coat protein. Observations supported the hypothesis that expression from the cp sgp is regulated differently than expression from the mp sgp (Szecsi et al., 1999). Using immunocytochemistry and electron microscopy, it was determined that paired wall-appressed bodies behind the leading edge of the fluorescent ring induced by TMV-(mp)-MP:GFP contain MP:GFP and the viral replicase. These data suggest that viral spread may be a consequence of the replication process. Observation point out that expression of proteins from the mp sgp is temporary regulated, and degradation of the proteins occurs rapidly or more slowly, depending on protein stability. It is suggested that the MP contains an external degradation signal that contributes to rapid degradation of the protein even if expressed from the constitutive cp sgp. Experiments conducted to determine whether the degradation of GFP and MP:GFP was regulated at the protein or RNA level, indicated that regulation was at the protein level. RNA accumulation in infected protoplast was not always in correlation with protein accumulation, indicating that other mechanisms together with RNA production determine the final intensity and stability of the fluorescent proteins.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії