Добірка наукової літератури з теми "Plasmonic properties"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Plasmonic properties".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Plasmonic properties"

1

Hu, Bin, Ying Zhang, and Qi Jie Wang. "Surface magneto plasmons and their applications in the infrared frequencies." Nanophotonics 4, no. 4 (November 6, 2015): 383–96. http://dx.doi.org/10.1515/nanoph-2014-0026.

Повний текст джерела
Анотація:
Abstract Due to their promising properties, surface magneto plasmons have attracted great interests in the field of plasmonics recently. Apart from flexible modulation of the plasmonic properties by an external magnetic field, surface magneto plasmons also promise nonreciprocal effect and multi-bands of propagation, which can be applied into the design of integrated plasmonic devices for biosensing and telecommunication applications. In the visible frequencies, because it demands extremely strong magnetic fields for the manipulation of metallic plasmonic materials, nano-devices consisting of metals and magnetic materials based on surface magneto plasmon are difficult to be realized due to the challenges in device fabrication and high losses. In the infrared frequencies, highly-doped semiconductors can replace metals, owning to the lower incident wave frequencies and lower plasma frequencies. The required magnetic field is also low, which makes the tunable devices based on surface magneto plasmons more practically to be realized. Furthermore, a promising 2D material-graphene shows great potential in infrared magnetic plasmonics. In this paper, we review the magneto plasmonics in the infrared frequencies with a focus on device designs and applications. We investigate surface magneto plasmons propagating in different structures, including plane surface structures and slot waveguides. Based on the fundamental investigation and theoretical studies, we illustrate various magneto plasmonic micro/nano devices in the infrared, such as tunable waveguides, filters, and beam-splitters. Novel plasmonic devices such as one-way waveguides and broad-band waveguides are also introduced.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

You, Chenglong, Apurv Chaitanya Nellikka, Israel De Leon, and Omar S. Magaña-Loaiza. "Multiparticle quantum plasmonics." Nanophotonics 9, no. 6 (April 17, 2020): 1243–69. http://dx.doi.org/10.1515/nanoph-2019-0517.

Повний текст джерела
Анотація:
AbstractA single photon can be coupled to collective charge oscillations at the interfaces between metals and dielectrics forming a single surface plasmon. The electromagnetic near-fields induced by single surface plasmons offer new degrees of freedom to perform an exquisite control of complex quantum dynamics. Remarkably, the control of quantum systems represents one of the most significant challenges in the field of quantum photonics. Recently, there has been an enormous interest in using plasmonic systems to control multiphoton dynamics in complex photonic circuits. In this review, we discuss recent advances that unveil novel routes to control multiparticle quantum systems composed of multiple photons and plasmons. We describe important properties that characterize optical multiparticle systems such as their statistical quantum fluctuations and correlations. In this regard, we discuss the role that photon-plasmon interactions play in the manipulation of these fundamental properties for multiparticle systems. We also review recent works that show novel platforms to manipulate many-body light-matter interactions. In this spirit, the foundations that will allow nonexperts to understand new perspectives in multiparticle quantum plasmonics are described. First, we discuss the quantum statistical fluctuations of the electromagnetic field as well as the fundamentals of plasmonics and its quantum properties. This discussion is followed by a brief treatment of the dynamics that characterize complex multiparticle interactions. We apply these ideas to describe quantum interactions in photonic-plasmonic multiparticle quantum systems. We summarize the state-of-the-art in quantum devices that rely on plasmonic interactions. The review is concluded with our perspective on the future applications and challenges in this burgeoning field.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Babicheva, Viktoriia E. "Optical Processes behind Plasmonic Applications." Nanomaterials 13, no. 7 (April 3, 2023): 1270. http://dx.doi.org/10.3390/nano13071270.

Повний текст джерела
Анотація:
Plasmonics is a revolutionary concept in nanophotonics that combines the properties of both photonics and electronics by confining light energy to a nanometer-scale oscillating field of free electrons, known as a surface plasmon. Generation, processing, routing, and amplification of optical signals at the nanoscale hold promise for optical communications, biophotonics, sensing, chemistry, and medical applications. Surface plasmons manifest themselves as confined oscillations, allowing for optical nanoantennas, ultra-compact optical detectors, state-of-the-art sensors, data storage, and energy harvesting designs. Surface plasmons facilitate both resonant characteristics of nanostructures and guiding and controlling light at the nanoscale. Plasmonics and metamaterials enable the advancement of many photonic designs with unparalleled capabilities, including subwavelength waveguides, optical nanoresonators, super- and hyper-lenses, and light concentrators. Alternative plasmonic materials have been developed to be incorporated in the nanostructures for low losses and controlled optical characteristics along with semiconductor-process compatibility. This review describes optical processes behind a range of plasmonic applications. It pays special attention to the topics of field enhancement and collective effects in nanostructures. The advances in these research topics are expected to transform the domain of nanoscale photonics, optical metamaterials, and their various applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Genç, Aziz, Javier Patarroyo, Jordi Sancho-Parramon, Neus G. Bastús, Victor Puntes, and Jordi Arbiol. "Hollow metal nanostructures for enhanced plasmonics: synthesis, local plasmonic properties and applications." Nanophotonics 6, no. 1 (January 6, 2017): 193–213. http://dx.doi.org/10.1515/nanoph-2016-0124.

Повний текст джерела
Анотація:
AbstractMetallic nanostructures have received great attention due to their ability to generate surface plasmon resonances, which are collective oscillations of conduction electrons of a material excited by an electromagnetic wave. Plasmonic metal nanostructures are able to localize and manipulate the light at the nanoscale and, therefore, are attractive building blocks for various emerging applications. In particular, hollow nanostructures are promising plasmonic materials as cavities are known to have better plasmonic properties than their solid counterparts thanks to the plasmon hybridization mechanism. The hybridization of the plasmons results in the enhancement of the plasmon fields along with more homogeneous distribution as well as the reduction of localized surface plasmon resonance (LSPR) quenching due to absorption. In this review, we summarize the efforts on the synthesis of hollow metal nanostructures with an emphasis on the galvanic replacement reaction. In the second part of this review, we discuss the advancements on the characterization of plasmonic properties of hollow nanostructures, covering the single nanoparticle experiments, nanoscale characterization via electron energy-loss spectroscopy and modeling and simulation studies. Examples of the applications, i.e. sensing, surface enhanced Raman spectroscopy, photothermal ablation therapy of cancer, drug delivery or catalysis among others, where hollow nanostructures perform better than their solid counterparts, are also evaluated.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Khan, Pritam, Grace Brennan, James Lillis, Syed A. M. Tofail, Ning Liu, and Christophe Silien. "Characterisation and Manipulation of Polarisation Response in Plasmonic and Magneto-Plasmonic Nanostructures and Metamaterials." Symmetry 12, no. 8 (August 17, 2020): 1365. http://dx.doi.org/10.3390/sym12081365.

Повний текст джерела
Анотація:
Optical properties of metal nanostructures, governed by the so-called localised surface plasmon resonance (LSPR) effects, have invoked intensive investigations in recent times owing to their fundamental nature and potential applications. LSPR scattering from metal nanostructures is expected to show the symmetry of the oscillation mode and the particle shape. Therefore, information on the polarisation properties of the LSPR scattering is crucial for identifying different oscillation modes within one particle and to distinguish differently shaped particles within one sample. On the contrary, the polarisation state of light itself can be arbitrarily manipulated by the inverse designed sample, known as metamaterials. Apart from polarisation state, external stimulus, e.g., magnetic field also controls the LSPR scattering from plasmonic nanostructures, giving rise to a new field of magneto-plasmonics. In this review, we pay special attention to polarisation and its effect in three contrasting aspects. First, tailoring between LSPR scattering and symmetry of plasmonic nanostructures, secondly, manipulating polarisation state through metamaterials and lastly, polarisation modulation in magneto-plasmonics. Finally, we will review recent progress in applications of plasmonic and magneto-plasmonic nanostructures and metamaterials in various fields.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tao, Z. H., H. M. Dong, and Y. F. Duan. "Anomalous plasmon modes of single-layer MoS2." Modern Physics Letters B 33, no. 18 (June 26, 2019): 1950200. http://dx.doi.org/10.1142/s0217984919502002.

Повний текст джерела
Анотація:
The electronic plasmons of single layer MoS2 induced by different spin subbands owing to spin-orbit couplings (SOCs) are theoretically investigated. The study shows that two new and anomalous plasmonic modes can be achieved via inter-spin subband transitions around the Fermi level due to the SOCs. The plasmon modes are optic-like, which are very different from the plasmons reported recently in single-layer (SL) MoS2, and the other two-dimensional systems. The frequency of such plasmons ascends with the increasing of electron density or spin polarizability, and decreases with the increasing of wave vector. The promising plasmonic properties of SL MoS2 make it interesting for future applications in plasmonic and terahertz devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kuzmin, Dmitry A., Igor V. Bychkov, Vladimir G. Shavrov, and Vasily V. Temnov. "Plasmonics of magnetic and topological graphene-based nanostructures." Nanophotonics 7, no. 3 (February 23, 2018): 597–611. http://dx.doi.org/10.1515/nanoph-2017-0095.

Повний текст джерела
Анотація:
AbstractGraphene is a unique material in the study of the fundamental limits of plasmonics. Apart from the ultimate single-layer thickness, its carrier concentration can be tuned by chemical doping or applying an electric field. In this manner, the electrodynamic properties of graphene can be varied from highly conductive to dielectric. Graphene supports strongly confined, propagating surface plasmon polaritons (SPPs) in a broad spectral range from terahertz to mid-infrared frequencies. It also possesses a strong magneto-optical response and thus provides complimentary architectures to conventional magneto-plasmonics based on magneto-optically active metals or dielectrics. Despite a large number of review articles devoted to plasmonic properties and applications of graphene, little is known about graphene magneto-plasmonics and topological effects in graphene-based nanostructures, which represent the main subject of this review. We discuss several strategies to enhance plasmonic effects in topologically distinct closed surface landscapes, i.e. graphene nanotubes, cylindrical nanocavities and toroidal nanostructures. A novel phenomenon of the strongly asymmetric SPP propagation on chiral meta-structures and the fundamental relations between structural and plasmonic topological indices are reviewed.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Verma, Sneha, Akhilesh Kumar Pathak, and B. M. Azizur Rahman. "Review of Biosensors Based on Plasmonic-Enhanced Processes in the Metallic and Meta-Material-Supported Nanostructures." Micromachines 15, no. 4 (April 6, 2024): 502. http://dx.doi.org/10.3390/mi15040502.

Повний текст джерела
Анотація:
Surface plasmons, continuous and cumulative electron vibrations confined to metal-dielectric interfaces, play a pivotal role in aggregating optical fields and energies on nanostructures. This confinement exploits the intrinsic subwavelength nature of their spatial profile, significantly enhancing light–matter interactions. Metals, semiconductors, and 2D materials exhibit plasmonic resonances at diverse wavelengths, spanning from ultraviolet (UV) to far infrared, dictated by their unique properties and structures. Surface plasmons offer a platform for various light–matter interaction mechanisms, capitalizing on the orders-of-magnitude enhancement of the electromagnetic field within plasmonic structures. This enhancement has been substantiated through theoretical, computational, and experimental studies. In this comprehensive review, we delve into the plasmon-enhanced processes on metallic and metamaterial-based sensors, considering factors such as geometrical influences, resonating wavelengths, chemical properties, and computational methods. Our exploration extends to practical applications, encompassing localized surface plasmon resonance (LSPR)-based planar waveguides, polymer-based biochip sensors, and LSPR-based fiber sensors. Ultimately, we aim to provide insights and guidelines for the development of next-generation, high-performance plasmonic technological devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ali, Adnan, Fedwa El-Mellouhi, Anirban Mitra, and Brahim Aïssa. "Research Progress of Plasmonic Nanostructure-Enhanced Photovoltaic Solar Cells." Nanomaterials 12, no. 5 (February 25, 2022): 788. http://dx.doi.org/10.3390/nano12050788.

Повний текст джерела
Анотація:
Enhancement of the electromagnetic properties of metallic nanostructures constitute an extensive research field related to plasmonics. The latter term is derived from plasmons, which are quanta corresponding to longitudinal waves that are propagating in matter by the collective motion of electrons. Plasmonics are increasingly finding wide application in sensing, microscopy, optical communications, biophotonics, and light trapping enhancement for solar energy conversion. Although the plasmonics field has relatively a short history of development, it has led to substantial advancement in enhancing the absorption of the solar spectrum and charge carrier separation efficiency. Recently, huge developments have been made in understanding the basic parameters and mechanisms governing the application of plasmonics, including the effects of nanoparticles’ size, arrangement, and geometry and how all these factors impact the dielectric field in the surrounding medium of the plasmons. This review article emphasizes recent developments, fundamentals, and fabrication techniques for plasmonic nanostructures while investigating their thermal effects and detailing light-trapping enhancement mechanisms. The mismatch effect of the front and back light grating for optimum light trapping is also discussed. Different arrangements of plasmonic nanostructures in photovoltaics for efficiency enhancement, plasmonics’ limitations, and modeling performance are also deeply explored.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Abed, Jehad, Nitul S. Rajput, Amine El Moutaouakil, and Mustapha Jouiad. "Recent Advances in the Design of Plasmonic Au/TiO2 Nanostructures for Enhanced Photocatalytic Water Splitting." Nanomaterials 10, no. 11 (November 15, 2020): 2260. http://dx.doi.org/10.3390/nano10112260.

Повний текст джерела
Анотація:
Plasmonic nanostructures have played a key role in extending the activity of photocatalysts to the visible light spectrum, preventing the electron–hole combination and providing with hot electrons to the photocatalysts, a crucial step towards efficient broadband photocatalysis. One plasmonic photocatalyst, Au/TiO2, is of a particular interest because it combines chemical stability, suitable electronic structure, and photoactivity for a wide range of catalytic reactions such as water splitting. In this review, we describe key mechanisms involving plasmonics to enhance photocatalytic properties leading to efficient water splitting such as production and transport of hot electrons through advanced analytical techniques used to probe the photoactivity of plasmonics in engineered Au/TiO2 devices. This work also discusses the emerging strategies to better design plasmonic photocatalysts and understand the underlying mechanisms behind the enhanced photoactivity of plasmon-assisted catalysts.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Plasmonic properties"

1

Cole, R. M. "Plasmonic properties of metal nanovoids." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.597832.

Повний текст джерела
Анотація:
This thesis describes a study into the plasmonic properties of nanostructured metallic films. Structures are produced by electrochemically depositing metal through a self-assembled template of polymer micro-spheres. This versatile technique allows nano-structures made from metals which can be electrodeposited to be produced quickly and cheaply. Geometries ranging from arrays of shallow dishes, to sharp metallic spikes and encapsulated spherical cavities can all be produced on the same sample. This thesis presents an in-depth study into the properties of delocalised and localised surface plasmons on these structures. These plasmons can be tuned in energy by controlling the sample geometry and local dielectric environment. Techniques are explored for modifying the energy, absorption strength and field distribution of plasmon modes for specific applications. With an understanding into the plasmonic properties of the metallic nanostructures, research is undertaken to explore how the associated local electric-field couples to molecules adsorbed onto a sample surface. The role of specific plasmon modes in enhanced Raman scattering is identified, and then optimised using multilayer nanostructures with tailored plasmon modes. Finally, the use of flexible elastomeric substrates for mechanically tuneable plasmonic substrates is explored.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dieleman, Frederik. "Quantum properties of plasmonic waveguides." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/49436.

Повний текст джерела
Анотація:
This thesis investigates properties of quantum states of light while travelling as surface plasmon polaritons in plasmonic waveguides and structures. The bosonic nature of SPPs has been shown in previous work by performing a Hong-Ou-Mandel interference experiment with a plasmonic scattering-based beam splitter. Here, we show the same interference with a higher statistical power thanks to an improved set-up. A visibility of 59 ± 1 % is obtained in the two-photon interference, clearly breaking the classical limit of 50 %. The importance of the phase-relations between the different modes in the beam splitter is experimentally probed. The output state of the interference is then further analyzed by a quantum state tomography set-up. This makes it possible to quantify the entanglement generated in the interference. As the interference happens in the plasmonic beam splitter, this shows, to our knowledge for the first time, entanglement generated in a plasmonic structure. Together with the recent results in terms of entanglement and coherence preservation of SPPs, this clearly shows the potential of quantum plasmonic devices. To move into the realm of applications, we also investigate theoretically the enhancements in sensitivity quantum states of light can deliver for plasmonic sensing. It is shown that despite the losses, quantum metrology techniques can be useful in an interferometer with plasmonic waveguides. Considering the strengths and successes of plasmonic sensing techniques in a wide range of fields, we envision that entangled and squeezed states of light will become a new route to push the limits in sensitivity.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Peruch, Silvia. "Ultrafast properties of plasmonic nanorod metamaterial." Thesis, King's College London (University of London), 2016. https://kclpure.kcl.ac.uk/portal/en/theses/ultrafast-properties-of-plasmonic-nanorod-metamaterial(d981b5e4-b959-4193-8cf1-219b68de08d6).html.

Повний текст джерела
Анотація:
Plasmonic metamaterials have customized linear and nonlinear optical properties. This thesis investigates the properties of an anisotropic plasmonic metamaterial, consisting of aligned, interacting gold nanorods, to perform ultrafast light modulation, exploiting the intrinsic Kerr nonlinearity of gold. This e ect is based on an illumination-intensity-dependent change in the gold's permittivity, which takes place on ultrafast timescales and induces the intensity-dependent change of the metamaterial's re ection and transmission. A comprehensive theoretical and numerical analysis of the linear and nonlinear response of various con gurations of the metamaterial is performed and compared to experimental results. A new family of hyperbolic waveguided modes above the e ective plasma frequency, enabled by spatial dispersion, is identi ed. The strong nonlinear response and the dynamic modulation capabilities associated with the excitation of the waveguided modes is investigated. The presence of strong electron temperature gradients in the nanorods induced by a control light is shown to determine a stronger nonlinear modulation and to in uence the dynamic response, leading to subpicosecond time recovery components of the nonlinearity. Weak and strong coupling between molecular excitons and the metamaterial's modes can be achieved using core-shell nanorod geometries. The coherent interaction of molecular J-aggregates with coreshell nanorod arrays is analyzed in both the weak and strong coupling regimes. Subpicosecond components of the modulation are determined in the strong coupling conditions. The design of the optical response of the gold nanorod and core-shell metamaterials is studied through the near- to mid- Infrared, key spectral regions for molecular ngerprinting in chemical sensing and absorption spectroscopy. The applicability limits of the analytic approaches using the quasi-static and e ective medium approximations is tested. The results show great potential of the plasmonic nanorod metamaterial for ultrafast nonlinear optics in free-space and integrated applications, in a broad spectral range.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chen, Lihui. "Synthesis and Plasmonic Properties of Copper-based Nanocrystals." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/217134.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Strandberg, Östman Felicia. "Optical Properties of Plasmonic Ag/Ni Square Nanostructures." Thesis, Uppsala universitet, Materialfysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-256885.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ching, Suet Ying. "Plasmonic properties of silver-based alloy thin films." HKBU Institutional Repository, 2015. https://repository.hkbu.edu.hk/etd_oa/194.

Повний текст джерела
Анотація:
The plasmonic properties of silver-based alloy thin films were studied. Silver-ytterbium (Ag-Yb) and silver-magnesium (Ag-Mg) prepared by thermal co-evaporation were investigated extensively for various thin film properties. The optical properties were intensively analyzed and discussed because the dielectric response of a material is particularly significant in terms of its plasmonic properties. The study of silver-based alloy thin films has been mostly about Ag alloying with other transition metals, but the results of Ag-Yb and Ag-Mg in this work showed that the intensity of plasma resonance is tunable, in which the idea may also apply to other silver-rich binary alloy thin films regardless of the kind of second metal components. In our research, the Ag plasma resonance was weakened with respect to the concentration of Yb and Mg in the alloy thin films. The change in the optical characteristics around Ag plasma resonance frequency was attributed to an increase in “resonance damping. This is confirmed from modeling using classical free-electron theory. The increase in the damping was experimentally corroborated by the concentration dependence of electrical conductivity and estimated average crystallite size of Ag-Yb and Ag-Mg thin films. The reduction in electrical conductivity was not only caused by introducing less conductive Yb or Mg but also through disturbing the Ag lattice structure to promote additional electron scattering at grain boundaries. The Ag-Yb and Ag-Mg alloys carried intermediate properties between their pure components despite the presence of Yb or Mg oxides. Besides optical and electrical properties, changes in the electronic work function were also assessed since it is also important in applications. Plasmonic nanostructures and transparent organic light-emitting diodes (OLEDs) were fabricated to demonstrate their potential applications. Two-dimensional disc-arrays nanostructures composed of pure Ag and Ag-Yb were implemented to evaluate the plasmonic properties. The damping loss in Ag-Yb caused weakened coupling of incident photons and surface plasmons when compared to pure Ag without altering the coupling wavelengths, suggesting potential plasmonic materials for tuning the coupling strength of surface plasmons by controlling the concentration of Yb which may also apply to Ag-Mg. Ultrathin Ag-Yb and Ag-Mg films were used as cathodes in transparent OLEDs for demonstration, which was beneficial by virtue of overall device transmittance though sacrificing electrical conduction leading to poor light emission unless inserting additional ultrathin lithium fluoride to modify the ultrathin cathodes.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hung, Yu-Ju. "Studies of the optical properties of plasmonic nanostructures." College Park, Md.: University of Maryland, 2007. http://hdl.handle.net/1903/7735.

Повний текст джерела
Анотація:
Thesis (Ph. D.) -- University of Maryland, College Park, 2007.
Thesis research directed by: Dept. of Electrical and Computer Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kolkowski, Radoslaw. "Studies of nonlinear optical properties of plasmonic nanostructures." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLN001/document.

Повний текст джерела
Анотація:
Le but de cette thèse et de la recherche associée est une démonstration des avantages d’une combinaison de propriétés inhabituelles de nanostructures plasmoniques avec des aspects parmi les plus intéressants de l’optique non-linéaire. Pour cet effet, la modélisation analytique et numérique a été combiné avec le travail expérimental, qui comprenait la production de nanostructures et les mesures effectuées au moyen de la microscopie confocale non-linéaire résolue en polarisations et de la technique Z-scan modifiée (nommée “f-scan”).Il a été montré que l’anisotropie efficace de génération de seconde-harmonique dans les cristaux plasmoniques (formés par des réseaux rectangulaires de cavités tétraédriques sur une surface d’argent) peut être contrôlée par un choix approprié des paramètres de maille. Il a aussi été montré que cette anisotropie provient principalement d’une structure de bande photonique elle-même anisotrope, présentant une bande interdite plasmonique avec des états plasmoniques en bord de bande, permettant de renforcer le champ électrique local. Les arrangements chiraux bidimensionnels de nanoparticules triangulaires d’or, forment des “meta-molécules” plasmoniques énantiomériques, ont été analysés par microscopie non-linéaire à la lumière polarisée circulairement et par modélisation numérique, révélant un fort effet chiroptique par génération de seconde harmonique en rétro-réflexion. La petite taille des énantiomères uniques permet de créer “des filigranes” (“watermarks”) codés par la chiralité des meta-molécules, qui peuvent être lu par imagerie de la génération de seconde harmonique excitée par un rayon polarisé circulairement. Les caractéristiques quantitatives de la non-linéarité optique du troisième ordre et de l’efficacité d’absorption saturable des solutions aqueuses de fragments de graphène et de graphène dopé par des nanoparticules d’or a été effectuée par une nouvelle technique “f-scan”, qui a été créée et développée par incorporation d’une lentille à distance focale accordable dans une technique de Z-scan traditionnelle. Ces études ont montrées que le graphène présente une absorption saturable ultra-rapide très efficace, qui est parfois convertie en absorption saturable inverse. Il apparaît alors qu’une décoration du graphène par des nanoparticules d’or peut causer une légère amélioration du paramètre d’efficacité d’absorption saturable dans la plage spectrale de leurs résonances plasmoniques. En résumé, cette thèse présente une variété de propriétés optiques non-linéaires apparaissant dans les nanostructures plasmoniques. Différentes possibilités de contrôle de ces propriétés au moyen d’une démarche de nano-ingénierie, soutenue par des modélisations à la fois analytique et numérique ont été démontrées et analysées. Ces travaux ouvrent la voie à la fabrication et à l‘optimisation sur mesure de nouveaux nano-matériaux et nano-dispositifs photoniques reposant sur des effets de nano-plasmonique non-linéaire
The aim of this thesis and the underlying research work is to demonstrate the benefits emerging from combination of the peculiar properties of plasmonic nanostructures with the most interesting aspects of nonlinear optics. For this purpose, analytical and numerical modeling was combined with experimental work, which included nanofabrication and measurements performed by means of polarization-resolved nonlinear confocal microscopy and by modified Z-scan technique (called "f-scan").It has been shown that the effective anisotropy of the second-harmonic generation in plasmonic crystals (formed by rectangular arrays of tetrahedral recesses in silver surface) can be controlled by proper choice of lattice constants. It also has been shown that this anisotropy arises mainly from the anisotropic photonic band structure, exhibiting plasmonic band gap with plasmonic band edge states, enabling enhancement of the local electric field.Two-dimensional chiral arrangements of triangular gold nanoparticles, forming plasmonic enantiomeric "meta-molecules", have been studied by nonlinear microscopy operating with circularly polarized light and by numerical modeling, revealing strong chiroptical effect in backscattered second-harmonic radiation. Small size of individual enantiomers allows to create "watermarks", encoded by the chirality of meta-molecules, which can be readout by imaging of second-harmonic generation excited by circularly polarized laser beam.Quantitative characterization of the third-order optical nonlinearity and saturable absorption efficiency of aqueous solutions of graphene and gold-nanoparticle decorated graphene has been performed by novel "f-scan" technique, which has been created and developed by incorporation of a focus-tunable lens into traditional Z-scan. These studies have shown that the graphene exhibits very efficient ultrafast saturable absorption, which is occasionally suppressed by reverse saturable absorption. Moreover, it turns out that decoration of graphene by gold nanoparticles may cause a slight improvement of the saturable absorption efficiency parameter within spectral range of their plasmon resonances.In summary, the following thesis presents various nonlinear optical properties of plasmonic nanostructures. Different possibilities of controlling these properties by means of nano-engineering, supported by analytical and numerical modeling, is also analyzed and demonstrated. This work opens up new perspectives for fabrication and rational design of novel photonic nano-materials and nano-devices based on nonlinear nanoplasmonic phenomena
Стилі APA, Harvard, Vancouver, ISO та ін.
9

MAGNOZZI, MICHELE. "Temperature-dependent optical properties of composite plasmonic nanomaterials." Doctoral thesis, Università degli studi di Genova, 2019. http://hdl.handle.net/11567/941310.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

FERRERA, MARZIA. "Local optical properties of 2D semiconductor/plasmonic heterostructures." Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1077989.

Повний текст джерела
Анотація:
The possibility to control the properties of low-dimensional semiconductors via the exploitation of properly engineered architectures shows promising implications for several potential applications in the fields of optoelectronic and quantum technologies. Among the plethora of semiconducting materials, two-dimensional group 6 transition metal dichalcogenides (TMDCs), when thinned down to the three-atoms-thick monolayer (ML), exhibit a transition of the electronic bandgap from indirect to direct, with the bandgap energy falling within the visible spectral range. This, together with other singular properties, makes TMDCs extremely appealing light-sensitive materials for optoelectronics and photonics applications. Among several strategies to enhance light-matter interaction in ultrathin TMDC films, the electromagnetic field confinement and amplification typical of nano-sized metallic objects supporting localized surface plasmon resonances, i.e. light-induced collective electronic oscillations, can significantly strengthen the interaction of atomically-thick TMDCs with light, with the opportunity to exploit hybrid systems to realize plasmon-enhanced devices. In addition, the structural, electronic and optical properties of 2D TMDCs can be properly manipulated via their integration with plasmonic materials. Moreover, strongly-coupled exciton-plasmon systems can be realized by combining few- and single-layer TMDCs with ad-hoc designed plasmonic nanostructures with promising implications both for fundamental research and quantum-based applications. In this context, the research activity reported in this thesis has dealt with the study of the optical properties of spatially-confined systems. Two main classes of nanomaterials were investigated, namely noble metal nanostructures, with specific interest on their plasmonic and thermoplasmonic properties, and 2D TMDCs, with a focus on their excitonic properties. This manuscript mainly deals with the local optical properties which arise when integrating ML-TMDCs with plasmonic nanosystems to form hybrid structures. The experimental investigations on the hybrid systems have in common the exploitation of laterally-resolved optical techniques with micrometric and even nanometric spatial resolution. In detail, I will show how the combination of imaging spectroscopic ellipsometry and imaging photoluminescence spectroscopy can provide a complete picture of the local excitonic properties of TMDC flakes (WS2 in this case) grown by chemical vapour deposition. Deep knowledge on the local excitonic properties of 2D TMDCs proved fundamental for studying how their properties can be tailored by coupling with plasmonic materials. In this thesis, hybrid systems with a double-layer architecture (i.e. ML-TMDC/plasmonic substrate) were realized for two main experimental investigations. The first study dealt with the role played by the morphology of the plasmonic substrate, an ultra-dense array of Au NPs (approximately 10^3 NPs/µm^2), in affecting the plasmon-exciton interaction. In the second experiment, a 2D TMDC/plasmonic heterostructure was implemented as a system to probe the capabilities of tip-enhanced photoluminescence spectroscopy (TEPL) in mapping at the nanoscale the light-emission related properties of ML-TMDCs onto a plasmonic substrate. The last part of the thesis is dedicated to experimental investigations on the ultrafast temperature evolution of impulsively-excited plasmonic systems by means of pump-probe techniques. Two model-free approaches are presented for the direct assessment of the temporal evolution of the electron gas temperature after impulsive photoexcitation of metallic NPs. More in general, the results obtained from these last experimental studies pave the way for the assessment of the relaxation dynamics within physical systems and are inspiring towards further exploration on the phenomena which arise following photoexcitation of low-dimensional semiconductor/plasmonic heterostructures taking place on time scales of the fs-ps, such as the processes of charge and/or energy transfer and those related to hot electrons.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Plasmonic properties"

1

service), SpringerLink (Online, ed. Self-Organized Arrays of Gold Nanoparticles: Morphology and Plasmonic Properties. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sönnichsen, Carsten. Plasmons in metal nanostructures. Göttingen: Cuvillier, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Turunen, Anton E. Plasmons: Structure, properties, and applications. Hauppauge, N.Y: Nova Science Publishers, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

V, Klimov V. Nanoplazmonika. Moskva: Fizmatlit, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

1957-, Shalaev Vladimir M., ed. Nanoplasmonics. Amsterdam: Elsevier, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

library, Wiley online, ed. Nanophotonic materials: Photonic crystals, plasmonics, and metamaterials. Weinheim: Wiley-VCH, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

1966-, Kawata Satoshi, Shalaev Vladimir M. 1957-, Tsai Din P. 1959-, and Society of Photo-optical Instrumentation Engineers., eds. Plasmonics: Nanoimaging, nanofabrication, and their applications II : 16-17 August, 2006, San Diego, California, USA. Bellingham, Wash: SPIE, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

J, Halas Naomi, and Society of Photo-optical Instrumentation Engineers., eds. Plasmonics: Metallic nanostructures and their optical properties : 3-5 August 2003, San Diego, California, USA. Bellingham, Wash., USA: SPIE, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

1975-, Qiu Min, ed. Optical properties of nanostructures. Singapore: Pan Stanford, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kawata, Satoshi. Plasmonics: Nanoimaging, nanofabrication, and their applications IV : 10-14 August 2008, San Diego, California, USA. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Plasmonic properties"

1

Zhang, Zhenglong. "Electromagnetic Properties of Materials." In Plasmonic Photocatalysis, 5–13. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5188-6_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Song, Chengyi, Chen Zhang, and Peng Tao. "Plasmonic Chiral Materials." In Chiral Nanomaterials: Preparation, Properties and Applications, 51–84. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527682782.ch3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Saliminasab, Maryam, Rostam Moradian, and Farzad Shirzaditabar. "Tunable Plasmonic Properties of Nanoshells." In Reviews in Plasmonics, 141–68. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18834-4_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Trügler, Andreas. "Nonlinear Optical Effects of Plasmonic Nanoparticles." In Optical Properties of Metallic Nanoparticles, 157–62. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25074-8_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Berger, C., E. H. Conrad, and W. A. de Heer. "Optical and plasmonic properties of epigraphene." In Physics of Solid Surfaces, 741–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53908-8_171.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hachtel, Jordan A. "The Plasmonic Response of Archimedean Spirals." In The Nanoscale Optical Properties of Complex Nanostructures, 91–104. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70259-9_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Serdega, B. K., S. P. Rudenko, L. S. Maksimenko, and I. E. Matyash. "Plasmonic optical properties and the polarization modulation technique." In Polarimetric Detection, Characterization and Remote Sensing, 473–500. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1636-0_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Masciotti, Valentina, Denys Naumenko, Marco Lazzarino, and Luca Piantanida. "Tuning Gold Nanoparticles Plasmonic Properties by DNA Nanotechnology." In DNA Nanotechnology, 279–97. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8582-1_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kauranen, Martti, Hannu Husu, Jouni Mäkitalo, Robert Czaplicki, Mariusz Zdanowicz, Joonas Lehtolahti, Janne Laukkanen, and Markku Kuittinen. "Second-Order Nonlinear Optical Properties of Plasmonic Nanostructures." In Challenges and Advances in Computational Chemistry and Physics, 207–35. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7805-4_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sardana, Sanjay K., Sanjay K. Srivastava, and Vamsi K. Komarala. "Tunable Plasmonic Properties from Ag–Au Alloy Nanoparticle Thin Films." In Springer Proceedings in Physics, 415–18. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97604-4_63.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Plasmonic properties"

1

Takeuchi, Hiroki, Junfeng Yue, Keisuke Imaeda, and Kosei Ueno. "Near-field spectral properties and ultrafast dynamics of coupled plasmonic nanostructures." In Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.p_cm16_12.

Повний текст джерела
Анотація:
We are studying the effects of localization of electromagnetic field and extension of plasmon lifetime on the near-field enhancement. In particular, the plasmon lifetime can be controlled by coupling with long-lived optical modes or excitons. In this study, we elucidated the near-field spectral characteristics and phase relaxation dynamics of coupled plasmonic nanostructures and the effect of plasmon dephasing dynamics on near-field enhancement.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Karakhanyan, Vage, Clement Eustache, Yannick Lefier, and Thierry Grosjean. "Optomagnetism in plasmonic nanostructures." In Photonic and Phononic Properties of Engineered Nanostructures XII, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2022. http://dx.doi.org/10.1117/12.2612940.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Abdollahramezani, Sajjad, Omid Hemmatyar, Hossein Taghinejad, Muliang Zhu, Alexander L. Gallmon, and Ali Adibi. "Reconfigurable hybrid plasmonic-dielectric metasurfaces." In Photonic and Phononic Properties of Engineered Nanostructures XI, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2021. http://dx.doi.org/10.1117/12.2590717.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Swillam, Mohamed A., Diaa Khalil, Qiaoqiang Gan, and Raghi El Shamy. "Mid-infrared plasmonic gas sensor." In Photonic and Phononic Properties of Engineered Nanostructures VIII, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2018. http://dx.doi.org/10.1117/12.2290875.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Crozier, Kenneth B. "Inverse design of plasmonic nanotweezers." In Photonic and Phononic Properties of Engineered Nanostructures XIV, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2024. http://dx.doi.org/10.1117/12.3010032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Joshi, Hira. "Optical properties of plasmonic nanostructures." In EMERGING INTERFACES OF PHYSICAL SCIENCES AND TECHNOLOGY 2019: EIPT2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0000524.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gu, Guiru, Jarrod Vaillancourt, and Xuejun Lu. "Backside configured surface plasmonic enhancement." In ELECTRONIC, PHOTONIC, PLASMONIC, PHONONIC AND MAGNETIC PROPERTIES OF NANOMATERIALS. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4870217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Taghinejad, Mohammad, Chenyi Xia, Martin Hrton, Kyutae Lee, Andrew Kim, Qitong Li, Burak Guzelturk, et al. "Terahertz radiation of plasmonic hot carriers." In Photonic and Phononic Properties of Engineered Nanostructures XIV, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2024. http://dx.doi.org/10.1117/12.3010182.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kanoda, Masatoshi, Kota Hayashi, Mamoru Tamura, Shiho Tokonami, and Takuya Iida. "Detection of Biological Nanoparticles by Photothermal Convection with Plasmonic Nano-bowl Substrate." In Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.ctup16e_04.

Повний текст джерела
Анотація:
We developed a plasmonic nano-bowl substrate exhibiting sensitive optical properties due to localized surface plasmons, and demonstrated the optical condensation detection of nanoparticles. Quantitative analysis of nanoparticles was performed by fluorescence imaging and reflectance spectroscopy.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ooi, C. H. Raymond. "Quantum optical properties in plasmonic systems." In NATIONAL PHYSICS CONFERENCE 2014 (PERFIK 2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4915161.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Plasmonic properties"

1

Hollingsworth, Jennifer, Victoria Nisoli, Ekaterina Dolgopolova, Paul Bourdin, Andrew West, siyuan zhang, Matthew Schneider, Sergei Ivanov, and Maiken mikkelsen. Near Infrared Plasmonic Properties in Spinel Metal Oxide Nanocrystals. Office of Scientific and Technical Information (OSTI), August 2023. http://dx.doi.org/10.2172/1993209.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Halas, Naomi, and Surbhi Lal. Plexcitonics: Coupled and Plasmon-Exciton Systems with Tailorable Properties. Fort Belvoir, VA: Defense Technical Information Center, November 2013. http://dx.doi.org/10.21236/ada594759.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Howe, James M. Using Plasmon Peaks in Electron Energy-Loss Spectroscopy to Determine the Physical and Mechanical Properties of Nanoscale Materials. Office of Scientific and Technical Information (OSTI), May 2013. http://dx.doi.org/10.2172/1078573.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії