Добірка наукової літератури з теми "Plant's biology"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Plant's biology".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Plant's biology"
Zamora, David L., Donald C. Thill, and Robert E. Eplee. "An Eradication Plan for Plant Invasions." Weed Technology 3, no. 1 (March 1989): 2–12. http://dx.doi.org/10.1017/s0890037x00031225.
Повний текст джерелаMackelprang, Rebecca, and Peggy G. Lemaux. "Genetic Engineering and Editing of Plants: An Analysis of New and Persisting Questions." Annual Review of Plant Biology 71, no. 1 (April 29, 2020): 659–87. http://dx.doi.org/10.1146/annurev-arplant-081519-035916.
Повний текст джерелаSchulze, Waltraud X., Kristian W. Sanggaard, Ines Kreuzer, Anders D. Knudsen, Felix Bemm, Ida B. Thøgersen, Andrea Bräutigam, et al. "The Protein Composition of the Digestive Fluid from the Venus Flytrap Sheds Light on Prey Digestion Mechanisms." Molecular & Cellular Proteomics 11, no. 11 (August 12, 2012): 1306–19. http://dx.doi.org/10.1074/mcp.m112.021006.
Повний текст джерелаMockler, T. C., H. Guo, H. Yang, H. Duong, and C. Lin. "Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction." Development 126, no. 10 (May 15, 1999): 2073–82. http://dx.doi.org/10.1242/dev.126.10.2073.
Повний текст джерелаPenna, Suprasanna, and Sushma Naithani. "Understanding the plant's response to global climate change using Omics." Current Plant Biology 29 (January 2022): 100241. http://dx.doi.org/10.1016/j.cpb.2022.100241.
Повний текст джерелаEICHLIN, THOMAS D., OONA S. DELGADO, LORRAINE W. STRATHIE, COSTAS ZACHARIADES, and JOSE CLAVIJO. "Carmenta chromolaenae Eichlin, a new species (Lepidoptera: Sesiidae) for the biological control of Chromolaena odorata (L.) King & Robinson (Asteraceae)." Zootaxa 2288, no. 1 (November 12, 2009): 42–50. http://dx.doi.org/10.11646/zootaxa.2288.1.2.
Повний текст джерелаRao, Marada Srinivasa, S. Praveen Kumar, and Konda Srinivasa Rao. "A Review on Detection of Medical Plant Images." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 4 (May 4, 2023): 54–64. http://dx.doi.org/10.17762/ijritcc.v11i4.6381.
Повний текст джерела-, Prabhavathi, and Anuradha Mal. "Nutraceutical properties of Vinca rosea." Biomedicine 42, no. 3 (July 3, 2022): 427–33. http://dx.doi.org/10.51248/.v42i3.1459.
Повний текст джерелаBaumann, Thomas W. "Some thoughts on the physiology of caffeine in coffee: and a glimpse of metabolite profiling." Brazilian Journal of Plant Physiology 18, no. 1 (March 2006): 243–51. http://dx.doi.org/10.1590/s1677-04202006000100017.
Повний текст джерелаA., Arul Marcel Moshi, Ravindran D., Sundara Bharathi S.R., Padma S.R., Indran S., and Divya D. "Characterization of natural cellulosic fiber extracted from Grewia damine flowering plant's stem." International Journal of Biological Macromolecules 164 (December 2020): 1246–55. http://dx.doi.org/10.1016/j.ijbiomac.2020.07.225.
Повний текст джерелаДисертації з теми "Plant's biology"
Rohloff, Jens. "Cultivation of Herbs and Medicinal Plants in Norway - Essential Oil Production and Quality Control." Doctoral thesis, Norwegian University of Science and Technology, Department of Biology, 2003. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-415.
Повний текст джерелаEssential oils (EO) are plant secondary metabolites that are known for their fragrance and food flavour properties. They consist of a complex mixture of mono- and sesquiterpenes, phenyl propanoids and oxygenated compounds. EOs can be present in different plant organs and materials, and their storage is related to specialised secretory structures. The yield of EOs from plant raw materials by distillation or pressing may on average vary from 0.1 – 1%, thus restricting the major EO production to the plant group of aromatic plants. Due to their function as signalling compounds between different types of organisms and diverse biological systems, their general antimicrobial and antioxidative effects and medicinal activity, EOs offer a promising potential for future applications within the fields of agriculture, medicine, pharmaceutical industry and biotechnology.
Changed consumer demands and raised interest in natural product compounds, especially essential oils, have formed the basis for initiating the research project “Norwegian Herb Production (Norsk Urteproduksjon NUP)” to encourage the cultivation, processing, marketing and distribution of aromatic and medicinal plants. The production, composition and quality characteristics of EOs (yield and terpene composition) from chamomile, lemon balm, oregano, peppermint, sachalinmint, thyme and yarrow have been investigated in the project period between 1994-1998.
Much focus has been put on the application of solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) for the analysis of EO volatiles from various aromatic and medicinal plants. SPME is a fast, solvent-free and non- destructive sample preparation technique where the analytes are extracted from fluid or solid matrices by headspace (HS) or direct immersion sampling (DI). Apart from EO isolation by common distillation, the applicability and sensitivity of the SPME fibre has made it feasible to carry out qualitative and semi-quantitative HS analyses of aromatic plants with regard to changes of EO metabolism during ontogenesis and plant development.
Based on NUP-results from field trials in the period between 1995-1996, the mint species peppermint (Mentha × piperita L.) and sachalinmint (Mentha sachalinensis (Briq.) Kudô) have been studied in detail (Papers B, D and E). Comparative analyses by applying distillation sampling and SPME have been carried out in order to study the advantages and disadvantages of both techniques (Papers B and E). It could be shown, that SPME offers a fast and reliable method for detecting quality-impact compounds from the p-menthane group (menthol, menthone, neomenthol, isomenthone and menthyl acetate). A distinct increase in the menthol/menthone ratio in the basipetal direction could be detected for peppermint and sachalinmint by applying SPME, thus revealing within-plant quality differences according to pharmacopeial requirements. Taking the increase of EO production from the vegetative to the generative growth stage into account, the harvest of mint plants in bloom will result in better EO yield and quality with regard to higher amounts of menthol.
When applying HS-SPME on complex EO volatile matrices such as known for yarrow (Achillea millefolium L.; Paper C), one might deal with fibre-partitioning effects of the different mono- and sesquiterpenes due to their physical and chemical properties. Despite these disadvantages, HS-SPME appears to be a sensitive extraction method for the screening of EO volatiles from complex sample matrices. Comparative analyses of volatiles from rose root rhizomes (Rhodiola rosea L.) have been carried out in order to characterize the rose-like odour compounds (Paper F). A total of 75 and 59 compounds have been identified by distillation sampling and HS-SPME, respectively, thus underscoring the excellent extraction properties and applicability of the SPME fibre.
Paper A gives a brief overview of EO biosynthesis and chemical structures, plant sources and methods of EO production. Before leading over to the main topic of HS-SPME applications by referring to numerous examples from the research work at The Plant Biocenter in the past 5 years, an introduction of solid-phase microextraction with regard to devices, procedures and extraction parameters is given.
The advantages and disadvantages of distillation vs. SPME are outlined on the background of comparative analyses of peppermint, chamomile, basil and dill. Furthermore, the utilization of HS-SPME for quantitative studies with regard to extraction time and analyte concentration is being highlighted. Examples for the screening of chemotypes (hops −Humulus lupulus L.) and cultivars (dill – Anethum graveolens L.) and ontogenetic studies are given (Mentha species; arnica −Arnica montana L.). Finally, the applicability of HS-SPME for the quality assessment of processed herbs (sweet basil −Ocimum basilicum L.) and phytomedicinal preparations (red coneflower – Echinacea purpurea L.) is being discussed.
The advantages of HS-SPME over classical distillation and headspace applications are impressive due to drastically reduced analysis time and will introduce new frontiers in plant volatile research with regard to secondary metabolism, plant-insect interactions and in vivo studies. The user-friendliness of operating SPME will initiate the development of future applications and equipment for the monitoring of volatiles for plant biological and environmental studies, extraction automation, on-site sampling and on-fibre storage of analytes.
Paper VI reprinted with kind permission of Elsevier, Sciencedirect, www.sciencedirect.com
Hadj, Amor Khaoula. "Classification et inférence de réseaux de gènes à partir de séries temporelles très courtes : application à la modélisation de la mémoire transcriptionnelle végétale associée à des stimulations sonores répétées." Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES037.
Повний текст джерелаAdvancements in new sequencing technologies have paved the way for accessing dynamic gene expression data on a genome-wide scale. Classical ensemble approaches traditionally used in biology fall short of comprehending the underlying the complex molecular mechanisms. Consequently, developing analytical methods to understand further such data poses a significant challenge for current biology. However, the technical and experimental costs associated with transcriptomic data severely limit the dimension of real datasets and their analytical methods. Throughout my thesis, at the intersection of applied mathematics and plant biology, I focused on implementing an inference method for dynamic regulatory networks tailored to a real and original dataset describing the effect of repeated acoustic stimulations on genes expressions of Arabidopsis thaliana. I proposed a clustering method adapted to very-short time series that groups genes based on temporal variations, adjusting the data dimension for network inference. The comparison of this method with classical methods showed that it was the most suitable for very-short time series with irregular time points. For the network inference, I proposed a model that takes into account intra-class variability and integrates a constant term explicitly describing the external stimulation of the system. The evaluation of these classification and inference methods was conducted on simulated and real-time series data, which established their high performance in terms of accuracy, recall, and prediction error. The implementation of these methods to study the priming of the immune response of Arabidopsis thaliana through repeated sound waves. We demonstrated the formation of a transcriptional memory associated with stimulations, transitioning the plant from a naïve state to a primed and more resistant state within 3 days. This resistant state, maintained by stimulations and transcription factor cascades, enhances the plant's immune resistance by triggering the expression of resistance genes in healthy plants, diversifying the number of genes involved in the immune response, and intensifying the expression of numerous resistance genes. The inference of the network describing the transcriptional memory associated with repeated sound stimulations allowed us to identify the properties conferred to plants. Experimentally validated predictions showed that increasing the frequency between stimulations does not result in a more significant resistance gain, and the transcriptional memory lasts only 1.5 days after the last stimulation
Sakamoto, Tetsu. "The tomato RLK superfamily: phylogeny and functional predictions about the role of the LRRII- RLK subfamily in antiviral defense." Universidade Federal de Viçosa, 2012. http://locus.ufv.br/handle/123456789/4804.
Повний текст джерелаFundação de Amparo a Pesquisa do Estado de Minas Gerais
Receptores cinases (RLKs) compõem uma grande famíla de proteínas transmembrânicas que possuem funções importantes na propagação e percepção de sinais celulares nas plantas. Em Arabidopsis thaliana, a superfamília de RLK é composta de mais de 600 membros e vários destes, principalmente aqueles que possuem repetições ricas em leucina (LRR), são considerados excelentes alvos para manipulação molecular em cultivares superiores no intuito de aumentar a produtividade e a resistência contra estresses bióticos e abióticos. A subfamília LRRII é particularmente relevante neste aspecto uma vez que seus membros apresentam funções duplas tanto no desenvolvimento quanto na resposta de defesa da planta. Apesar da relevância desta superfamília e da recente finalização do sequenciamento do genoma de tomateiro, a superfamília de RLK de tomate ainda não se encontra caracterizada e são poucos os trabalhos que analisaram a função biológica de seus membros. Neste trabalho, foi construído um inventário completo dos membros da superfamília de RLK de tomate. Para identificar os membros da superfamília RLK em tomate, foi realizado uma análise filogenética utilizando a superfamília de RLK de Arabidopsis como modelo. Um total de 647 RLKs foram recuperados do genoma de tomate e estes encontravam- se organizados no mesmo clado das subfamílias de RLKs de Arabidopsis. Apenas oito das 58 subfamílias exibiram expansão/redução específica no número de menbros comparado com Arabidopsis e apenas seis RLKs foram específicos em tomate, indicando que os RLKs de tomate compartilham aspectos funcionais e estruturais com os RLKs de Arabidopsis. Também foi caracterizado a subfamília LRRII através de análises filogenéticos, genômico, expressão gênica e interação com o fator de virulência de begomovírus, o nuclear shuttle protein (NSP). Os membros da subfamília LRRII de tomate e Arabidopsis demonstraram-se altamente conservados tanto em sequência quanto em estrutura. No entanto, a maioria dos pares ortólogos não mostraram conservados em relação à expressão gênica, indicando que estes ortólogos tenham se divergido na função após a especiação do ancestral comum entre o tomate e Arabidopsis. Baseado no fato de que membros de RLKs de Arabidopsis (NIK1, NIK2, NIK3 e NsAK) interagem com o NSP de begomovirus, foi verificado se ortólogos de NIKs, BAK1 e NsAK interagem com o NSP de Tomato Yellow Spot Virus (ToYSV). Os ortólogos dos genes que interagem com o NSP em tomate, SlNIKs e SlNsAK, interagiram especificamente com NSP na levedura e demonstraram um padrão de expressão consistente com o padrão de infecção de geminivírus. Além de sugerir uma analogia funcional entre estes ortólogos, estes resultados confirmam a observação anterior de que as interações NSP-NIK não são específicos para um vírus ou para um hospedeiro. Portanto, a sinalização antiviral mediado por NIK provavelmente ocorre em tomate, sugerindo que NIKs de tomate sejam alvos potenciais para manipular a resistência contra begomovírus que infectam esta planta.
Receptor-like kinases (RLKs) represent a large family of transmembrane proteins that play important roles in cellular signaling perception and propagation in plants. In Arabidopsis thaliana, the RLK superfamily is made-up of over 600 proteins and many of these RLKs, mainly those bearing leucine-rich repeats (LRR), have been considered as excellent targets for engineering superior crops with enhancement of yield and resistance to biotic and abiotic stresses. The LRRII-RLK subfamily is particularly relevant due to the dual function of its members in both development and defense. In spite of the relevance of the RLK family and the completion of the tomato genome sequencing, the tomato RLK family has not been characterized and a framework for functional predictions of the members of the family is lacking. In this investigation we disclosed a complete inventory of the members of the tomato RLK family. To generate a complete list of all members of the tomato RLK superfamily, we performed a phylogenetic analysis using the Arabidopsis RLKs as a template. A total of 647 RLKs were identified in the tomato genome, which were organized into the same RLK subfamily clades as Arabidopsis. Only eight of 58 RLK subfamilies exhibited specific expansion/reduction compared to their Arabidopsis counterparts and only six proteins were lineage-specific in tomato, indicating that the tomato RLKs share functional and structural conservation with Arabidopsis. We also characterized the LRRII-RLK family by phylogeny, genomic analysis, expression profile and interaction with the virulence factor from begomoviruses, the nuclear shuttle protein (NSP). The LRRII subfamily members from tomato and Arabidopsis were highly conserved in both sequence and structure. Nevertheless, the majority of the orthologous pairs did not display similar conservation in the gene expression profile, indicating that these orthologs may have diverged in function after speciation of tomato and Arabidopsis common ancestor. Based on the fact that members of the Arabidopsis RLK superfamily (NIK1, NIK2, NIK3 and NsAK) interact with the begomovirus nuclear shuttle protein (NSP), we examined whether the tomato orthologs of NIK, BAK1 and NsAK genes interacted with NSP of Tomato Yellow Spot Virus (ToYSV). The tomato orthologs of NSP interactors, SlNIKs and SlNsAK, interacted specifically with NSP in yeast and displayed an expression pattern consistent with the pattern of geminivirus infection. In addition to suggesting a functional analogy between these phylogenetically classified orthologs, these results expand our previous observation that NSP-NIK interactions are neither virus-specific nor host-specific. Therefore, NIK-mediated antiviral signalling is also likely to operate in tomato, suggesting that tomato NIKs may be good targets for engineering resistance against tomato-infecting begomoviruses.
