Добірка наукової літератури з теми "Plasma Circuits"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Plasma Circuits".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Plasma Circuits"

1

Bierer, P., A. W. Holt, A. D. Bersten, J. L. Plummer, and A. H. Chalmers. "Haemolysis Associated with Continuous Venovenous Renal Replacement Circuits." Anaesthesia and Intensive Care 26, no. 3 (June 1998): 272–75. http://dx.doi.org/10.1177/0310057x9802600307.

Повний текст джерела
Анотація:
Extracorporeal circuits can cause haemolysis resulting in an increase in plasma-free haemoglobin (PFHb). High pressures and clots within the circuit have been identified as factors increasing the likelihood of haemolysis. Continuous venovenous haemodiafiltration (CVVHD) is associated with high circuit pressures as the pump-driven circuit clots over a period of time. PFHb was measured during CVVHD to determine if circuit life, maximum circuit pressure or the clotting of the haemofilter was associated with evidence of haemolysis. Circuit life up to 50 hours, circuit pressures or haemofilter clotting had no significant effect on PFHb. There was a small rise in PFHb in the circuits lasting beyond 50 hours. CVVHD circuits can be run up to 50 hours without concern for haemolysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Berry, Lee A. "Plasma processing for integrated circuits." Journal of Fusion Energy 12, no. 4 (December 1993): 365–69. http://dx.doi.org/10.1007/bf01054814.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mathad, G. S., D. W. Hess, and M. Meyyappan. "Plasma Processing for Silicon-Based Integrated Circuits." Electrochemical Society Interface 8, no. 2 (June 1, 1999): 34–40. http://dx.doi.org/10.1149/2.f07992if.

Повний текст джерела
Анотація:
During the last quarter century or so, plasma processing has become a critical industrial technology for the development and manufacture of semiconductor devices. Gaseous plasmas have been used for sputter and chemical vapor deposition of thin films, pattern transfer in mask fabrication, etching of thin films, resist stripping, surface modification and as an ion source in ion implantation. It is the most pervasive technology in the manufacture of silicon-based integrated circuits.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yoshizaki, T., N. Tabuchi, W. Van Oeveren, A. Shibamiya, T. Koyama, and M. Sunamori. "PMEA Polymer-Coated PVC Tubing Maintains Anti-Thrombogenic Properties during in vitro Whole Blood Circulation." International Journal of Artificial Organs 28, no. 8 (August 2005): 834–40. http://dx.doi.org/10.1177/039139880502800809.

Повний текст джерела
Анотація:
Poly(2-methoxyethylacrylate) (PMEA) is a new coating material that appears to reduce protein and platelet adsorption. However, the exact performance of PMEA coated circuit remains to be revealed in well-controlled experiments. Therefore, we compared its hemocompatibility with covalent-bound heparin-, and non-coated circuits during 6 hours of in vitro circulation, using donor blood from six volunteers. In our model, simple tubing circuits containing one-way ball valve were placed on the rotary table, which moved alternatively to generate pulsatile recirculation of heparinized human blood inside the tubing. Using this model, we expected fine assessment of the material surface, because we could reduce blood damage by avoiding air and a blood pump. Moreover, the small capacity of circuit allowed us to compare three kinds of circuits using a single unit of donor blood, eliminating effects by possible variations between blood donors. The anti-thrombin capacity of the PMEA-coated circuits was maintained even after six hours blood circulation, whereas surface thrombin generation increased markedly after use in non-coated circuits (P<0.05). Deposition of fibrin onto PMEA circuits was reduced more than 30% compared with heparin and non-coated circuits (P<0.05). However, the increase of plasma Factor XIIa was similar in all circuits. Increase of CD11b expression on circulating leukocytes and of plasma C3a was ameliorated in the heparin- and PMEA-coated circuits (P<0.05). PMEA-coated circuits appear to maintain their anti-thrombogenicity during use, otherwise PMEA-coated and heparin-coated circuits showed a similar character in hemocompatibility. This long-standing anti-thrombogenicity might be attributable to less adsorption of activated blood components onto the surface.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Raveu, Nathalie, Gaetan Prigent, Thierry Callegari, and Henri Baudrand. "WCIP APPLIED TO ACTIVE PLASMA CIRCUITS." Progress In Electromagnetics Research Letters 21 (2011): 89–98. http://dx.doi.org/10.2528/pierl11010703.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tikhonov, V. N., S. A. Gorbatov, I. A. Ivanov, and A. V. Tikhonov. "A new type of non-thermal atmospheric pressure plasma source based on a waveguide bridge." Journal of Physics: Conference Series 2064, no. 1 (November 1, 2021): 012131. http://dx.doi.org/10.1088/1742-6596/2064/1/012131.

Повний текст джерела
Анотація:
Abstract A new type of microwave source of non-thermal atmospheric pressure plasmas, presented earlier by the authors, has both the characteristics of a dielectric barrier discharge (in terms of the configuration and low gas temperature) and an ability to form a “clean” plasma jet like a classical microwave plasma torch. However, the need to use a circulator leads to a significant increase in complexity, cost and weight of the installation as a whole. The basis of the presented plasma source is a three-decibel waveguide bridge with connection through a narrow wall. Both output arms of the bridge are loaded on identical short-circuited segments of waveguides. The discharge tube passes across the waveguides at a distance of a quarter of the wavelength from the short circuit. Since the output arms of the bridge are always loaded symmetrically, the generator’s power which is reflected from the short circuits or not be absorbed in the microwave discharge, enters the decoupled arm of the bridge that is connected to the matched load. Thus, the magnetron is protected from the reflected wave without the need for an expensive circulator, in any case.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pai, Pradeep, and Massood Tabib-Azar. "Plasma interconnects and circuits for logic gates and computer sub-circuits." Applied Physics Letters 104, no. 24 (June 16, 2014): 244104. http://dx.doi.org/10.1063/1.4884421.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lepla, Keith C., and Gary Horlick. "Photodiode Array Systems for Inductively Coupled Plasma-Atomic Emission Spectrometry." Applied Spectroscopy 43, no. 7 (September 1989): 1187–95. http://dx.doi.org/10.1366/0003702894203462.

Повний текст джерела
Анотація:
Details are presented for the construction of photodiode array (PDA) measurement systems from commercial components. The PDA systems described include the Hamamatsu S2304–1024Q, a Reticon 1024S using the RC1000 and RC1001 circuit boards, and a Reticon 1024S using the RC1024S circuit board. Detals are presented for computer-controlled clocking and timing circuits, ADC sub-systems, and Peltier cooling subsystems. The measurement characteristics (sensitivity and detection limits) for all arrays are intercompared with the use of analyte emission signals from an inductively coupled plasma.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gottscho, Richard A., Maria E. Barone, and Joel M. Cook. "Use of Plasma Processing in Making Integrated Circuits and Flat-Panel Displays." MRS Bulletin 21, no. 8 (August 1996): 38–42. http://dx.doi.org/10.1557/s0883769400035697.

Повний текст джерела
Анотація:
The ever-shrinking dimensions of microelectronic devices has mandated the use of plasma processing in integrated circuit (IC) factories worldwide. Today the plasma-processing industry has grown to over $3 billion in revenues per year, well in excess of predictions made only a few years ago. Plasma etching and deposition systems are also found throughout flat-panel-display (FPD) factories despite the much larger dimensions of thin-film transistors (TFTs) that are used to switch picture elements (pixels) on and off. Besides the use of plasma in etching and depositing thin films, other processes include the following: removal of photoresist remnants after development (descumming), stripping developed photoresist after pattern transfer (ashing), and passivating defects in polycrystalline material. Why are plasma processes so prevalent?In etching, plasmas are used for high-fidelity transfer of the photolithographically defined pattern that defines the device or circuit. More generally, plasma provides the means to taper sidewalls. In Si processing, the sidewalls must be nearly vertical to obtain high density integration and faster performance. However in making FPDs, sidewalls are tapered to obtain uniform step coverage and reduce shorting. In deposition, plasmas are used to enable processing at low temperature. For both etching and deposition, only plasma processing provides an economically viable means for processing large area substrates: 300 mm for Si and more than 550 × 650 mm for FPDs. It is the ability to scale uniform reactant generation to larger areas that sets plasma apart from beam-based processes that might otherwise offer the desired materials modifications. The nonequilibrium characteristics of plasma further distinguish this processing method. Energetic electrons break apart reactant precursors while ions bombard the surface anisotropically.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Meyyappan, M., and T. R. Govindan. "Plasma Process Modeling for Integrated Circuits Manufacturing." VLSI Design 6, no. 1-4 (January 1, 1998): 409–12. http://dx.doi.org/10.1155/1998/27636.

Повний текст джерела
Анотація:
A reactor model for plasma-based deposition and etching is presented. Two-dimensional results are discussed in terms of plasma density, ion flux, and ion energy. Approaches to develop rapid CAD-type models are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Plasma Circuits"

1

Almustafa, Mohamad. "Modélisation des micro-plasmas, conception des circuits micro-ondes, Coupleur Directionnel Hybride pour Mesures et des applications en Télécommunication." Phd thesis, Toulouse, INPT, 2013. http://oatao.univ-toulouse.fr/14170/1/almustafa.pdf.

Повний текст джерела
Анотація:
L'intégration des nouveaux éléments basés sur la physique des plasmas dans le domaine des circuits et des systèmes micro-ondes est l'objectif de ce travail. En profitant des caractéristiques électromagnétiques des plasmas et en jouant sur leur architecture, on développe des micro-commutateurs micro-ondes et d'autres circuits radio et hyperfréquences en technologies microrubans ou en guide d'onde… La simulation de la propagation des ondes électromagnétiques dans un plasma et les études de l'interaction entre un plasma et les ondes électromagnétiques nécessite la connaissance des paramètres fondamentaux du plasma comme la permittivité. C'est pour cela qu'on étudie aussi les mesures plasmas par différents techniques comme la transmission/réflexion des ondes électromagnétiques, la perturbation des cavités résonnantes, ... Un schéma électrique équivalent modélisant un micro-commutateur hyperfréquence en plasma, est obtenu grâce aux mesures des courants de décharge électrique, à la rétro-simulation et aux techniques de modélisation numérique. Un coupleur directif hybride compact est utilisé pour les mesures plasmas en assurant la protection du matériel et de l'équipement de mesure des signaux d'un plasma.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Önel, Hakan. "Electron acceleration in a flare plasma via coronal circuits." Phd thesis, Universität Potsdam, 2008. http://opus.kobv.de/ubp/volltexte/2009/2903/.

Повний текст джерела
Анотація:
The Sun is a star, which due to its proximity has a tremendous influence on Earth. Since its very first days mankind tried to "understand the Sun", and especially in the 20th century science has uncovered many of the Sun's secrets by using high resolution observations and describing the Sun by means of models. As an active star the Sun's activity, as expressed in its magnetic cycle, is closely related to the sunspot numbers. Flares play a special role, because they release large energies on very short time scales. They are correlated with enhanced electromagnetic emissions all over the spectrum. Furthermore, flares are sources of energetic particles. Hard X-ray observations (e.g., by NASA's RHESSI spacecraft) reveal that a large fraction of the energy released during a flare is transferred into the kinetic energy of electrons. However the mechanism that accelerates a large number of electrons to high energies (beyond 20 keV) within fractions of a second is not understood yet. The thesis at hand presents a model for the generation of energetic electrons during flares that explains the electron acceleration based on real parameters obtained by real ground and space based observations. According to this model photospheric plasma flows build up electric potentials in the active regions in the photosphere. Usually these electric potentials are associated with electric currents closed within the photosphere. However as a result of magnetic reconnection, a magnetic connection between the regions of different magnetic polarity on the photosphere can establish through the corona. Due to the significantly higher electric conductivity in the corona, the photospheric electric power supply can be closed via the corona. Subsequently a high electric current is formed, which leads to the generation of hard X-ray radiation in the dense chromosphere. The previously described idea is modelled and investigated by means of electric circuits. For this the microscopic plasma parameters, the magnetic field geometry and hard X-ray observations are used to obtain parameters for modelling macroscopic electric components, such as electric resistors, which are connected with each other. This model demonstrates that such a coronal electric current is correlated with large scale electric fields, which can accelerate the electrons quickly up to relativistic energies. The results of these calculations are encouraging. The electron fluxes predicted by the model are in agreement with the electron fluxes deduced from the measured photon fluxes. Additionally the model developed in this thesis proposes a new way to understand the observed double footpoint hard X-ray sources.
Die Sonne ist ein Stern, der aufgrund seiner räumlichen Nähe einen großen Einfluss auf die Erde hat. Seit jeher hat die Menschheit versucht die "Sonne zu verstehen" und besonders im 20. Jahrhundert gelang es der Wissenschaft viele der offenen Fragen mittels Beobachtungen zu beantworten und mit Modellen zu beschreiben. Die Sonne ist ein aktiver Stern, dessen Aktivität sich in seinem magnetischen Zyklus ausdrückt, welcher in enger Verbindung zu den Sonnenfleckenzahlen steht. Flares spielen dabei eine besondere Rolle, da sie hohe Energien auf kurzen Zeitskalen freisetzen. Sie werden begleitet von erhöhter Strahlungsemission über das gesamte Spektrum hinweg und setzen darüber hinaus auch energetische Teilchen frei. Beobachtungen von harter Röntgenstrahlung (z.B. mit der RHESSI Raumsonde der NASA) zeigen, dass ein großer Teil der freigesetzten Energie in die kinetische Energie von Elektronen transferiert wird. Allerdings ist nach wie vor nicht verstanden, wie die Beschleunigung der vielen Elektronen auf hohe Energien (jenseits von 20 keV) in Bruchteilen einer Sekunde erfolgt. Die vorliegende Arbeit präsentiert ein Model für die Erzeugung von energetischen Elektronen während solarer Flares, das auf mit realen Beobachtungen gewonnenen Parametern basiert. Danach bauen photosphärische Plasmaströmungen elektrische Spannungen in den aktiven Regionen der Photosphäre auf. Für gewöhnlich sind diese Potentiale mit elektrischen Strömen verbunden, die innerhalb der Photosphäre geschlossen sind. Allerdings kann infolge von magnetischer Rekonnektion eine magnetische Verbindung in der Korona aufgebaut werden, die die Regionen von magnetisch unterschiedlicher Polarität miteinander verbindet. Wegen der deutlich höheren koronalen elektrischen Leitfähigkeit, kann darauf die photosphärische Spannungsquelle über die Korona geschlossen werden. Das auf diese Weise generierte elektrische Feld führt nachfolgend zur Erzeugung eines hohen elektrischen Stromes, der in der dichten Chromosphäre harte Röntgenstrahlung generiert. Die zuvor erläuterte Idee wird mit elektrischen Schaltkreisen modelliert und untersucht. Dafür werden die mikroskopischen Plasmaparameter, die Geometrie des Magnetfeldes und Beobachtungen der harten Röntgenstrahlung verwendet, um makroskopische elektronische Komponenten, wie z.B. elektrische Widerstände zu modellieren und miteinander zu verbinden. Es wird gezeigt, dass der auftretende koronale Strom mit hohen elektrischen Feldern verbunden ist, welche Elektronen schnell auf hohe relativistische Energien beschleunigen können. Die Ergebnisse dieser Berechnungen sind ermutigend. Die vorhergesagten Elektronenflüsse stehen im Einklang mit aus gemessenen Photonenflüssen gewonnenen Elektronenflüssen. Zudem liefert das Model einen neuen Ansatz für das Verständnis der harten Röntgendoppelquellen in den Fußpunkten.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dainese, Matteo. "Plasma assisted technology for Si-based photonic integrated circuits." Doctoral thesis, Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-148.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zushi, Takahiro. "Study on Miniaturization of Plasma Wave Measurement Systems." Kyoto University, 2019. http://hdl.handle.net/2433/242507.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Abrokwah, Kwaku O. "Characterization and modeling of plasma etch pattern dependencies in integrated circuits." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37054.

Повний текст джерела
Анотація:
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.
Leaf 108 blank.
Includes bibliographical references (leaves 106-107).
A quantitative model capturing pattern dependent effects in plasma etching of integrated circuits (ICs) is presented. Plasma etching is a key process for pattern formation in IC manufacturing. Unfortunately, pattern dependent non-uniformities arise in plasma etching due to microloading and RIE lag. This thesis contributes a semi-empirical methodology for capturing and modeling microloading, RIE lag, and related pattern dependent effects. We apply this methodology to the study of interconnect trench etching, and show that an integrated model is able to predict both pattern density and feature size dependent non-uniformities in trench depth. Previous studies of variation in plasma etching have characterized microloading (due to pattern density), and RIE lag (aspect ratio dependent etching or ARDE) as distinct causes of etch non-uniformity for individual features. In contrast to these previous works, we present here a characterization and computational methodology for predicting IC etch variation on a chip scale that integrates both layout pattern density and feature scale or ARDE dependencies. The proposed integrated model performs well in predicting etch variation as compared to a pattern density only or feature scale only model.
by Kwaku O. Abrokwah.
M.Eng.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rossi, Alberto. "Développement d'outils d'optimisation dédiés aux circuits magnétiques des propulseurs à effet Hall." Phd thesis, Toulouse, INPT, 2017. http://oatao.univ-toulouse.fr/19234/1/ROSSI_Alberto_public.pdf.

Повний текст джерела
Анотація:
Aujourd’hui les propulseurs à effet Hall ont gagné une position dominante dans le marché des propulseurs électriques spatiales. Ce grand succès est du surtout à leur simplicité de réalisation (par rapport aux autres typologies des propulseurs) et à leur efficacité (par rapport aux propulseurs chimiques traditionnels). Les propulseurs à effet Hall sont aujourd’hui utilisés sur un très grand nombre des plateformes satellitaires (surtout pour les télécommunications). Les composants principales d’un propulseur à effet Hall sont : le circuit magnétique, le canal plasma, l’anode (placé au fond du canal plasma avec injecteur du gaz) et la cathode (placée à l’extérieur du canal plasma). Le fonctionnement d’un propulseur à effet Hall est basé sur la génération d’un champ électrique axial (généré entre l’anode et la cathode) et d’un champ magnétique radial (perpendiculaires entre eux). Le champ magnétique a le rôle de former une zone de très forte concentration électronique (il emprisonne les électrons générés par la cathode) pour permettre aux atomes neutres du gaz de se ioniser. Le champ électrique a le rôle d’accélérer les ions vers l’extérieur du canal. Cette accélération génère la poussée. Le champ magnétique joue un rôle crucial dans le fonctionnement d’un propulseur à effet Hall. La forme du champ magnétique impacte sur les performances propulsifs et sur l’érosion du propulseurs. La topologie magnétique classique des propulseurs à effet Hall n’a subi presque pas des changements depuis les années de développement de cette technologie parce qu’elle garanti des performances propulsifs assez satisfaisantes. Aujourd’hui, avec les nouvelles exigences propulsifs, il y a une très forte nécessité des moteurs avec une durée de vie plus longue. Des nouvelles topologie magnétique innovante sont proposés aujourd’hui comme par exemple le "Magnetique-Shielding" ou le "Wall-Less" . Ces topologies magnétique bouleverse complètement la topologie magnétique classique (en gardant des performances propulsif satisfaisantes) pour protéger le moteur de l’érosion du plasma. Dans cette thèse une autre approche a été adopté. Nous avons pensé d’utiliser une topologie magnétique classique et de déplacer les parties du circuit magnétique attaquées par l’érosion vers des zones moins dangereuses. Nous avons agit sur la forme du circuit magnétique et pas sur la forme de la topologie magnétique pour garder les même performances propulsifs de la topologie magnétique classique. L’objectif de la thèse était de créer des outils pour le design et l’optimisation des circuits magnétiques des propulseurs à effet Hall. Un algorithme nommé ATOP a été créé dans l’équipe de recherche GREM3 du laboratoire LAPLACE de Toulouse. Cette thèse a contribué à la création de la section d’optimisation paramétrique (ATOPPO) et d’une section d’optimisation topologique basée sur les algorithmes génétiques (ATOPTOga) de l’algorithme ATOP. Les algorithme conçues dans cette thèse permettent d’optimiser des propulseurs existants (en terme de forme, masse et courant) ou de concevoir des nouveaux propulseurs (nécessité de concevoir un nouveau propulseur capable de reproduire une topologie magnétique précise). Les algorithmes développées ont démontrés leur efficacité à travers leur application sur un propulseur réel, le PPS-1350-E® de SAFRAN. Ce propulseur a été optimisé en terme de masse et de courant bobines (minimisation de la masse et du courant bobines). Les algorithmes développés ont démontré donc leur efficacité comme instrument d’optimisation et de design. Ces deux algorithmes ont été utilisé pour le design d’un circuit magnétique innovant qui a comme objectif de réduire l’érosion du moteur. Les résultats de ce processus de design ont amené à la réalisation et à la construction d’un prototype qui possède la même topologie magnétique du propulseur PPS- 1350-E® commercialisé par SAFRAN mais avec une circuit magnétique de forme différente.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Simon, Antoine. "Étude de dispositifs de limitation de puissance microonde en technologie circuit imprimé exploitant des plasmas de décharge." Thesis, Toulouse, ISAE, 2018. http://www.theses.fr/2018ESAE0037/document.

