Добірка наукової літератури з теми "Plasmonic properties"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Plasmonic properties".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Plasmonic properties"
Hu, Bin, Ying Zhang, and Qi Jie Wang. "Surface magneto plasmons and their applications in the infrared frequencies." Nanophotonics 4, no. 4 (November 6, 2015): 383–96. http://dx.doi.org/10.1515/nanoph-2014-0026.
Повний текст джерелаYou, Chenglong, Apurv Chaitanya Nellikka, Israel De Leon, and Omar S. Magaña-Loaiza. "Multiparticle quantum plasmonics." Nanophotonics 9, no. 6 (April 17, 2020): 1243–69. http://dx.doi.org/10.1515/nanoph-2019-0517.
Повний текст джерелаBabicheva, Viktoriia E. "Optical Processes behind Plasmonic Applications." Nanomaterials 13, no. 7 (April 3, 2023): 1270. http://dx.doi.org/10.3390/nano13071270.
Повний текст джерелаGenç, Aziz, Javier Patarroyo, Jordi Sancho-Parramon, Neus G. Bastús, Victor Puntes, and Jordi Arbiol. "Hollow metal nanostructures for enhanced plasmonics: synthesis, local plasmonic properties and applications." Nanophotonics 6, no. 1 (January 6, 2017): 193–213. http://dx.doi.org/10.1515/nanoph-2016-0124.
Повний текст джерелаKhan, Pritam, Grace Brennan, James Lillis, Syed A. M. Tofail, Ning Liu, and Christophe Silien. "Characterisation and Manipulation of Polarisation Response in Plasmonic and Magneto-Plasmonic Nanostructures and Metamaterials." Symmetry 12, no. 8 (August 17, 2020): 1365. http://dx.doi.org/10.3390/sym12081365.
Повний текст джерелаTao, Z. H., H. M. Dong, and Y. F. Duan. "Anomalous plasmon modes of single-layer MoS2." Modern Physics Letters B 33, no. 18 (June 26, 2019): 1950200. http://dx.doi.org/10.1142/s0217984919502002.
Повний текст джерелаKuzmin, Dmitry A., Igor V. Bychkov, Vladimir G. Shavrov, and Vasily V. Temnov. "Plasmonics of magnetic and topological graphene-based nanostructures." Nanophotonics 7, no. 3 (February 23, 2018): 597–611. http://dx.doi.org/10.1515/nanoph-2017-0095.
Повний текст джерелаVerma, Sneha, Akhilesh Kumar Pathak, and B. M. Azizur Rahman. "Review of Biosensors Based on Plasmonic-Enhanced Processes in the Metallic and Meta-Material-Supported Nanostructures." Micromachines 15, no. 4 (April 6, 2024): 502. http://dx.doi.org/10.3390/mi15040502.
Повний текст джерелаAli, Adnan, Fedwa El-Mellouhi, Anirban Mitra, and Brahim Aïssa. "Research Progress of Plasmonic Nanostructure-Enhanced Photovoltaic Solar Cells." Nanomaterials 12, no. 5 (February 25, 2022): 788. http://dx.doi.org/10.3390/nano12050788.
Повний текст джерелаAbed, Jehad, Nitul S. Rajput, Amine El Moutaouakil, and Mustapha Jouiad. "Recent Advances in the Design of Plasmonic Au/TiO2 Nanostructures for Enhanced Photocatalytic Water Splitting." Nanomaterials 10, no. 11 (November 15, 2020): 2260. http://dx.doi.org/10.3390/nano10112260.
Повний текст джерелаДисертації з теми "Plasmonic properties"
Cole, R. M. "Plasmonic properties of metal nanovoids." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.597832.
Повний текст джерелаDieleman, Frederik. "Quantum properties of plasmonic waveguides." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/49436.
Повний текст джерелаPeruch, Silvia. "Ultrafast properties of plasmonic nanorod metamaterial." Thesis, King's College London (University of London), 2016. https://kclpure.kcl.ac.uk/portal/en/theses/ultrafast-properties-of-plasmonic-nanorod-metamaterial(d981b5e4-b959-4193-8cf1-219b68de08d6).html.
Повний текст джерелаChen, Lihui. "Synthesis and Plasmonic Properties of Copper-based Nanocrystals." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/217134.
Повний текст джерелаStrandberg, Östman Felicia. "Optical Properties of Plasmonic Ag/Ni Square Nanostructures." Thesis, Uppsala universitet, Materialfysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-256885.
Повний текст джерелаChing, Suet Ying. "Plasmonic properties of silver-based alloy thin films." HKBU Institutional Repository, 2015. https://repository.hkbu.edu.hk/etd_oa/194.
Повний текст джерелаHung, Yu-Ju. "Studies of the optical properties of plasmonic nanostructures." College Park, Md.: University of Maryland, 2007. http://hdl.handle.net/1903/7735.
Повний текст джерелаThesis research directed by: Dept. of Electrical and Computer Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Kolkowski, Radoslaw. "Studies of nonlinear optical properties of plasmonic nanostructures." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLN001/document.
Повний текст джерелаThe aim of this thesis and the underlying research work is to demonstrate the benefits emerging from combination of the peculiar properties of plasmonic nanostructures with the most interesting aspects of nonlinear optics. For this purpose, analytical and numerical modeling was combined with experimental work, which included nanofabrication and measurements performed by means of polarization-resolved nonlinear confocal microscopy and by modified Z-scan technique (called "f-scan").It has been shown that the effective anisotropy of the second-harmonic generation in plasmonic crystals (formed by rectangular arrays of tetrahedral recesses in silver surface) can be controlled by proper choice of lattice constants. It also has been shown that this anisotropy arises mainly from the anisotropic photonic band structure, exhibiting plasmonic band gap with plasmonic band edge states, enabling enhancement of the local electric field.Two-dimensional chiral arrangements of triangular gold nanoparticles, forming plasmonic enantiomeric "meta-molecules", have been studied by nonlinear microscopy operating with circularly polarized light and by numerical modeling, revealing strong chiroptical effect in backscattered second-harmonic radiation. Small size of individual enantiomers allows to create "watermarks", encoded by the chirality of meta-molecules, which can be readout by imaging of second-harmonic generation excited by circularly polarized laser beam.Quantitative characterization of the third-order optical nonlinearity and saturable absorption efficiency of aqueous solutions of graphene and gold-nanoparticle decorated graphene has been performed by novel "f-scan" technique, which has been created and developed by incorporation of a focus-tunable lens into traditional Z-scan. These studies have shown that the graphene exhibits very efficient ultrafast saturable absorption, which is occasionally suppressed by reverse saturable absorption. Moreover, it turns out that decoration of graphene by gold nanoparticles may cause a slight improvement of the saturable absorption efficiency parameter within spectral range of their plasmon resonances.In summary, the following thesis presents various nonlinear optical properties of plasmonic nanostructures. Different possibilities of controlling these properties by means of nano-engineering, supported by analytical and numerical modeling, is also analyzed and demonstrated. This work opens up new perspectives for fabrication and rational design of novel photonic nano-materials and nano-devices based on nonlinear nanoplasmonic phenomena
MAGNOZZI, MICHELE. "Temperature-dependent optical properties of composite plasmonic nanomaterials." Doctoral thesis, Università degli studi di Genova, 2019. http://hdl.handle.net/11567/941310.
Повний текст джерелаFERRERA, MARZIA. "Local optical properties of 2D semiconductor/plasmonic heterostructures." Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1077989.
Повний текст джерелаКниги з теми "Plasmonic properties"
service), SpringerLink (Online, ed. Self-Organized Arrays of Gold Nanoparticles: Morphology and Plasmonic Properties. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Знайти повний текст джерелаSönnichsen, Carsten. Plasmons in metal nanostructures. Göttingen: Cuvillier, 2001.
Знайти повний текст джерелаTurunen, Anton E. Plasmons: Structure, properties, and applications. Hauppauge, N.Y: Nova Science Publishers, 2011.
Знайти повний текст джерелаV, Klimov V. Nanoplazmonika. Moskva: Fizmatlit, 2010.
Знайти повний текст джерела1957-, Shalaev Vladimir M., ed. Nanoplasmonics. Amsterdam: Elsevier, 2006.
Знайти повний текст джерелаlibrary, Wiley online, ed. Nanophotonic materials: Photonic crystals, plasmonics, and metamaterials. Weinheim: Wiley-VCH, 2008.
Знайти повний текст джерела1966-, Kawata Satoshi, Shalaev Vladimir M. 1957-, Tsai Din P. 1959-, and Society of Photo-optical Instrumentation Engineers., eds. Plasmonics: Nanoimaging, nanofabrication, and their applications II : 16-17 August, 2006, San Diego, California, USA. Bellingham, Wash: SPIE, 2006.
Знайти повний текст джерелаJ, Halas Naomi, and Society of Photo-optical Instrumentation Engineers., eds. Plasmonics: Metallic nanostructures and their optical properties : 3-5 August 2003, San Diego, California, USA. Bellingham, Wash., USA: SPIE, 2003.
Знайти повний текст джерела1975-, Qiu Min, ed. Optical properties of nanostructures. Singapore: Pan Stanford, 2011.
Знайти повний текст джерелаKawata, Satoshi. Plasmonics: Nanoimaging, nanofabrication, and their applications IV : 10-14 August 2008, San Diego, California, USA. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2008.
Знайти повний текст джерелаЧастини книг з теми "Plasmonic properties"
Zhang, Zhenglong. "Electromagnetic Properties of Materials." In Plasmonic Photocatalysis, 5–13. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5188-6_2.
Повний текст джерелаSong, Chengyi, Chen Zhang, and Peng Tao. "Plasmonic Chiral Materials." In Chiral Nanomaterials: Preparation, Properties and Applications, 51–84. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527682782.ch3.
Повний текст джерелаSaliminasab, Maryam, Rostam Moradian, and Farzad Shirzaditabar. "Tunable Plasmonic Properties of Nanoshells." In Reviews in Plasmonics, 141–68. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18834-4_6.
Повний текст джерелаTrügler, Andreas. "Nonlinear Optical Effects of Plasmonic Nanoparticles." In Optical Properties of Metallic Nanoparticles, 157–62. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25074-8_7.
Повний текст джерелаBerger, C., E. H. Conrad, and W. A. de Heer. "Optical and plasmonic properties of epigraphene." In Physics of Solid Surfaces, 741–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53908-8_171.
Повний текст джерелаHachtel, Jordan A. "The Plasmonic Response of Archimedean Spirals." In The Nanoscale Optical Properties of Complex Nanostructures, 91–104. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70259-9_6.
Повний текст джерелаSerdega, B. K., S. P. Rudenko, L. S. Maksimenko, and I. E. Matyash. "Plasmonic optical properties and the polarization modulation technique." In Polarimetric Detection, Characterization and Remote Sensing, 473–500. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1636-0_18.
Повний текст джерелаMasciotti, Valentina, Denys Naumenko, Marco Lazzarino, and Luca Piantanida. "Tuning Gold Nanoparticles Plasmonic Properties by DNA Nanotechnology." In DNA Nanotechnology, 279–97. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8582-1_19.
Повний текст джерелаKauranen, Martti, Hannu Husu, Jouni Mäkitalo, Robert Czaplicki, Mariusz Zdanowicz, Joonas Lehtolahti, Janne Laukkanen, and Markku Kuittinen. "Second-Order Nonlinear Optical Properties of Plasmonic Nanostructures." In Challenges and Advances in Computational Chemistry and Physics, 207–35. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7805-4_6.
Повний текст джерелаSardana, Sanjay K., Sanjay K. Srivastava, and Vamsi K. Komarala. "Tunable Plasmonic Properties from Ag–Au Alloy Nanoparticle Thin Films." In Springer Proceedings in Physics, 415–18. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97604-4_63.
Повний текст джерелаТези доповідей конференцій з теми "Plasmonic properties"
Takeuchi, Hiroki, Junfeng Yue, Keisuke Imaeda, and Kosei Ueno. "Near-field spectral properties and ultrafast dynamics of coupled plasmonic nanostructures." In Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.p_cm16_12.
Повний текст джерелаKarakhanyan, Vage, Clement Eustache, Yannick Lefier, and Thierry Grosjean. "Optomagnetism in plasmonic nanostructures." In Photonic and Phononic Properties of Engineered Nanostructures XII, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2022. http://dx.doi.org/10.1117/12.2612940.
Повний текст джерелаAbdollahramezani, Sajjad, Omid Hemmatyar, Hossein Taghinejad, Muliang Zhu, Alexander L. Gallmon, and Ali Adibi. "Reconfigurable hybrid plasmonic-dielectric metasurfaces." In Photonic and Phononic Properties of Engineered Nanostructures XI, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2021. http://dx.doi.org/10.1117/12.2590717.
Повний текст джерелаSwillam, Mohamed A., Diaa Khalil, Qiaoqiang Gan, and Raghi El Shamy. "Mid-infrared plasmonic gas sensor." In Photonic and Phononic Properties of Engineered Nanostructures VIII, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2018. http://dx.doi.org/10.1117/12.2290875.
Повний текст джерелаCrozier, Kenneth B. "Inverse design of plasmonic nanotweezers." In Photonic and Phononic Properties of Engineered Nanostructures XIV, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2024. http://dx.doi.org/10.1117/12.3010032.
Повний текст джерелаJoshi, Hira. "Optical properties of plasmonic nanostructures." In EMERGING INTERFACES OF PHYSICAL SCIENCES AND TECHNOLOGY 2019: EIPT2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0000524.
Повний текст джерелаGu, Guiru, Jarrod Vaillancourt, and Xuejun Lu. "Backside configured surface plasmonic enhancement." In ELECTRONIC, PHOTONIC, PLASMONIC, PHONONIC AND MAGNETIC PROPERTIES OF NANOMATERIALS. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4870217.
Повний текст джерелаTaghinejad, Mohammad, Chenyi Xia, Martin Hrton, Kyutae Lee, Andrew Kim, Qitong Li, Burak Guzelturk, et al. "Terahertz radiation of plasmonic hot carriers." In Photonic and Phononic Properties of Engineered Nanostructures XIV, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2024. http://dx.doi.org/10.1117/12.3010182.
Повний текст джерелаKanoda, Masatoshi, Kota Hayashi, Mamoru Tamura, Shiho Tokonami, and Takuya Iida. "Detection of Biological Nanoparticles by Photothermal Convection with Plasmonic Nano-bowl Substrate." In Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.ctup16e_04.
Повний текст джерелаOoi, C. H. Raymond. "Quantum optical properties in plasmonic systems." In NATIONAL PHYSICS CONFERENCE 2014 (PERFIK 2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4915161.
Повний текст джерелаЗвіти організацій з теми "Plasmonic properties"
Hollingsworth, Jennifer, Victoria Nisoli, Ekaterina Dolgopolova, Paul Bourdin, Andrew West, siyuan zhang, Matthew Schneider, Sergei Ivanov, and Maiken mikkelsen. Near Infrared Plasmonic Properties in Spinel Metal Oxide Nanocrystals. Office of Scientific and Technical Information (OSTI), August 2023. http://dx.doi.org/10.2172/1993209.
Повний текст джерелаHalas, Naomi, and Surbhi Lal. Plexcitonics: Coupled and Plasmon-Exciton Systems with Tailorable Properties. Fort Belvoir, VA: Defense Technical Information Center, November 2013. http://dx.doi.org/10.21236/ada594759.
Повний текст джерелаHowe, James M. Using Plasmon Peaks in Electron Energy-Loss Spectroscopy to Determine the Physical and Mechanical Properties of Nanoscale Materials. Office of Scientific and Technical Information (OSTI), May 2013. http://dx.doi.org/10.2172/1078573.
Повний текст джерела