Firetti-Leggieri, Fabiana. "Biossistematica das especies do complexo Anemopaegma arvense (Vell.) Stellf. ex de Souza (Bignoniaceae, Bignonieae) = aspectos anatomicos, citologicos, moleculares, morfologicos e reprodutivos." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/315193.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia
Made available in DSpace on 2018-08-15T14:46:18Z (GMT). No. of bitstreams: 1 Firetti-Leggieri_Fabiana_D.pdf: 148843515 bytes, checksum: bfb6fa893bb9997ed92b1d321acb5e7a (MD5) Previous issue date: 2009
Resumo: O complexo Anemopaegma arvense é constituído por espécies e variedades de difícil delimitação. As opiniões dos taxonomistas, baseadas em caracteres morfológicos, são controversas em considerálas uma única espécie altamente polimórfica ou separá-las. Com o intuito de auxiliar na circunscrição de tais táxons, realizou-se um estudo biossistemático que englobou os seguintes assuntos: morfologia e morfometria de caracteres vegetativos e reprodutivos, anatomia da lâmina foliolar, contagem cromossômica, aplicação de marcadores AFLP para a delimitação genética, fenologia, biologia floral e polinização, sistema reprodutivo e hibridação e, poliembrionia em espécies do gênero com distintos níveis de ploidia. As morfoespécies do complexo diferem principalmente na morfologia foliar, sendo os táxons de Anemopaegma acutifolium caracterizados por folíolos elípticos a estreitamente oblanceolados com razão comprimento/largura do folíolo 3,5 a 18,5, os de A. arvense por folíolos lineares a estreitamente oblanceolados (razão 22,2 a 45,5) e, A. glaucum por folíolos largamente oblanceolados, oblongos a obovados (razão entre 1,69 e 3,9). A partir de caracteres morfológicos, como crescimento indeterminado dos ramos, exclui-se A. scabriusculum do complexo. O estudo morfométrico de caracteres foliares se mostrou útil para a separação das espécies. Já a morfometria de caracteres reprodutivos não foi informativa para a delimitação de tais táxons. Anatomicamente, as espécies e morfoespécies do complexo diferem quanto à disposição dos estômatos, tipo de epiderme constituição do sistema vascular da nervura mediana e composição da bainha dos feixes vasculares das nervuras laterais. Dentre as morfoespécies de A. acutifolium, A. acutifolium "típica" difere das demais por possuir folíolos anfiestomáticos e A. acutifolium "sarmentosa" por apresentar epiderme da face adaxial com desdobramentos pontuais. Já A. arvense é caracterizada pela ausência de cordões floemáticos no sistema vascular da nervura mediana e por possuir a margem destituída de parênquima fundamental subepidérmico. As morfoespécies de A. glaucum, "típica" da Bahia e "não glauca", são diferenciadas das demais pela ausência de calotas de fibras sobre o xilema nas nervuras laterais de grande e médio calibre. A. scabriusculum difere das outras espécies por possuir extensão de bainha nos feixes vasculares de grande e médio calibre e estômatos agrupados nas regiões internervurais com câmaras subestomáticas unidas. A contagem cromossômica revelou a condição poliplóide das espécies e morfoespécies do complexo, tendo estas 2n = 80. Os marcadores AFLP, apesar de serem bastante utilizados para a separação de táxons em nível infra-específico, não se mostraram eficientes para a delimitação das espécies do complexo Anemopaegma arvense. Quanto ao comportamento fenológico, A. acutifolium, A. arvense e A. glaucum apresentaram eventos anuais de brotamento, floração e frutificação. Já os indivíduos de A. scabriusculum têm dois a três eventos de floração e frutificação por ano. As flores das espécies são bastante semelhantes quanto à morfologia e recursos produzidos e são polinizadas pelas mesmas espécies de abelhas. Através de polinizações controladas constatou-se que tais espécies são auto-compatíveis e interférteis, havendo, portanto, alta probabilidade de formação de híbridos em populações simpátricas destas espécies. Notou-se uma relação positiva entre poliploidia e poliembrionia nas espécies do gênero aqui abordadas, tendo as sementes das espécies poliplóides mais de um embrião e as da espécie diplóide, A. album, somente um embrião.
Abstract: Anemopaegma arvense complex is constituted by species and varieties of difficult delimiting. Taxonomists opinions based upon morphologic features are controversial as to considering them either an only highly polymorphic species or separating them into different taxa. In order to help with the circumscription of such taxa, a biosystematic study was conducted which included the following subjects: morphology and morphometry of vegetative and reproductive features, leaflet blade anatomy, chromosome counting, AFLP markers application for genetic delimitation, phenology , floral biology and pollination, reproductive system and hybridization and polyembryony of the genus species with different ploidy levels .The morphs of the complex differ mainly in leaf morphology where the Anemopaegma acutifolium taxa are characterized by elliptical leaflets with the lengh / width ratio of leaflet falling within the range 3,5 to 18,5; A. arvense characterized by linear leaflets to narrowly oblanceolate (ratio between 22,2 and 45,5) and, A. glaucum by leaflets broadly oblanceolate, from oblong to obovate (ratio between 1,69 and 3,9).Taking into account morphologic features such as undetermined growth of the branches, A. scabriusculum may be excluded off the complex. The morphometric study of the leaf features has been found useful for species separation. However, the morphometry of reproductive features were not informative enough for the delimitation of such taxa. Anatomically, the species and morphs of the complex differ from one another as to the stomata disposition, epidermis type, vascular system constitution of the midrib and, composition of the vascular bundle of the lateral veins. Among the A. acutifolium morphs, A. acutifolium "típica" differs from the others for possessing anphistomatic leaflets and, A. acutifolium "sarmentosa" for presenting the adaxial face epidermis with punctual unfoldings. As for A. arvense, it is characterized by the absence of phloematic strings in the midrib vascular system and parenchyma absent in the marginal region. As for the two morphs, A. glaucum "típica" of Bahia and "não glauca", they are differentiated from the others by the absence of fibers caps on the xilem on the lateral ribs of large and medium caliber. A. scabriusculum differs from the other species for possessing extension sheath in the vascular bundles of large and medium caliber and, stomata grouped between vascular bundles presenting substomatic cameras linked to one another. The chromosome counting revealed polyploidy condition of the species and the morphs of the complex, those presenting 2n = 80. The AFLP markers, in spite of being quite utilized for taxa separation in an infraspecific level, were not found efficient for the species delimitation of Anemopaegma arvense complex. With relation to the phenologic behavior, A. acutifolium, A. arvense and A. glaucum presented annual events of sprouting, blooming and fructification. However, A. scabriusculumindividuals presented two to three blooming and fructification events a year. The flowers of the species are very similar to one another as to their morphology and to the resources provided by them and are pollinated by the same species of bees. Through controlled pollinations, it could be verified, that such species are self- ompatible and inter fertile, bearing, therefore, high probability of hybrid formation in sympatric populations of those species. A positive relationship between polyploidy and polyembryony in the species of the genus studied here was observed, as well as the fact that more than one embryo were found for polyploidy species seeds whereas for diploid species, A. album, only one embryo has been registered.
Doutorado
Doutor em Biologia Vegetal
Brickman, Jacklyn E. "Experiments in Biological Planet Formation and Plants: Nourishing Bodies, Nourishing Planets." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1595340630648528.
Повний текст джерелаCarvalho, Paula Andréa Sampaio de Vasconcelos [UNESP]. "Concentração de resveratrol e expressão de resveratrol sintase em espécies de Arichis." Universidade Estadual Paulista (UNESP), 2013. http://hdl.handle.net/11449/108549.
Повний текст джерелаO resveratrol é uma fitoalexina produzida em função de estresses bióticos e abióticos e foi encontrado em um número limitado de espécies de plantas, incluindo o amendoim (Arachis hypogaea) e seus parentes silvestres. Este tem também propriedades antioxidantes e em função disso é um promissor antitumoral, cardioprotetor e neuroprotetor. O amendoim é um alotetraploide de constituição genômica AB sendo A. ipaënsis e A. duranensis os doadores de seus genomas B e A, respectivamente. Estudos prévios demonstraram que algumas espécies silvestres do gênero Arachis produzem resveratrol e que ampla variabilidade genética para diferentes características existe entre acessos das espécies silvestres, incluindo ampla variação nos níveis de resistência a doenças fúngicas e nematoides. Portanto, a avaliação de um maior número do gênero e a investigação da variação da produção de resveratrol também entre acessos é fundamental para uma exploração mais adequada das espécies silvestres do gênero Arachis. O melhor entendimento das causas da variação na produção de resveratrol sem dúvida contribuirá para o uso das mesmas e o primeiro passo para esse entendimento sem duvida passa pela identificação do padrão de expressão da resveratrol sintase (RS). Este trabalho tem como objetivos avaliar a variação na produção de resveratrol entre espécies (A. hypogaea, A. stenosperma, A. valida, A. wiliamsii, A. duranensis, A. ipaënsis e um anfidiploide sintético proveniente do cruzamento artificial entre A. duranensis e A. ipaënsis) e entre acessos de duas espécies(A. hypogaea e A. stenosperma) por meio de HPLC e avaliar a expressão relativa da resveratrol sintase por meio de RT-qPCR em A. hypogaea, A. duranensis, A. ipaënsis e um anfidiploide sintético. Folhas foram coletadas de plantas cultivadas em casa de vegetação para os grupos teste e controle e três repetições biológicas ...
Resveratrol is a phytoalexin produced under biotic and abiotic stresses. It has been found in a restricted number of plant species including peanut (Arachis hypogaea) and its wild relatives. This phytochemical has antioxidant properties, being considered a promising antitumour, cardioprotective and neuroprotective agent. Peanut is an allotetraploid specie with an AABB genomic constitution. Arachis ipaënsis and A. duranensis are the donors of the B genome and the A genome, respectively. Previous studies have shown that wild species of the genus Arachis can produce resveratrol. Therefore, the evaluation of other species of thus genus and the analysis of the variation in the production of resveratrol between accessions is essential for better exploitation of wild species in the genus Arachis. It also important the understanding of the variation in resveratrol concentration between species and accessions and that could be reached through the better understating of the role resveratrol synthase.. . The aims of this work were to evaluate the variation in resveratrol production between species (A. hypogaea, A. stenosperma, A. valida, A. wiliamsii, A. duranensis, A. ipaënsis and in a synthetic amphidiploid derived from these two wild species A. duranensis and A. ipaënsis) and between accessions of the same specie (A. hypogaea and A. stenosperma) through HPLC, and to quantify the expression of resveratrol synthase by RT-qPCR in A. hypogaea, A. duranensis, A. ipaënsis and in a synthetic amphidiploid. Leaves for the test and control groups were collected from plants cultivated in a greenhouse and three biological replicates were evaluated for each specie. The synthesis of resveratrol in leaves was induced by treatment with UV for 2 hours and thirty minutes and then the difference in the concentration of resveratrol between species and between the accessions and cultivars of the same species was analyzed. We found new ...
Carvalho, Paula Andréa Sampaio de Vasconcelos. "Concentração de resveratrol e expressão de resveratrol sintase em espécies de Arichis /." Botucatu, 2013. http://hdl.handle.net/11449/108549.
Повний текст джерелаCoorientador: Tânia da Silveira Agostini Costa
Coorientador: Ana Cristina Miranda Brasileiro
Banca: Marcia Ortiz Mayo Marques
Banca: Edvaldo Aparecido Amaral da Silva
Resumo: O resveratrol é uma fitoalexina produzida em função de estresses bióticos e abióticos e foi encontrado em um número limitado de espécies de plantas, incluindo o amendoim (Arachis hypogaea) e seus parentes silvestres. Este tem também propriedades antioxidantes e em função disso é um promissor antitumoral, cardioprotetor e neuroprotetor. O amendoim é um alotetraploide de constituição genômica AB sendo A. ipaënsis e A. duranensis os doadores de seus genomas B e A, respectivamente. Estudos prévios demonstraram que algumas espécies silvestres do gênero Arachis produzem resveratrol e que ampla variabilidade genética para diferentes características existe entre acessos das espécies silvestres, incluindo ampla variação nos níveis de resistência a doenças fúngicas e nematoides. Portanto, a avaliação de um maior número do gênero e a investigação da variação da produção de resveratrol também entre acessos é fundamental para uma exploração mais adequada das espécies silvestres do gênero Arachis. O melhor entendimento das causas da variação na produção de resveratrol sem dúvida contribuirá para o uso das mesmas e o primeiro passo para esse entendimento sem duvida passa pela identificação do padrão de expressão da resveratrol sintase (RS). Este trabalho tem como objetivos avaliar a variação na produção de resveratrol entre espécies (A. hypogaea, A. stenosperma, A. valida, A. wiliamsii, A. duranensis, A. ipaënsis e um anfidiploide sintético proveniente do cruzamento artificial entre A. duranensis e A. ipaënsis) e entre acessos de duas espécies(A. hypogaea e A. stenosperma) por meio de HPLC e avaliar a expressão relativa da resveratrol sintase por meio de RT-qPCR em A. hypogaea, A. duranensis, A. ipaënsis e um anfidiploide sintético. Folhas foram coletadas de plantas cultivadas em casa de vegetação para os grupos teste e controle e três repetições biológicas ...