Повний текст джерела
Анотація:
Dans ce travail de thèse, nous souhaitons exploiter les interactions non-linéaires entre le signal micro-onde de forte puissance à émettre et des micro-décharges plasmas intégrés dans les circuits ou antennes micro-ondes de l’émetteur (e.g., émetteur de télécommunications, RADAR, ...) pour obtenir sa reconfigurabilité. Une telle problématique adresse un ensemble de compétences à l’interface entre la physique des plasmas et les micro-ondes. Elle concerne aussi bien des problématiques amont que des considérations d’ingénierie. Le travail à réaliser au cours de ce projet doit permettre de progresser en deux tâches de recherche qui structureront les activités de la thèse. En premier lieu, la caractérisation des micro-décharges plasmas sera effectuée puis il sera possible d'identifier et de développer des dispositifs micro-ondes reconfigurables
In this project, the non-linear interactions between the high-power microwave signal and micro-discharges plasmas integrated in the microwave circuits or antennas of the transmitter (for example,Telecommunication transmitter, RADAR, ...) will be exploited to obtain its reconfigurability. Such a problem addresses a set of competences at the interface between plasma physics and microwaves. It concerns both upstream and engineering considerations. The work to be carried out during this project should make it possible to progress in two research tasks that will structure the activities of the thesis. First, the characterization of microdischarge plasmas will be perform then it will possible to identify and develop reconfigurable microwave devices
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Thomas, David John. "Mass spectroscopy of the etching of Si and SiO←2 in CF←4/O←2 plasmas and X-ray photoelectron spectroscopy of plasma deposited borophosphosilicate glasses." Thesis, University of Bristol, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294220.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Laparra, Olivier. "Mise au point et optimisation d'un équipement industriel de dépôts chimiques en phase vapeur activés par plasma (PACVD)." Montpellier 2, 1987. http://www.theses.fr/1987MON20018.

Повний текст джерела
Анотація:
La technique de depots chimiques en phase activites par plasma a connu au cours de ces dernieres annees un developpement important. Notre travail a consiste a mettre au point un equipement industriel de depots assistes par plasma et a en optimiser les performances. Au cours de cette etude ont ete realises des depots de films dielectriques (oxydes, nitrures. . . ) utilises lors de l'elaboration des circuits integres. Une analyse systematique des differents parametres de depots (temperature, pression, melanges gazeux, puissance de plasma, positionnement des plaquettes, etc. . . ) intervenant lors des processus technologiques est presentee dans ce memoire
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mukherjee, Tamal. "Investigation of Post-Plasma Etch Fluorocarbon Residue Characterization, Removal and Plasma-Induced Low-K Damage for Advanced Interconnect Applications." Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc849649/.

Повний текст джерела
Анотація:
Modern three-dimensional integrated circuit design is rapidly evolving to more complex architecture. With continuous downscaling of devices, there is a pressing need for metrology tool development for rapid but efficient process and material characterization. In this dissertation work, application of a novel multiple internal reflection infrared spectroscopy metrology is discussed in various semiconductor fabrication process development. Firstly, chemical bonding structure of thin fluorocarbon polymer film deposited on patterned nanostructures was elucidated. Different functional groups were identified by specific derivatization reactions and model bonding configuration was proposed for the first time. In a continued effort, wet removal of these fluorocarbon polymer was investigated in presence of UV light. Mechanistic hypothesis for UV-assisted enhanced polymer cleaning efficiency was put forward supported by detailed theoretical consideration and experimental evidence. In another endeavor, plasma-induced damage to porous low-dielectric constant interlayer dielectric material was studied. Both qualitative and quantitative analyses of dielectric degradation in terms of increased silanol content and carbon depletion provided directions towards less aggressive plasma etch and strip process development. Infrared spectroscopy metrology was also utilized in surface functionalization evaluation of very thin organic films deposited by wet and dry chemistries. Palladium binding by surface amine groups was examined in plasma-polymerized amorphous hydrocarbon films and in self-assembled aminosilane thin films. Comparison of amine concentration under different deposition conditions guided effective process optimization. A time- and cost-effective method such as current FTIR metrology that provides in-depth chemical information about thin films, surfaces, interfaces and bulk layers can be increasingly valuable as critical dimensions continue to scale down and subtle process variances begin to have a significant impact on device performance.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Plasma Circuits"

1

Samukawa, Seiji. Feature profile evolution in plasma processing using on-wafer monitoring system. Tokyo: Springer, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

1955-, Bozhevolnyi Sergey I., ed. Plasmonic nanoguides and circuits. Singapore: Distributed by World Scientific Pub., 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Danilin, B. S. Primenenie nizkotemperaturnoĭ plazmy dli͡a︡ nanesenii͡a︡ tonkikh plenok. Moskva: Ėnergoatomizdat, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zaĭt︠s︡ev, F. S. Matematicheskoe modelirovanie ėvoli︠u︡t︠s︡ii toroidalʹnoĭ plazmy. Moskva: MAKS Press, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tan, Cher Ming. Electromigration Modeling at Circuit Layout Level. Singapore: Springer Singapore, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Roosmalen, A. J. van. Dry etching for VLSI. New York: Plenum Press, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

R, Viswanathan. Environmentally-induced discharge transient coupling to spacecraft. [Washington, DC]: National Aeronautics and Space Administration, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

R, Viswanathan. Environmentally-induced discharge transient coupling to spacecraft. [Washington, DC]: National Aeronautics and Space Administration, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

S, Grabowski Kenneth, ed. Materials modification by energetic atoms and ions: Symposium held April 28-30, 1992, San Francisco, California, USA. Pittsburgh, PA: Materials Research Society, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Symposium on Dry Process (9th 1987 Honolulu, Hawaii). Proceedings of the Symposium on Dry Process. Pennington, NJ (10 S. Main St., Pennington 08534-2896): Electrochemical Society, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Plasma Circuits"

1

Singh, Shailendra, Sanjeev Kumar Bhalla, Jeetendra Singh, Shilpi Gupta, Balwinder Raj, and N. K. Yadav. "Design and Analysis of Charge Plasma-Based SiGe Vertical TFET for Biosensing Applications." In Advanced Circuits and Systems for Healthcare and Security Applications, 1–18. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003189633-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Popović, I., and M. Zlatanović. "Equivalent Circuits of Unipolar Pulsed Plasma System for Electrical and Optical Signal Analysis." In Materials Science Forum, 89–94. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-441-3.89.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bilokonska, Yuliia, Mariia Breslavets, Serhii Firsov, and Andrii Boyarkin. "Methodology for the Experimental Calculation the Coefficients of the Functional Dependencies Electrical Circuits Plasma Substitution." In Integrated Computer Technologies in Mechanical Engineering, 24–34. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37618-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rycroft, Michael J., and R. Giles Harrison. "Electromagnetic Atmosphere-Plasma Coupling: The Global Atmospheric Electric Circuit." In Dynamic Coupling Between Earth’s Atmospheric and Plasma Environments, 363–84. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-5677-3_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zeng, Zhengzhong, Yuchang Qiu, and Aici Qiu. "Simulation of Electrical Circuit of Plasma Opening Switch Using Pspice." In Gaseous Dielectrics VIII, 225–30. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-4899-7_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Colpo, Pascal, and François Rossi. "Modeling of the Equivalent Circuit of Inductively Coupled Plasma Sources." In Advanced Technologies Based on Wave and Beam Generated Plasmas, 529–30. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-0633-9_50.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lei, Kaizhuo, Ning Li, Hai Huang, Jianguo Huang, and Jiankang Qu. "The Characteristics of Underwater Plasma Discharge Channel and Its Discharge Circuit." In Advanced Electrical and Electronics Engineering, 619–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19712-3_79.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kianinejad, Amin. "Spoof Surface Plasmon Modes Modeling Using Circuit Elements." In Springer Theses, 11–27. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8375-4_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Morisaki, A., M. Iwahashi, Y. Nakahara, H. Nakayama, and S. Takezawa. "Engineering Safety Study of a Circuit Conducting Simultaneous Hemodialysis and Plasma Exchange." In IFMBE Proceedings, 777–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-29305-4_204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gleizes, Alain, Anne-Marie Casanovas, and Isabelle Coll. "Ablation in SF6 Circuit-Breaker Arcs: Plasma Properties and By-Products Formation." In Gaseous Dielectrics IX, 393–402. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-0583-9_55.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Plasma Circuits"

1

Abbas, Hasan T., Robert D. Nevels, and Krzysztof A. Michalski. "Plasma based terahertz devices." In 2017 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS). IEEE, 2017. http://dx.doi.org/10.1109/wmcas.2017.8070694.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vlasov, Alexander N., Igor A. Chernyavskiy, Baruch Levush, David Chernin, Thomas M. Antonsen, and Khanh T. Nguyen. "Dispersive properties of serpentine and folded waveguide circuits." In 2013 IEEE 40th International Conference on Plasma Sciences (ICOPS). IEEE, 2013. http://dx.doi.org/10.1109/plasma.2013.6634873.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cooke, S. J., B. Levush, and D. E. Pershing. "3-d modeling of broadband multi-cavity circuits." In The 33rd IEEE International Conference on Plasma Science, 2006. ICOPS 2006. IEEE Conference Record - Abstracts. IEEE, 2006. http://dx.doi.org/10.1109/plasma.2006.1706892.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Narayan, Amith H., Brian L. Beaudoin, Antonio Ting, Steven Gold, Jayakrishnan A. Karakkad, Gregory S. Nusinovich, Charles Turner, and Thomas M. Antonsen. "Simulations Of Power Extraction Circuits For Mobile Ionospheric Heating*." In 2017 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2017. http://dx.doi.org/10.1109/plasma.2017.8496150.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Osmokrovic, P., M. Pesic, Z. Trifkovic, and A. Vasic. "Reliability of three-electrode spark gaps for synthetic test circuits." In 2007 IEEE Pulsed Power Plasma Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/ppps.2007.4346191.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Beverly, Robert E. "Characterization of magnetoplasma-dynamic compressors with self-triggering circuits." In 2013 IEEE 40th International Conference on Plasma Sciences (ICOPS). IEEE, 2013. http://dx.doi.org/10.1109/plasma.2013.6634776.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Beaudoin, Brian L., Antonio Ting, Steven Gold, Jayakrishnan A. Karakkad, Amith H. Narayan, Gregory S. Nusinovich, Charles Turner, and Thomas M. Antonsen. "Experimental Measurements of Power Extraction Circuits For Mobile Ionospheric Heating*." In 2017 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2017. http://dx.doi.org/10.1109/plasma.2017.8496205.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Seddon, N. "A review of nonlinear, dispersive circuits for pulsed power applications." In 2013 IEEE 40th International Conference on Plasma Sciences (ICOPS). IEEE, 2013. http://dx.doi.org/10.1109/plasma.2013.6633208.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Beverly, R. E. "Characterization of magnetoplasmadynamic compressors with self-triggering circuits." In 2013 IEEE Pulsed Power and Plasma Science Conference (PPPS 2013). IEEE, 2013. http://dx.doi.org/10.1109/ppc.2013.6627535.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kwon, Hyuk-Joo, Dong-Soo Min, Pil-Jin Jang, Byung-Soo Chang, Boo-Yeon Choi, and Soo-Hong Jeong. "Plasma etch of Cr masks utilizing TCP source for a next-generation plasma source." In 18th European Mask Conference on Mask Technology for Integrated Circuits and Micro-Components. SPIE, 2002. http://dx.doi.org/10.1117/12.479363.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Plasma Circuits"

1

Jain, R. K. Integrated Plasmon-Optic Circuits for Nanometric Sources and Sensors. Fort Belvoir, VA: Defense Technical Information Center, October 2014. http://dx.doi.org/10.21236/ada610324.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Verboncoeur, John P., M. V. Alves, and V. Vahedi. Simultaneous Potential and Circuit Solution for Bounded Plasma Particle Simulation Codes,. Fort Belvoir, VA: Defense Technical Information Center, August 1990. http://dx.doi.org/10.21236/ada233507.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії