Добірка наукової літератури з теми "Plasmodi"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Plasmodi".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Plasmodi"
Solnica-Krezel, L., T. G. Burland, and W. F. Dove. "Variable pathways for developmental changes of mitosis and cytokinesis in Physarum polycephalum." Journal of Cell Biology 113, no. 3 (May 1, 1991): 591–604. http://dx.doi.org/10.1083/jcb.113.3.591.
Повний текст джерелаSalles-Passador, I., A. Moisand, V. Planques, and M. Wright. "Physarum plasmodia do contain cytoplasmic microtubules!" Journal of Cell Science 100, no. 3 (November 1, 1991): 509–20. http://dx.doi.org/10.1242/jcs.100.3.509.
Повний текст джерелаNunes, Alvaro, Vandana Thathy, Thomas Bruderer, Ali A. Sultan, Ruth S. Nussenzweig, and Robert Ménard. "Subtle Mutagenesis by Ends-in Recombination in Malaria Parasites." Molecular and Cellular Biology 19, no. 4 (April 1, 1999): 2895–902. http://dx.doi.org/10.1128/mcb.19.4.2895.
Повний текст джерелаSHIRAKAWA, TOMOHIRO, ANDREW ADAMATZKY, YUKIO-PEGIO GUNJI, and YOSHIHIRO MIYAKE. "ON SIMULTANEOUS CONSTRUCTION OF VORONOI DIAGRAM AND DELAUNAY TRIANGULATION BY PHYSARUM POLYCEPHALUM." International Journal of Bifurcation and Chaos 19, no. 09 (September 2009): 3109–17. http://dx.doi.org/10.1142/s0218127409024682.
Повний текст джерелаWu, Yuyang, Peng Xie, Qi Ding, Yuhang Li, Ling Yue, Hong Zhang, and Wei Wang. "Magnetic plasmons in plasmonic nanostructures: An overview." Journal of Applied Physics 133, no. 3 (January 21, 2023): 030902. http://dx.doi.org/10.1063/5.0131903.
Повний текст джерелаHonkonen, I., M. Palmroth, T. I. Pulkkinen, P. Janhunen, and A. Aikio. "On large plasmoid formation in a global magnetohydrodynamic simulation." Annales Geophysicae 29, no. 1 (January 14, 2011): 167–79. http://dx.doi.org/10.5194/angeo-29-167-2011.
Повний текст джерелаSuzuki, Y., T. H. Watanabe, A. Kageyama, T. Sato, and T. Hayashi. "Three-Dimensional Simulation Study of Plasmoid Injection into Magnetized Plasma." Symposium - International Astronomical Union 188 (1998): 209–10. http://dx.doi.org/10.1017/s0074180900114780.
Повний текст джерелаHe, Zhicong, Fang Li, Yahui Liu, Fuqiang Yao, Litu Xu, Xiaobo Han, and Kai Wang. "Principle and Applications of the Coupling of Surface Plasmons and Excitons." Applied Sciences 10, no. 5 (March 4, 2020): 1774. http://dx.doi.org/10.3390/app10051774.
Повний текст джерелаSolnica-Krezel, L., M. Diggins-Gilicinski, T. G. Burland, and W. F. Dove. "Variable pathways for developmental changes in composition and organization of microtubules in Physarum polycephalum." Journal of Cell Science 96, no. 3 (July 1, 1990): 383–93. http://dx.doi.org/10.1242/jcs.96.3.383.
Повний текст джерелаTao, Z. H., H. M. Dong, and Y. F. Duan. "Anomalous plasmon modes of single-layer MoS2." Modern Physics Letters B 33, no. 18 (June 26, 2019): 1950200. http://dx.doi.org/10.1142/s0217984919502002.
Повний текст джерелаДисертації з теми "Plasmodi"
Ramirez, Francisco. "Surface Plasmon Hybridization in Novel Plasmonic Phenomena." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/917.
Повний текст джерелаTan, Shiaw Juen. "Linear and nonlinear propagation of localised plasmon in metallic nanostructures." Thesis, Queensland University of Technology, 2011. https://eprints.qut.edu.au/52635/1/Shiaw_Tan_Thesis.pdf.
Повний текст джерелаMejia, Pedro. "Amélioration et utilisation d'un modèle murin des stades érythrocytaires du paludisme humain." Rouen, 2006. http://www.theses.fr/2006ROUES062.
Повний текст джерелаLupetti, Mattia. "Plasmonic generation of attosecond pulses and attosecond imaging of surface plasmons." Diss., Ludwig-Maximilians-Universität München, 2015. http://nbn-resolving.de/urn:nbn:de:bvb:19-183678.
Повний текст джерелаAttosekundenpulse sind ultrakurze extrem-ultraviolette (XUV) Pulse, die durch einen nicht-linearen, von einer nah-infraroten (NIR) Laserquelle stimulierten Anregungsprozess erzeugt werden. Attosekundenpulse können verwendet werden, um die Elektronendynamik eines ultraschnellen Prozesses durch die ``Attosecond Streaking'' Technik zu messen, mit einer Auflösung auf der Attosekundenskala. In dieser Dissertation wird gezeigt, dass sowohl die Erzeugung von Attosekundenpulsen als auch die Messung ultraschneller Prozesse mittels Attosekundenpulse auf Fälle erweitert werden können, bei denen die Anregungs- und Streakingsfelder von Oberflächenplasmonen generiert werden, welche bei nahinfraroten Wellenlängen auf Nanostrukturen angeregt werden. Oberflächenplasmonen sind optische Moden, die aus einer kollektiven Schwingung der Elektronen an der Oberfläche in Resonanz mit einer externen Quelle entstehen. Im ersten Abschnitt dieser Dissertation wird das Konzept der High Harmonic Generation (HHG) in plasmonisch erhöhten Feldern durch numerische Simulationen analysiert. Ein NIR Puls wird mit einem Oberflächenplasmon, das sich in einem konischen, mit Edelgas gefüllten, Hohlleiter ausbreitet, gekoppelt. Die Intensität des plasmonischen Feldes steigt mit der Verringerung des Durchmessers des Hohlleiters, sodass die Felderhöhung an seiner Spitze groß genug wird, um hohe harmonische Strahlung zu generieren. Es wird nachgewiesen, dass die Herstellung von isolierten Attosekundenpulsen mit außergewöhnlichen Zeit- und Raumstrukturen möglich ist. Trotzdem ist deren Intensität um mehrere Größenordnungen niedriger als die, die in Experimenten mit fokussierten Laserpulsen erreicht werden kann. Im zweiten Abschnitt wird eine experimentelle Technik für die Abbildung plasmonischer Oberflächenanregungen vorgeschlagen, wobei Attosekundenpulse verwendet werden, um das Feld an der Oberfläche mittels ``Momentum Streaking'' der photoionisierten Elektronen zu messen. Dieses Konzept ist eine Erweiterung der ``Attosecond Streak Camera'', welches ich ``Attosecond Photoscopy'' nenne. Es ermöglicht die Abbildung eines Plasmons in Zeit und Raum während des Anregungsprozesses. Anhand von numerischen Simulationen wird es gezeigt, dass die wesentlichen Parameter des plasmonischen Resonanzaufbaus mit subfemtosekunden-Präzision bestimmt werden können. Zuletzt wird die Methode für die numerische Lösung der Maxwell-Gleichungen diskutiert, mit Fokus auf das Problem der absorbierenden Randbedingungen. Neue Einsichten in die mathematische Formulierung der Randbedingungen der Maxwell-Gleichungen werden vorgestellt.
Henry, Véronique. "Récepteurs érythrocytaires impliqués dans la pénétration du "Plasmodium" dans l'hématie." Paris 5, 1988. http://www.theses.fr/1988PA05P102.
