Добірка наукової літератури з теми "Point scale"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Point scale".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Point scale"
Lin, Baowei, Fasheng Wang, Yi Sun, Wen Qu, Zheng Chen, and Shuo Zhang. "Boundary points based scale invariant 3D point feature." Journal of Visual Communication and Image Representation 48 (October 2017): 136–48. http://dx.doi.org/10.1016/j.jvcir.2017.05.007.
Повний текст джерелаLandrum, R. Eric. "Scaling Issues in Faculty Evaluations." Psychological Reports 84, no. 1 (February 1999): 178–80. http://dx.doi.org/10.2466/pr0.1999.84.1.178.
Повний текст джерелаLin, Baowei, Toru Tamaki, Fangda Zhao, Bisser Raytchev, Kazufumi Kaneda, and Koji Ichii. "Scale alignment of 3D point clouds with different scales." Machine Vision and Applications 25, no. 8 (September 12, 2014): 1989–2002. http://dx.doi.org/10.1007/s00138-014-0633-2.
Повний текст джерелаDawes, John. "Do Data Characteristics Change According to the Number of Scale Points Used? An Experiment Using 5-Point, 7-Point and 10-Point Scales." International Journal of Market Research 50, no. 1 (January 2008): 61–104. http://dx.doi.org/10.1177/147078530805000106.
Повний текст джерелаGunderman, Richard B., and Stephen Chan. "The 13-Point Likert Scale." Academic Radiology 20, no. 11 (November 2013): 1466–67. http://dx.doi.org/10.1016/j.acra.2013.04.010.
Повний текст джерелаDalal, Dev K., Nathan T. Carter, and Christopher J. Lake. "Middle Response Scale Options are Inappropriate for Ideal Point Scales." Journal of Business and Psychology 29, no. 3 (September 25, 2013): 463–78. http://dx.doi.org/10.1007/s10869-013-9326-5.
Повний текст джерелаEt.al, Santanu Choudhury. "Reliability and Validity of Compulsive Buying Scale Without Middle Point." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 3 (April 10, 2021): 3604–10. http://dx.doi.org/10.17762/turcomat.v12i3.1640.
Повний текст джерелаLin, Baowei, Fasheng Wang, Fangda Zhao, and Yi Sun. "Scale invariant point feature (SIPF) for 3D point clouds and 3D multi-scale object detection." Neural Computing and Applications 29, no. 5 (May 18, 2017): 1209–24. http://dx.doi.org/10.1007/s00521-017-2964-1.
Повний текст джерелаKartika, Nadya Larasati, and Nurul Alfiyati. "ANALYSIS OF AIRY POINT APPLICATION ON LINE SCALE CALIBRATION IN RCM LIPI." Jurnal Standardisasi 20, no. 3 (January 16, 2019): 189. http://dx.doi.org/10.31153/js.v20i3.717.
Повний текст джерелаWang, Guang Xue, Yong Chun Liu, and Huan He. "A New Multi-Scale Harris Interesting Point Detector." Applied Mechanics and Materials 602-605 (August 2014): 1950–55. http://dx.doi.org/10.4028/www.scientific.net/amm.602-605.1950.
Повний текст джерелаДисертації з теми "Point scale"
Lindeberg, Tony. "Scale Selection Properties of Generalized Scale-Space Interest Point Detectors." KTH, Beräkningsbiologi, CB, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-101220.
Повний текст джерелаQC 20121003
Image descriptors and scale-space theory for spatial and spatio-temporal recognition
Griffin, Joshua D. "Interior-point methods for large-scale nonconvex optimization /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2005. http://wwwlib.umi.com/cr/ucsd/fullcit?p3167839.
Повний текст джерелаGraehling, Quinn R. "Feature Extraction Based Iterative Closest Point Registration for Large Scale Aerial LiDAR Point Clouds." University of Dayton / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1607380713807017.
Повний текст джерелаSiegl, Manuel. "Atomic-scale investigation of point defect interactions in semiconductors." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10043636/.
Повний текст джерелаMarcia, Roummel F. "Primal-dual interior-point methods for large-scale optimization /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2002. http://wwwlib.umi.com/cr/ucsd/fullcit?p3044769.
Повний текст джерелаKhoury, Rasha. "Nanometer scale point contacting techniques for silicon Photovoltaic devices." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX070/document.
Повний текст джерелаThe use of point contacts has made the Passivated Emitter and Rear Cell design one of the most efficient monocrystalline-silicon photovoltaic cell designs in production. The main feature of such solar cell is that the rear surface is partially contacted by periodic openings in a dielectric film that provides surface passivation. However, a trade-off between ohmic losses and surface recombination is found. Due to the technology used to locally open the contacts in the passivation layer, the distance between neighboring contacts is on the order of hundreds of microns, introducing a significant series resistance.In this work, I explore the possibility and potential advantages of using nanoscale contact openings with a pitch between 300 nm to 10 µm. Analytic and numerical simulations done during the course of this thesis have shown that such nanoscale contacts would result in negligible ohmic losses while still keeping the surface recombination velocity Seff,rear at an acceptable level, as long as the recombination velocity at the contact (Scont) is in the range from 103-105 cm/s. To achieve such contacts in a potentially cost-reducing way, my experimental work has focused on the use of polystyrene nanospheres as a sacrificial mask.The thesis is therefore divided into three sections. The first section develops and explores processes to enable the formation of such contacts using various nanosphere dispersion, thin-film deposition, and layer etching processes. The second section describes a test device using a thin-film amorphous silicon NIP diode to explore the electrical properties of the point contacts. Finally, the third section considers the application of such point contacts on crystalline silicon by exploring localized doping through the nanoholes formed.In the first section, I have explored using polystyrene nanoparticles (NPs) as a patterning mask. The first two tested NPs deposition techniques (spray-coating, spin-coating) give poorly controlled distributions of nanospheres on the surface, but with very low values of coverage. The third tested NPs deposition technique (floating transfer technique) provided a closely-packed monolayer of NPs on the surface; this process was more repeatable but necessitated an additional O2 plasma step to reduce the coverage area of the sphere. This was performed using matrix distributed electron cyclotron resonance (MD-ECR) in order to etch the NPs by performing a detailed study.The NPs have been used in two ways; by using them as a direct deposition mask or by depositing a secondary etching mask layer on top of them.In the second section of this thesis, I have tested the nanoholes as electrical point-contacts in thin-film a-Si:H devices. For low-diffusion length technologies such as thin-film silicon, the distance between contacts must be in the order of few hundred nanometers. Using spin coated 100 nm NPs of polystyrene as a sacrificial deposition mask, I could form randomly spaced contacts with an average spacing of a few hundred nanometers. A set of NIP a-Si:H solar cells, using RF-PECVD, have been deposited on the back reflector substrates formed with metallic layers covered with dielectrics having nanoholes. Their electrical characteristics were compared to the same cells done with and without a complete dielectric layer. These structures allowed me to verify that good electrical contact through the nanoholes was possible, but no enhanced performance was observed.In the third section of this thesis, I investigate the use of such nanoholes in crystalline silicon technology by the formation of passivated contacts through the nanoholes. Boron doping by both thermal diffusion and ion implantation techniques were investigated. A thermally grown oxide layer with holes was used as the doping barrier. These samples were characterized, after removing the oxide layer, by secondary electron microscopy (SEM) and conductive probe atomic force microscopy (CP-AFM)
Colombo, Marco. "Advances in interior point methods for large-scale linear programming." Thesis, University of Edinburgh, 2007. http://hdl.handle.net/1842/2488.
Повний текст джерелаWehbe, Diala. "Simulations and applications of large-scale k-determinantal point processes." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I012/document.
Повний текст джерелаWith the exponentially growing amount of data, sampling remains the most relevant method to learn about populations. Sometimes, larger sample size is needed to generate more precise results and to exclude the possibility of missing key information. The problem lies in the fact that sampling large number may be a principal reason of wasting time.In this thesis, our aim is to build bridges between applications of statistics and k-Determinantal Point Process(k-DPP) which is defined through a matrix kernel. We have proposed different applications for sampling large data sets basing on k-DPP, which is a conditional DPP that models only sets of cardinality k. The goal is to select diverse sets that cover a much greater set of objects in polynomial time. This can be achieved by constructing different Markov chains which have the k-DPPs as their stationary distribution.The first application consists in sampling a subset of species in a phylogenetic tree by avoiding redundancy. By defining the k-DPP via an intersection kernel, the results provide a fast mixing sampler for k-DPP, for which a polynomial bound on the mixing time is presented and depends on the height of the phylogenetic tree.The second application aims to clarify how k-DPPs offer a powerful approach to find a diverse subset of nodes in large connected graph which authorizes getting an outline of different types of information related to the ground set. A polynomial bound on the mixing time of the proposed Markov chain is given where the kernel used here is the Moore-Penrose pseudo-inverse of the normalized Laplacian matrix. The resulting mixing time is attained under certain conditions on the eigenvalues of the Laplacian matrix. The third one purposes to use the fixed cardinality DPP in experimental designs as a tool to study a Latin Hypercube Sampling(LHS) of order n. The key is to propose a DPP kernel that establishes the negative correlations between the selected points and preserve the constraint of the design which is strictly confirmed by the occurrence of each point exactly once in each hyperplane. Then by creating a new Markov chain which has n-DPP as its stationary distribution, we determine the number of steps required to build a LHS with accordance to n-DPP
Leaf, Kyle, and Fulvio Melia. "A two-point diagnostic for the H ii galaxy Hubble diagram." OXFORD UNIV PRESS, 2018. http://hdl.handle.net/10150/627132.
Повний текст джерелаNxumalo, Jochonia Norman. "Cross-sectional imaging of semiconductor devices using nanometer scale point contacts." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0007/NQ32010.pdf.
Повний текст джерелаКниги з теми "Point scale"
Mitzi, Curtis, ed. The Incredible 5-Point Scale. Shawnee Mission, KS: Autism Asperger Publishing Co., 2003.
Знайти повний текст джерелаSchwarz, Udo, and Hendrik Hoelscher. Atomic-Scale Principles of Point Contact Friction. s.l.: Springer, 2006.
Знайти повний текст джерелаIEEE VLSI Test Symposium (17th 1999 Dana Point, Calif.). 17th IEEE VLSI Test Symposium: Proceedings : April 25-29, 1999, Dana Point, California. Los Alamitos, Calif: IEEE Computer Society, 1999.
Знайти повний текст джерелаMorrison, C. A. A study of point symbol design for computer based large scale tourist mapping. Portsmouth: University of Portsmouth, 1992.
Знайти повний текст джерелаMulti-point interconnects for globally-asynchronous locally-synchronous systems. Konstanz: Hartung-Gorre Verlag, 2005.
Знайти повний текст джерелаTamás, Terlaky, ed. Interior point methods of mathematical programming. Dordrecht, Netherlands: Kluwer, 1996.
Знайти повний текст джерелаLevkovitz, R. An investigation of interior point methods for large scale linear programs: Theory and computational algorithms. Uxbridge: Brunel University, 1992.
Знайти повний текст джерелаBuron, Kari Dunn. The incredible 5-point scale: Assisting students in understanding social interactions and controlling their emotional responses. 2nd ed. Shawnee Mission, Kan: AAPC Pub., 2012.
Знайти повний текст джерелаFitzgerald, Garrett Christopher. Multi-scale Analysis of Methane Gas Hydrate Formation and Dissociation via Point Source Thermal Stimulation and Carbon Dioxide Exchange. [New York, N.Y.?]: [publisher not identified], 2014.
Знайти повний текст джерелаK, Tanaabe, and United States. National Aeronautics and Space Administration., eds. A new method of determining acid base strength distribution and a new acidity-basicity scale for solid catalysts: The strongest point, Ho. Washington, D.C: National Aeronautics and Space Administration, 1988.
Знайти повний текст джерелаЧастини книг з теми "Point scale"
Axelsson, Owe. "Eigenvalue Estimates for Preconditioned Saddle Point Matrices." In Large-Scale Scientific Computing, 3–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24588-9_1.
Повний текст джерелаRethage, Dario, Johanna Wald, Jürgen Sturm, Nassir Navab, and Federico Tombari. "Fully-Convolutional Point Networks for Large-Scale Point Clouds." In Computer Vision – ECCV 2018, 625–40. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01225-0_37.
Повний текст джерелаLi, Yunpeng, Noah Snavely, Daniel P. Huttenlocher, and Pascal Fua. "Worldwide Pose Estimation Using 3D Point Clouds." In Large-Scale Visual Geo-Localization, 147–63. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25781-5_8.
Повний текст джерелаBetts, John T., Samuel K. Eldersveld, Paul D. Frank, and John G. Lewis. "An Interior-Point Algorithm for Large Scale Optimization." In Large-Scale PDE-Constrained Optimization, 184–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55508-4_11.
Повний текст джерелаBängtsson, Erik, and Maya Neytcheva. "An Agglomerate Multilevel Preconditioner for Linear Isostasy Saddle Point Problems." In Large-Scale Scientific Computing, 113–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11666806_11.
Повний текст джерелаLeibfritz, Friedemann, and Ekkehard W. Sachs. "Numerical Solution of Parabolic State Constrained Control Problems Using SQP- and Interior-Point-Methods." In Large Scale Optimization, 245–58. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4613-3632-7_13.
Повний текст джерелаTits, André L., and Jian L. Zhou. "A Simple, Quadratically Convergent Interior Point Algorithm for Linear Programming and Convex Quadratic Programming." In Large Scale Optimization, 411–27. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4613-3632-7_20.
Повний текст джерелаGiovangigli, V., and M. D. Smooke. "Extinction Limits for Premixed Laminar Flames in a Stagnation Point Flow." In Large Scale Scientific Computing, 138–58. Boston, MA: Birkhäuser Boston, 1987. http://dx.doi.org/10.1007/978-1-4684-6754-3_9.
Повний текст джерелаPark, Hyun Soo, Yu Wang, Eriko Nurvitadhi, James C. Hoe, Yaser Sheikh, and Mei Chen. "3D Point Cloud Reduction Using Mixed-Integer Quadratic Programming." In Large-Scale Visual Geo-Localization, 189–203. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25781-5_10.
Повний текст джерелаMartin, Richard Kipp. "Interior Point Algorithms: Polyhedral Transformations." In Large Scale Linear and Integer Optimization: A Unified Approach, 219–60. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4975-8_7.
Повний текст джерелаТези доповідей конференцій з теми "Point scale"
Serajeh, Reza, Amir Ebrahimi Ghahnavieh, and Karim Faez. "Multi scale feature point tracking." In 2014 22nd Iranian Conference on Electrical Engineering (ICEE). IEEE, 2014. http://dx.doi.org/10.1109/iraniancee.2014.6999699.
Повний текст джерелаLin, Baowei, Fangda Zhao, Toru Tamaki, Fasheng Wang, and Le Xiao. "SIPF: Scale invariant point feature for 3D point clouds." In 2015 IEEE International Conference on Image Processing (ICIP). IEEE, 2015. http://dx.doi.org/10.1109/icip.2015.7351275.
Повний текст джерелаLam, Michael O., and Barry L. Rountree. "Floating-Point Shadow Value Analysis." In 2016 5th Workshop on Extreme-Scale Programming Tools (ESPT). IEEE, 2016. http://dx.doi.org/10.1109/espt.2016.007.
Повний текст джерелаLin, Baowei, Toru Tamaki, Bisser Raytchev, Kazufumi Kaneda, and Koji Ichii. "Scale ratio ICP for 3D point clouds with different scales." In 2013 20th IEEE International Conference on Image Processing (ICIP). IEEE, 2013. http://dx.doi.org/10.1109/icip.2013.6738457.
Повний текст джерелаGuo Ming, Zhao Youshan, Wang Yanmin, and Zhou Junzhao. "Modeling of large-scale point model." In 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS 2009). IEEE, 2009. http://dx.doi.org/10.1109/icicisys.2009.5357654.
Повний текст джерелаKyae, B. "Shifted Focus Point and Gluino Mass Bound in the Minimal Mixed Mediation of SUSY Breaking." In 18th International Conference From the Planck Scale to the Electroweak Scale. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.258.0074.
Повний текст джерелаJihua Zhu, Nanning Zheng, Zejian yuan, and Shaoyi Du. "Point-to-line metric based Iterative Closest Point with bounded scale." In 2009 4th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2009. http://dx.doi.org/10.1109/iciea.2009.5138705.
Повний текст джерелаWang, Jun, Xiaolong Li, Alan Sullivan, Lynn Abbott, and Siheng Chen. "PointMotionNet: Point-Wise Motion Learning for Large-Scale LiDAR Point Clouds Sequences." In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2022. http://dx.doi.org/10.1109/cvprw56347.2022.00488.
Повний текст джерелаContreras, Jhonatan, and Joachim Denzler. "Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds." In IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019. http://dx.doi.org/10.1109/igarss.2019.8899303.
Повний текст джерелаHongchen Chen, Zongze Wu, Shaoyi Du, Nan Zhou, and Jing Sun. "Robust scale iterative closest point algorithm based on correntropy for point set registration." In 2016 Australian Control Conference (AuCC). IEEE, 2016. http://dx.doi.org/10.1109/aucc.2016.7868195.
Повний текст джерелаЗвіти організацій з теми "Point scale"
McVay, Aaron. Point Cloud Storage and Access on a Global Scale. Fort Belvoir, VA: Defense Technical Information Center, January 2015. http://dx.doi.org/10.21236/ada619005.
Повний текст джерелаAmes, Lawrence L., and Edward J. George. Revision and Verification of a Seven-Point Workload Estimate Scale. Fort Belvoir, VA: Defense Technical Information Center, July 1993. http://dx.doi.org/10.21236/ada269194.
Повний текст джерелаNash, J. G. VLSI (Very Large Scale Integration) Floating Point Chip Design Study. Fort Belvoir, VA: Defense Technical Information Center, November 1985. http://dx.doi.org/10.21236/ada164198.
Повний текст джерелаFrieman, J. A., and E. Gaztanaga. The three-point function as a probe of models for large-scale structure. Office of Scientific and Technical Information (OSTI), June 1993. http://dx.doi.org/10.2172/6280691.
Повний текст джерелаFrieman, J. A., and E. Gaztanaga. The three-point function as a probe of models for large-scale structure. Office of Scientific and Technical Information (OSTI), June 1993. http://dx.doi.org/10.2172/10171918.
Повний текст джерелаDhakal, Tilak Raj. Multi-scale calculation based on dual domain material point method combined with molecular dynamics. Office of Scientific and Technical Information (OSTI), February 2017. http://dx.doi.org/10.2172/1345173.
Повний текст джерелаBixby, Robert E., John W. Gregory, Irvin J. Lustig, Roy E. Marsten, and David F. Shanno. Very Large-Scale Linear Programming: A Case Study in Combining Interior Point and Simplex Methods. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada452700.
Повний текст джерелаDuque, Earl, Steve Legensky, Brad Whitlock, David Rogers, Andrew Bauer, Scott Imlay, David Thompson, and Seiji Tsutsumi. Summary of the SciTech 2020 Technical Panel on In Situ/In Transit Computational Environments for Visualization and Data Analysis. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/40887.
Повний текст джерелаLever, James, Susan Taylor, Arnold Song, Zoe Courville, Ross Lieblappen, and Jason Weale. The mechanics of snow friction as revealed by micro-scale interface observations. Engineer Research and Development Center (U.S.), December 2021. http://dx.doi.org/10.21079/11681/42761.
Повний текст джерелаBurns, Danny, Marina Apgar, and Anna Raw. Designing a Participatory Programme at Scale: Phases 1 and 2 of the CLARISSA Programme on Worst Forms of Child Labour. Institute of Development Studies (IDS), July 2021. http://dx.doi.org/10.19088/clarissa.2021.004.
Повний текст джерела