Abstract: Resveratrol is a phytoalexin produced under biotic and abiotic stresses. It has been found in a restricted number of plant species including peanut (Arachis hypogaea) and its wild relatives. This phytochemical has antioxidant properties, being considered a promising antitumour, cardioprotective and neuroprotective agent. Peanut is an allotetraploid specie with an AABB genomic constitution. Arachis ipaënsis and A. duranensis are the donors of the B genome and the A genome, respectively. Previous studies have shown that wild species of the genus Arachis can produce resveratrol. Therefore, the evaluation of other species of thus genus and the analysis of the variation in the production of resveratrol between accessions is essential for better exploitation of wild species in the genus Arachis. It also important the understanding of the variation in resveratrol concentration between species and accessions and that could be reached through the better understating of the role resveratrol synthase.. . The aims of this work were to evaluate the variation in resveratrol production between species (A. hypogaea, A. stenosperma, A. valida, A. wiliamsii, A. duranensis, A. ipaënsis and in a synthetic amphidiploid derived from these two wild species A. duranensis and A. ipaënsis) and between accessions of the same specie (A. hypogaea and A. stenosperma) through HPLC, and to quantify the expression of resveratrol synthase by RT-qPCR in A. hypogaea, A. duranensis, A. ipaënsis and in a synthetic amphidiploid. Leaves for the test and control groups were collected from plants cultivated in a greenhouse and three biological replicates were evaluated for each specie. The synthesis of resveratrol in leaves was induced by treatment with UV for 2 hours and thirty minutes and then the difference in the concentration of resveratrol between species and between the accessions and cultivars of the same species was analyzed. We found new ...
Mestre
Jin, Xin. "Isoprenoid and flavonoid biosynthesis and regulation in higher plants." Doctoral thesis, Universitat de Lleida, 2019. http://hdl.handle.net/10803/667579.
Повний текст джерелаEsta tesis se centra principalmente en el análisis funcional y en la caracterización de los genes que codifican para algunos metabolitos secundarios y en el estudio de su regulación en las plantas. Los objetivos generales fueron (a) profundizar en el conocimiento de la regulación transcripcional del gen de la biosíntesis de los carotenoides, la β-caroteno hidroxilasa 2 (BCH2) en el maíz, y (b) analizar la función de las dos isopentenil difosfato isomerasas (OsIPPI) de arroz, determinando además su localización subcelular. Simultáneamente, se estudió cómo la luz afecta a la vía metabólica y a la producción de pelargonidina en el arroz; se identificaron también los genes esenciales de su biosíntesis en Gentiana lutea L. var. aurantiaca. Las plantas de maíz y arroz se transformaron con los genes de los factores de transcripción ZmMYB y ZmPBF. Se analizó la expresión génica transitoria y se realizó transformación estable. Los resultados obtenidos indicaron que tanto ZmPBF como ZmGAMYB pueden transactivar la expresión de ZmBCH2 en endospermo de maíz, y ZmPBF y ZmGAMYB transactivar independientemente el promotor de ZmBCH2 en arroz. Los dos parálogos de IPPI (OsIPPI1 y OsIPPI2) aislados previamente en arroz tuvieron un patrón de expresión diferente; el ARNm de OsIPPI1 fue más abundante que el ARNm de OsIPPI2 en todos los tejidos. Se usó la microscopía de fluorescencia confocal y microscopía inmunoelectrónica para determinar la localización de ambas proteínas. Estas se localizan en el retículo endoplásmico (RE), así como en los peroxisomas y las mitocondrias, mientras que solo se detectó OsIPPI2 en los plastidios. La detección de ambas isoformas en el RE indica que DMAPP se puede sintetizar de novo en este compartimiento. Diferentes técnicas como UPLC, GC-MS y qRT-PCR también se utilizaron para perfilar los metabolitos primarios y secundarios y la expresión génica en plántulas de arroz des-etioladas. Los resultados revelaron que los genes involucrados en la en el metabolismo primario y secundario están regulados por la luz, especialmente en la biosíntesis de isoprenoides en hojas de arroz. Once derivados de pelargonidina se identificaron en los pétalos de G. lutea y se perfilaron los genes de la vía de biosíntesis, revelando que DFR, ANS y 3GT afectan principalmente a la acumulación de los glucósidos de pelargonidina. Todos estos resultados contribuyen al conocimiento, a diferentes niveles, de la regulación de las rutas biosinteticas de los carotenoides en plantas superiores.
This thesis mainly focuses on functional analysis and characterization of a number of secondary metabolite biosynthetic genes and the regulation of the corresponding secondary metabolite biosynthetic pathway in plants. The overall aims were to elucidate the transcriptional regulation of β-carotene hydroxylase 2 gene (BCH2) in maize, the functional analysis of rice isopentenyl diphosphate isomerases (OsIPPI), and determine their subcellular localization. Simultaneously, the influence of light on the metabolic pathway in rice was studied and the pelargonidin quantification and essential pelargonidin biosynthesis genes in Gentiana lutea L. var. aurantiaca were identified. Maize and rice plants were transformed with transcription factor genes ZmMYB and ZmPBF, via transient gene expression and stable transformation respectively. The results indicated that both ZmPBF and ZmGAMYB can transactivate ZmBCH2 expression in maize endosperm and ZmPBF and ZmGAMYB independently transactivate the ZmBCH2 promoter in rice. The two IPPI paralogs (OsIPPI1 and OsIPPI2) isolated previously in rice had a different expression pattern; OsIPPI1 mRNA was more abundant than OsIPPI2 mRNA in all tissues. Confocal fluorescence microscopy and immuno-electron microscopy were used to determine the localization of both proteins. These localized to the endoplasmic reticulum (ER) as well as peroxisomes and mitochondria, whereas only OsIPPI2 was detected in plastids. The detection of both isoforms in the ER indicates that DMAPP can be synthesized de novo in this compartment. UPLC, GC-MS and qRT-PCR were used to profile the primary and secondary metabolites and gene expression in de-etioleted rice seedlings. The results revealed both primary and secondary metabolism and the corresponding genes are regulated by light, especially isoprenoids biosynthesis in rice leaves. Eleven pelargonidin derivatives were identified in the petals of G. lutea and the biosynthetic pathway genes were profiled, revealing DFR, ANS and 3GT mainly affect the accumulation of pelargonidin glucosides. Collectively my results provide novel insights of the regulation of carotenoid and flavonoid biosynthesis in higher plants at different levels.
Smith, Madeleine Joy. "The biology and molecular biology of Polymyxa species and their interactions with plants and viruses." Thesis, University of Warwick, 2008. http://wrap.warwick.ac.uk/3792/.
Повний текст джерелаAlmeida, Juliana Dantas de. "Origem, evolução e direcionamento da proteína THI1 em plantas." Universidade de São Paulo, 2004. http://www.teses.usp.br/teses/disponiveis/11/11137/tde-03082004-152655/.
Повний текст джерелаTHI1 is probably a bifunctional protein, since it is involved in thiamin biosynthesis and organelar genome stability mainly the mitochondrial. Interestingly, the thiamin biosynthesis occurs at different compartments in plants (chloroplasts) and yeasts (mitochondria). Functional complementation assays showed that Arabidopsis thaliana thi1 gene is able to complement a yeast mutant strain for the hortolog gene. The Arabidopsis thaliana THI1 is encoded by a single copy gene. A detailed analysis of the THI1 N-terminal region, that is responsible for its targeting in cells, reveled the presence of two in tanden directing sequences. At N-terminal region there is a chloroplastic transit peptide followed by a region able to form an anfifilic α-helix frequently present in mitochondrial presequences. Aiming to evaluate if the THI1 final localization could present a temporal or spacial regulation, transgenic plants expressing THI1 fused to GFP ("green fluorescent protein") where obtained. Confocal microscopy analysis of these transgenic plants showed that THI1 is mainly found in chloroplasts and barely found in mitochondrias. Different from what happens in Arabidopsis thaliana, in sugar cane where founded at least three thi1 isoforms/paralogs. The amino acids sequence alignment of these isoforms with the thi1 one, reveled high similarity including the targeting sequence. To evaluate the directing standard of these sugarcane isoforms, gene constructions made by the complete targeting sequence or the chloroplastic transit peptide or the mitochondrial presequence, fused to GFP under the guidance of 35S promotor, where obtained. A transient expression of these gene constructios in epidermal onion cells prove that in the case of the constructions containing either the complete targeting sequence or the chloroplastic transit peptide the directing occurred only to chloroplasts. On the other hand, the constructions containing the mitochondrial pre sequence, GFP were kept defused in the citoplasm. Besides the directing aspect, THI1 were evaluated under the filogenetic point of view. Filogenetic analysis showed that thi1 is rarely found in bacteria but is widely distributed in Archaea. The genetic distances pointed out that probably eucaryotes THI1 came from Archaea. This gene in a few bacterias probably were inherited by lateral transference.
Книги з теми "Plant's biology"
Rau, Dana Meachen. Plants =: Las plantas. New York: Marshall Cavendish Benchmark, 2010.
Знайти повний текст джерелаCrawford, Daniel J. Plant molecular systematics: Macromolecular approaches. New York: Wiley, 1990.
Знайти повний текст джерелаGrierson, D. Plant molecular biology. 2nd ed. Glasgow: Blackie, 1988.
Знайти повний текст джерелаStern, Kingsley Rowland. Introductory plant biology. 5th ed. Dubuque, Ia: Wm. C. Brown, 1991.
Знайти повний текст джерелаStern, Kingsley Rowland, and Kingsley Rowland Stern. Introductory plant biology. 7th ed. Dubuque, IA: Wm. C. Brown Publishers, 1997.
Знайти повний текст джерелаStern, Kingsley Rowland. Introductory plant biology. 6th ed. Dubuque, Iowa: Wm. C. Brown Publishers, 1994.
Знайти повний текст джерела1940-, Davies Peter J., ed. Plant hormones: Biosynthesis, signal transduction, action! 3rd ed. Dordrecht: Springer, 2004.
Знайти повний текст джерелаA, Bailey John, ed. Biology and molecular biology of plant-pathogen interactions. Berlin: Springer-Verlag, 1986.
Знайти повний текст джерелаauthor, Evert Ray Franklin, and Eichhorn Susan E. author, eds. Biology of plants. New York: W.H. Freeman and Company Publishers, 2013.
Знайти повний текст джерелаRaven, Peter H. Biology of plants. 5th ed. New York, N.Y: Worth Publishers, 1992.
Знайти повний текст джерелаЧастини книг з теми "Plant's biology"
Vogel, S. "Floral Biology." In Flowering Plants · Monocotyledons, 34–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03533-7_4.
Повний текст джерелаZotz, Gerhard. "Population Biology." In Plants on Plants – The Biology of Vascular Epiphytes, 149–66. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39237-0_6.
Повний текст джерелаMandujano, María del Carmen, Israel Carrillo-Angeles, Concepción Martínez-Peralta, and Jordan Golubov. "Reproductive Biology of Cactaceae." In Desert Plants, 197–230. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02550-1_10.
Повний текст джерелаJohri, B. M. "Reproductive Biology of Plants." In Reproductive Biology of Plants, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-50133-3_1.
Повний текст джерелаLack, Andrew, and David Evans. "Carnivorous plants." In Plant Biology, 245–47. 2nd ed. London: Taylor & Francis, 2021. http://dx.doi.org/10.1201/9780203002902-73.
Повний текст джерелаShivanna, K. R., and Rajesh Tandon. "Pollen Biology." In Reproductive Ecology of Flowering Plants: A Manual, 35–50. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-2003-9_5.
Повний текст джерелаShivanna, K. R., and Rajesh Tandon. "Pistil Biology." In Reproductive Ecology of Flowering Plants: A Manual, 51–62. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-2003-9_6.
Повний текст джерелаVorontzova, L. I., and L. B. Zaugolnova. "Population Biology of Steppe Plants." In The Population Structure of Vegetation, 143–78. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5500-4_7.
Повний текст джерелаKlee, Harry J., and Michael B. Lanahan. "Transgenic Plants in Hormone Biology." In Plant Hormones, 340–53. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0473-9_16.
Повний текст джерелаMandahar, Chuni L. "Molecular Biology of Transgenic Plants." In Molecular Biology of Plant Viruses, 241–54. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5063-1_12.
Повний текст джерелаТези доповідей конференцій з теми "Plant's biology"
Kolchanov, N. A. "Systems Computer Biology and Bioinformatics." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-17.
Повний текст джерелаKershanskaya, O. I., G. S. Mukiyanova, D. S. Nelidova, G. L. Esenbaeva, S. N. Nelidov, K. R. Uteulin, and J. Stephens. "CRISPR/Cas9 editing the genome of crops in the development of biology and agriculture." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-207.
Повний текст джерела"Imaging corn plants with PhytoPET, a modular PET system for plant biology." In 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC). IEEE, 2013. http://dx.doi.org/10.1109/nssmic.2013.6829796.
Повний текст джерелаYoung, Margaret. "Integrating plant science CUREs into undergraduate biology courses." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1383065.
Повний текст джерелаScott, Tom K. "Plant Space Biology: An Assessment." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1996. http://dx.doi.org/10.4271/961390.
Повний текст джерелаKrikorian, Abraham D. "Plant Biology Research on ‘LifeSat’." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1990. http://dx.doi.org/10.4271/901227.
Повний текст джерелаPsaltis, Demetri. "Optofluidics of plants: lessons from biology (Conference Presentation)." In Photonic and Phononic Properties of Engineered Nanostructures VIII, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2018. http://dx.doi.org/10.1117/12.2297251.
Повний текст джерелаDiana, Sariwulan. "Rare plants inference ability of biology education students." In INTERNATIONAL SEMINAR ON MATHEMATICS, SCIENCE, AND COMPUTER SCIENCE EDUCATION (MSCEIS) 2021. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0155743.
Повний текст джерелаMatvieieva, Nadiia. "“Hairy” roots of medicinal plants against COVID-19: New application of plant biotechlogy." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1053433.
Повний текст джерелаTivendale, Nathan. "Analysis of plant enzymes as consumable parts for synthetic biology." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1372287.
Повний текст джерелаЗвіти організацій з теми "Plant's biology"
Bilyk, Zhanna I., Yevhenii B. Shapovalov, Viktor B. Shapovalov, Anna P. Megalinska, Fabian Andruszkiewicz, and Agnieszka Dołhańczuk-Śródka. Assessment of mobile phone applications feasibility on plant recognition: comparison with Google Lens AR-app. [б. в.], November 2020. http://dx.doi.org/10.31812/123456789/4403.
Повний текст джерелаKatan, Jaacov, and Michael E. Stanghellini. Clinical (Major) and Subclinical (Minor) Root-Infecting Pathogens in Plant Growth Substrates, and Integrated Strategies for their Control. United States Department of Agriculture, October 1993. http://dx.doi.org/10.32747/1993.7568089.bard.
Повний текст джерелаDrakakaki, Georgia, Marcela Rojas Pierce, and Marisa Otegui. Plant Cell Biology International Meeting 2022. Office of Scientific and Technical Information (OSTI), August 2023. http://dx.doi.org/10.2172/1993620.
Повний текст джерелаWilliams, Thomas. Cell Biology Board Game: Cell Survival Drive. University of Dundee, 2023. http://dx.doi.org/10.20933/100001276.
Повний текст джерелаDawson, William O., Moshe Bar-Joseph, Charles L. Niblett, Ron Gafny, Richard F. Lee, and Munir Mawassi. Citrus Tristeza Virus: Molecular Approaches to Cross Protection. United States Department of Agriculture, January 1994. http://dx.doi.org/10.32747/1994.7570551.bard.
Повний текст джерелаDure, L. S. III. Molecular biology of Lea genes of higher plants. Progress report. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/82344.
Повний текст джерелаTaylor, Crispin. Plant Synthetic Biology Conference – Travel Awardees and Speakers. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1768251.
Повний текст джерелаLindow, Steven, Yedidya Gafni, Shulamit Manulis, and Isaac Barash. Role and In situ Regulation of Growth Regulators Produced in Plant-Microbe Interactions by Erwinia herbicola. United States Department of Agriculture, August 1992. http://dx.doi.org/10.32747/1992.7561059.bard.
Повний текст джерелаKelly, K. Plant biology research and training for the 21st century. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/10149776.
Повний текст джерелаKelly, K. Plant biology research and training for the 21st century. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/6575850.
Повний текст джерела