Повний текст джерелаMalhotra, Khushbeer. "Etude "in vitro" de l'action des constituants du système microbicide des polynucléaires humains sur les formes aséxuées de "Plasmodium falciparum" : influence de leur association avec divers antimalariques." Paris 5, 1988. http://www.theses.fr/1988PA05P620.
Повний текст джерелаUdo, Edet Ekpenyong. "Characterisation and molecular studies of plasmids from Nigerian staphylococci." Thesis, Curtin University, 1991. http://hdl.handle.net/20.500.11937/1845.
Повний текст джерелаJansen, Yvette. "Characterisation of a high copy number mutant pAL5000 origin of replication." Thesis, Stellenbosch : Stellenbosch University, 2001. http://hdl.handle.net/10019.1/52159.
Повний текст джерелаENGLISH ABSTRACT: The plasmid pAL5000 is a mycobacterial plasmid isolated from Mycobacterium fortuitum. It is a low copy number plasmid, which replicates in both fast growing (e.g. M. smegmatis) and slow growing (e.g. M. bovis BCG) mycobacteria. Most mycobacterial-E. coli shuttle vectors utilise the pAL5000 origin of replication. The minimum replicon consists of ORF1 (RepA), ORF2 (RepB) and the origin of replication. Dr W.R. Bourn created an E. coli-mycobacterial vector based on the pAL5000 origin of replication (pORI) and then subjected it to semi-random mutagenesis. A high copy number mutant was identified (pHIGH) and the causative mutation was tentatively identified as a 3bp deletion situated just upstream of repB. This work describes the further characterisation of the mutant plasmid. Firstly, it was shown by retransforming M. smegmatis with both the original and mutant plasmids (pORI and pHIGH), that the mutation causing the increased copy number was plasmid-encoded and not on the chromosome. Following this, it was demonstrated by simple subcloning of the region that carries the 3 bp deletion, that other pAL5000-based vectors could be converted to high copy number. In addition to this, the subcloned region was sequenced and the nature of the mutations was confirmed. The subcloning experiment confirmed that the 3bp deletion caused the high copy number phenotype. Following this, the exact copy number of pHIGH and the relative increase in copy number was determined. From this, the copy number of pORI could also be determined. The plasmid pHIGH has a copy number of approximately 54, compared to the 8 of pORI (a relative increase by a factor of 7). Because it is important for researchers to know the characteristics of the vectors that they use, especially the influence it will have on its host, stability tests and growth curves were also performed. It was seen that the higher copy number did not markedly increase the stability, however, this is because pORI is already extremely, and unexpectedly, stable in the host M. smegmatis. According to the growth curves, the increased copy number has little effect on the growth of the host M. smegmatis. Possible mechanisms for the increased copy number were then investigated. By using a promoter probe vector, the possible existence of a promoter situated between the two open reading frames of pAL5000 (repA and repB) was investigated. It was thought that the mutation might have created, or changed an existing promoter, situated between repA and repB. The results showed, however, that in both pORI and pHIGH there might be a very weak promoter upstream of repB, but the mutation did not cause any change that was measurable by the method that was used. A further possibility was that the mutation caused a change in the RNA secondary structure, which might then have an effect on the translational efficiency of RepB. It was found that the 3bp deletion in pHIGH causes a change in the local RNA secondary structure around the ribosomal binding site and the start codon, when compared to pORI (wild type). This change may cause the translation initiation rate of RepB to be different between pHIGH and pORI. Ultimately it would lead to a different ratio of RepA and RepB in the cell.
AFRIKAANSE OPSOMMING: Die plasmied pAL5000 is ‘n mikobakteriele plasmied wat vanuit Mycobacterium fortuitum gei'soleer is. Dit is ‘n lae kopie-getal plasmied wat in beide vinnig groeiende (bv. M. smegmatis) en stadig groeiende (bv. M. bovis BCG) mikobakteriee kan repliseer. Die meeste mikobakteriele-E. coli shuttle vektore gebruik die pAL5000 oorsprong van replisering. Die minimum replikon bestaan uit ORF1 (RepA), ORF2 (RepB) en die oorsprong van replisering. Dr. W.R. Bourn het ‘n E. coli-mikobakteriele vektor gemaak wat gebaseer is op die pAL5000 oorsprong van replisering (pORI), en dit onderwerp aan semi-random mutagenese. ‘n Hoë kopie-getal mutant is gei'dentifiseer (pHIGH) en die mutasie hiervoor verantwoordelik was tentatief gei'dentifiseer as ‘n 3bp delesie, net stroomop van repB. Die projek beskryf die verdere karakterisering van die mutante plasmied. Eerstens, deur M. smegmatis te hertransformeer met die plasmied DNA (pORI en pHIGH), is dit bewys dat dit mutasie wat die toename in kopie-getal veroorsaak, deur die plasmied gekodeer word, en dat dit nie ‘n mutasie op die chromosoom is nie. Hierna is dit deur eenvoudige subklonering bewys dat die gedeelte wat die 3bp delesie dra, ander pAL5000-gebaseerde vektore ook kan verander in ‘n hoër kopie-getal. Die sub-klonerings eksperiment het ook bewys dat die 3 bp delesie die oorsaak is vir die hoë kopie-getal fenotipe. Volgende is die presiese kopie-getal van pHIGH en die relatiewe toename in kopiegetal bepaal. Die kopie-getal van pORI kon vanaf hierdie data bepaal word. Die plasmied pHIGH het ‘n kopie-getal van ongeveer 54 in M. smegmatis, in vergelyking met die 8 van pORI (‘n relatiewe toename met ‘n faktor van 7). Aangesien dit vir navorsers belangrik is om die eienskappe van die vektore wat hulle gebruik, te ken, en veral die invloed wat dit op die gasheer sal hê, is stabiliteits toetse, en groeikurwes gedoen. Die hoër kopie-getal het nie die stabiliteit werklik verbeter nie, maar dit is omdat pORI alreeds uiters stabiel is in die gasheer M. smegmatis. Volgens die groeikurwes het die toename in kopie-getal ‘n minimale effek op die groei van die gasheer M. smegmatis. Moontlike meganismes vir die hoër kopie-getal is ook ondersoek. Die moontlike bestaan van ‘n promoter tussen die twee oop-leesrame van pAL5000 (repA en repB) is ondersoek deur gebruik te maak van ‘n “promoter probe” vektor. Die mutasie kon moontlik ‘n promoter geskep het, of ‘n bestaande een tussen repA en repB verander het. Die resultate het gewys dat daar in beide pORI en pHIGH moontlik ‘n baie swak promoter stroomop van repB is, maar die mutasie het nie enige veranderinge veroorsaak wat meetbaar was met die metode wat gebruik is nie. ‘n Verdere moontlikheid was dat die mutasie ‘n verandering in die RNA sekondere struktuur kon veroorsaak het, en dit mag ‘n effek hê op die translasie effektiwiteit van RepB. Daar is gevind dat, in vergelyking met pORI, het die 3bp delesie in pHIGH ‘n verandering in die lokale RNA sekondere struktuur rondom die ribosomale bindings posisie en die begin-kodon veroorsaak. Die verandering mag veroorsaak dat die translasie inisiasie tempo van RepB verskillend is vir pORI en pHIGH. Uiteindelik sal dit lei tot ‘n heeltemal ander verhouding van RepA en RepB in die sel.
Duval, Linda. "Diversité, évolution, co-spéciation et capture d'hôte chez les Haemosporidia de la faune sauvage de Madagascar et du Cambodge." Paris, Muséum national d'histoire naturelle, 2007. http://www.theses.fr/2007MNHN0019.
Повний текст джерелаThis thesis contributes, in using morphological, molecular and phylogenetic aspects to a better understanding of the Haemosporidian parasite diversity in vertebrate classes of birds, reptiles and mammals in two biodiversity hot spots, Madagascar and Cambodia. An atlas of Haemosporidia in wildlife of Madagascar and Cambodia has been realised to make available these data for public use. The parasites isolated have been characterized and identified with four molecular markers (cyt b, tufA, ldh and cox 1). The phylogenetic signal of each molecular marker has been evaluated. The mitochondrial genes, cyt b and cox 1 could carry a phylogenetic signal sufficient to conduct phylogenetic tree analyses comparing to tufA apicoplaste gene and ldh nuclear gene. The phylogenetic analyses highlighted host switches events between two vertebrate host classes, birds and mammals (bats). A co-evolutionary host parasite scenario bas been proposed for primate Plasmodium (including P. Falciparum in human) and Hominidae host family. A estimation of the emergence of P. Falciparum between 7 and 9 millions years has been deduced from this evolutionary scenario. P. Ovale would share a most recent common ancestor with a chimpanzee Plasmodium. Finally, greats apes could appear as a potential reservoirs for three of the four human Plasmodium (P. Falciparum, P. Ovale et P. Malariae)
Rahbany, Nancy. "Towards integrated optics at the nanoscale : plasmon-emitter coupling using plasmonic structures." Thesis, Troyes, 2016. http://www.theses.fr/2016TROY0003/document.
Повний текст джерелаThere is a growing interest nowadays in the study of strong light-matter interaction at the nanoscale, specifically between plasmons and emitters. Researchers in the fields of plasmonics, nanooptics and nanophotonics are constantly exploring new ways to control and enhance surface plasmon launching, propagation, and localization. Moreover, emitters placed in the vicinity of metallic nanoantennas exhibit a fluorescence rate enhancement due to the increase in the electromagnetic field confinement. However, numerous applications such as optical electronics, nanofabrication and sensing devices require a very high optical resolution which is limited by the diffraction limit. Targeting this problem, we introduce a novel plasmonic structure consisting of nanoantennas integrated in the center of ring diffraction gratings. Propagating surface plasmon polaritons (SPPs) are generated by the ring grating and couple with localized surface plasmons (LSPs) at the nanoantennas exciting emitters placed in the gap. We provide a thorough characterization of the optical properties of the simple ring grating structure, the double bowtie nanoantenna, and the integrated ring grating/nanoantenna structure, and study the coupling with an ensemble of molecules as well as single SiV centers in diamond. The combination of the sub-wavelength confinement of LSPs and the high energy of SPPs in our structure leads to precise nanofocusing at the nanoscale, which can be implemented to study plasmon-emitter coupling in the weak and strong coupling regimes
Книги з теми "Plasmodi"
Surface plasmon resonance: Methods and protocols. New York: Humana Press, 2010.
Знайти повний текст джерелаSönnichsen, Carsten. Plasmons in metal nanostructures. Göttingen: Cuvillier, 2001.
Знайти повний текст джерелаTolmasky, Marcelo E., and Juan C. Alonso, eds. Plasmids. Washington, DC, USA: ASM Press, 2015. http://dx.doi.org/10.1128/9781555818982.
Повний текст джерелаGric, Tatjana. Spoof Plasmons. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-031-02023-0.
Повний текст джерелаZhang, Zhenglong. Plasmonic Photocatalysis. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5188-6.
Повний текст джерелаZhang, John X. J. Plasmonic MEMS. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23137-7.
Повний текст джерелаBacterial plasmids. 2nd ed. Wokingham, Berkshire, England: Van Nostrand Reinhold (UK), 1986.
Знайти повний текст джерелаV, Klimov V. Nanoplazmonika. Moskva: Fizmatlit, 2010.
Знайти повний текст джерела1957-, Shalaev Vladimir M., ed. Nanoplasmonics. Amsterdam: Elsevier, 2006.
Знайти повний текст джерелаFunnell, Barbara E., and Gregory J. Phillips, eds. Plasmid Biology. Washington, DC, USA: ASM Press, 2004. http://dx.doi.org/10.1128/9781555817732.
Повний текст джерелаЧастини книг з теми "Plasmodi"
Whetzel, Patricia L., Shailesh V. Date, Kobby Essien, Martin J. Fraunholz, Bindu Gajria, Gregory R. Grant, John Iodice, et al. "PlasmoDB: The Plasmodium Genome Resource." In Molecular Approaches to Malaria, 12–23. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555817558.ch2.
Повний текст джерелаTatsuma, Tetsu. "Plasmonic Electrochemistry (Surface Plasmon Effect)." In Encyclopedia of Applied Electrochemistry, 1591–94. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-6996-5_496.
Повний текст джерелаSchüffler, Anja, and Corinna Kübler. "Targeting Plasmids: New Ways to Plasmid Curing." In Host - Pathogen Interaction, 179–200. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527682386.ch10.
Повний текст джерелаDostalek, Jakub. "Plasmonic Amplification for Fluorescence Bioassays Utilizing Propagating Surface Plasmons." In Encyclopedia of Nanotechnology, 1–11. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6178-0_100986-1.
Повний текст джерелаDostalek, Jakub. "Plasmonic Amplification for Fluorescence Bioassays Utilizing Propagating Surface Plasmons." In Encyclopedia of Nanotechnology, 3277–86. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_100986.
Повний текст джерелаKado, Clarence I. "Historical Events That Spawned the Field of Plasmid Biology." In Plasmids, 1–11. Washington, DC, USA: ASM Press, 2015. http://dx.doi.org/10.1128/9781555818982.ch1.
Повний текст джерелаHernández-Arriaga, Ana María, Wai Ting Chan, Manuel Espinosa, and Ramón Díaz-Orejas. "Conditional Activation of Toxin-Antitoxin Systems: Postsegregational Killing and Beyond." In Plasmids, 175–92. Washington, DC, USA: ASM Press, 2015. http://dx.doi.org/10.1128/9781555818982.ch10.
Повний текст джерелаVolante, Andrea, Nora E. Soberón, Silvia Ayora, and Juan C. Alonso. "The Interplay between Different Stability Systems Contributes to Faithful Segregation: Streptococcus pyogenes pSM19035 as a Model." In Plasmids, 193–207. Washington, DC, USA: ASM Press, 2015. http://dx.doi.org/10.1128/9781555818982.ch11.
Повний текст джерелаSamson, Julie E., Alfonso H. Magadan, and Sylvain Moineau. "The CRISPR-Cas Immune System and Genetic Transfers: Reaching an Equilibrium." In Plasmids, 209–18. Washington, DC, USA: ASM Press, 2015. http://dx.doi.org/10.1128/9781555818982.ch12.
Повний текст джерелаde Toro, María, M. Pilar Garcillán-Barcia, and Fernando de la Cruz. "Plasmid Diversity and Adaptation Analyzed by Massive Sequencing of Escherichia coli Plasmids." In Plasmids, 219–35. Washington, DC, USA: ASM Press, 2015. http://dx.doi.org/10.1128/9781555818982.ch13.
Повний текст джерелаТези доповідей конференцій з теми "Plasmodi"
Yu, Min-Wen, Satoshi Ishii, Shisheng Li, Ji-Ren Ku, Jhen-Hong Yang, Kuan-Lin Su, Takaaki Taniguchi, Tadaaki Nagao, and Kuo-Ping Chen. "Observation of carrier transports at exciton-plasmon coupling in MoS2 monolayers and 1D plamsmonic nanogrooves." In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2021. http://dx.doi.org/10.1364/jsap.2021.10a_n404_6.
Повний текст джерелаSrituravanich, W., N. Fang, C. Sun, S. Durant, M. Ambati, and X. Zhang. "Plasmonic Lithography." In ASME 2004 3rd Integrated Nanosystems Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/nano2004-46023.
Повний текст джерелаNishijima, Yoshiaki. "Mid infrared plasmon metasurfaces for sensing applications." In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2018. http://dx.doi.org/10.1364/jsap.2018.19p_211b_13.
Повний текст джерелаPetoukhoff, Christopher E., Keshav M. Dani, and Deirdre M. O’Carroll. "Ultrastrong Plasmon-Exciton Coupling between Ag Nanoparticles and Conjugated Polymers." In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2019. http://dx.doi.org/10.1364/jsap.2019.18p_e208_13.
Повний текст джерелаTakeuchi, Yuki, Kotaro Mukaiyama, Nobuyuki Takeyasu, and Yasutaka Hanada. "Multi-photon induced plasmon chemical transformation for laser microfabrication." In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2019. http://dx.doi.org/10.1364/jsap.2019.18a_e208_6.
Повний текст джерелаUmakoshi, Takayuki, Yuika Saito, and Prabhat Verma. "Metallic tips for efficient plasmon nanofocusing and advanced optical nano-imaging." In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.6a_a410_3.
Повний текст джерелаChiu, Min–Hsueh, and Jia-Han Li. "Effects of band shifting on permittivity of plasmonic material." In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2018. http://dx.doi.org/10.1364/jsap.2018.19p_211b_7.
Повний текст джерелаNayak, (D) Deepak Ranjan, and Siva Umapathy. "Surface Enhanced Raman Spectroscopic Studies using Galvanic Nano-buds." In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.6a_a410_1.
Повний текст джерелаKuo, Chia-Wen, Sheng-Han Wang, Shu-Cheng Lo, Ya-Lun Ho, Jean-Jacques Delaunay, and Pei-Kuen Wei. "Sensitive Small Molecule Detection Using Coupling of Image Dipoles of Gold Nanoparticles and Fano Resonance of Periodic Gold Nanostructures." In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2021. http://dx.doi.org/10.1364/jsap.2021.10p_n404_11.
Повний текст джерелаKondo, Masaki, and Wakana Kubo. "Photo Thermoelectric Effect Triggered by Local Heat under Localized Surface Plasmons." In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2018. http://dx.doi.org/10.1364/jsap.2018.19a_211b_6.
Повний текст джерелаЗвіти організацій з теми "Plasmodi"
Coons, Terry. Restriction mapping and expression of recombinant plasmids containing the arsenic resistance genes of the plasmid R45. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.5481.
Повний текст джерелаMirkin, Chad. Plasmonic Encoding. Fort Belvoir, VA: Defense Technical Information Center, October 2014. http://dx.doi.org/10.21236/ada614625.
Повний текст джерелаPassmore, Brandon Scott, Eric Arthur Shaner, and Todd A. Barrick. Plasmonic filters. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/973849.
Повний текст джерелаPeale, Robert E. Plasmonic-Electronic Transduction. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada566284.
Повний текст джерелаAlivisatos, A. P., Gabor A. Somorjai, and Peidong Yang. Plasmonic-Enhanced Catalysis. Fort Belvoir, VA: Defense Technical Information Center, May 2012. http://dx.doi.org/10.21236/ada576759.
Повний текст джерелаJin, Rongchao. On the Evolution from Non-Plasmonic Metal Nanoclusters to Plasmonic Nanocrystals. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada611094.
Повний текст джерелаSamtaney, R., N. F. Loureiro, D. A. Uzdensky, A. A. Schekochihin, and S. C. Cowley. Formation of Plasmoid Chains in Magnetic Reconnection. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/965277.
Повний текст джерелаPolyakov, Aleksandr. Plasmon Enhanced Photoemission. Office of Scientific and Technical Information (OSTI), May 2012. http://dx.doi.org/10.2172/1182733.
Повний текст джерелаAtwater, Harry A. Plasmonic Devices and Materials. Fort Belvoir, VA: Defense Technical Information Center, June 2005. http://dx.doi.org/10.21236/ada442370.
Повний текст джерелаHasselbeck, M. P., L. A. Schlie, and D. Stalnaker. Coherent Plasmons in InSb. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada430825.
Повний текст джерела