Добірка наукової літератури з теми "Pile à hydrogène"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Pile à hydrogène".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Pile à hydrogène"
Amrouche, Fethia, Bouziane Mahmah, Maiouf Belhamel, and Hocine Benmoussa. "Modélisation d’une pile à combustible PEMFC alimentée directement en hydrogène-oxygène et validation expérimentale." Journal of Renewable Energies 8, no. 2 (December 31, 2005): 109–21. http://dx.doi.org/10.54966/jreen.v8i2.856.
Повний текст джерелаSun, Xiaojie, Zhihan Tan, Xiaosong He, Hongxia Zhang, Beidou Xi, Hongtao Zhou, and Hong Xiang Zhu. "Initial Active Phase of In-Vessel Composting of Sewage Sludge, Leaves and Rice Straw." Nature Environment and Pollution Technology 21, no. 1 (March 6, 2022): 83–90. http://dx.doi.org/10.46488/nept.2022.v21i01.009.
Повний текст джерелаKong, Xianggang, You Yu, Shenggui Ma, Tao Gao, Chengjian Xiao, and Xiaojun Chen. "Dissociation mechanism of H2 molecule on the Li2O/hydrogenated-Li2O (111) surface from first principles calculations." RSC Advances 7, no. 56 (2017): 35239–50. http://dx.doi.org/10.1039/c7ra05894b.
Повний текст джерелаAhsan, Taosif, Charles P. S. Swanson, Chris Galea, Sangeeta P. Vinoth, Tony Qian, Tal Rubin, and Samuel A. Cohen. "Analysis and Mitigation of Pulse-Pile-Up Artifacts in Plasma Pulse-Height X-ray Spectra." Plasma 6, no. 1 (February 2, 2023): 58–71. http://dx.doi.org/10.3390/plasma6010006.
Повний текст джерелаHu, Linda I., Elizabeth A. Stohl, and H. Steven Seifert. "The Neisseria gonorrhoeae type IV pilus promotes resistance to hydrogen peroxide- and LL-37-mediated killing by modulating the availability of intracellular, labile iron." PLOS Pathogens 18, no. 6 (June 17, 2022): e1010561. http://dx.doi.org/10.1371/journal.ppat.1010561.
Повний текст джерелаSidestam, Patrik, Mats Karlberg, and John Niska. "Modeling of Hydrogen Diffusion in Piled Slabs." Materials Science Forum 783-786 (May 2014): 2201–6. http://dx.doi.org/10.4028/www.scientific.net/msf.783-786.2201.
Повний текст джерелаINAGAKI, Yoshiyuki, Tetsuaki TAKEDA, Tetsuo NISHIHARA, Koji HAYASHI, Yoshitomo INABA, Hirofumi OHASHI, and Takio MANO. "Out-of-Pile Test Program of HTTR Hydrogen Production System." Proceedings of the JSME annual meeting 2002.4 (2002): 287–88. http://dx.doi.org/10.1299/jsmemecjo.2002.4.0_287.
Повний текст джерелаLukomski, Andrew, Kamiel Gabriel, Igor Pioro, and Greg Naterer. "ICONE19-43640 INTERMEDIATE DOUBLE-PIPE HEAT EXCHANGER FOR THERMOCHEMICAL HYDROGEN CO-GENERATION WITH SCW NPP." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2011.19 (2011): _ICONE1943. http://dx.doi.org/10.1299/jsmeicone.2011.19._icone1943_258.
Повний текст джерелаJagodzinski, Yu, H. Hänninen, O. Tarasenko, and S. Smuk. "Interaction of hydrogen with dislocation pile-ups and hydrogen induced softening of pure iron." Scripta Materialia 43, no. 3 (July 2000): 245–51. http://dx.doi.org/10.1016/s1359-6462(00)00398-5.
Повний текст джерелаSanabria, Nancy R., Yury M. Peralta, Mardelly K. Montañez, Nelson Rodríguez-Valencia, Rafael Molina, and Sonia Moreno. "Catalytic oxidation with Al–Ce–Fe–PILC as a post-treatment system for coffee wet processing wastewater." Water Science and Technology 66, no. 8 (October 1, 2012): 1663–68. http://dx.doi.org/10.2166/wst.2012.410.
Повний текст джерелаДисертації з теми "Pile à hydrogène"
Chabane, Djafar. "Gestion énergétique d'un ensemble réservoir d'hydrogène à hydrure et une pile à combustible PEM." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCA010/document.
Повний текст джерелаThis thesis deals with the phenomena inherent in the coupling of a hydrogen storage system based on metal hydrides and a fuel cell. The aim is to develop an optimal flow management law (electrical, fluidic, thermal).A detailed study was carried out on the various means of hydrogen production and the different methods of its storage. A large place is given to the characterization of the hydrides within the reservoir. This work allowed the development of a new characterization method for hydride tanks. The latter was experimentally carried out with charge and discharge processes carried out on three reservoirs containing different hydrides. Given the manufacturer's confidentiality, several data were not accessible experimentally. Thus, a numerical model of the hydride tank was carried out in the multiphysics Comsol environment. In order to model the thermal coupling between the fuel cell and the hydride tank, an OD model in the Matlab Simulink environment of a fuel cell, hydride tank and heat exchanger system was realized. These developments resulted in the proposal and study of two topologies for the management of heat exchanges between the fuel cell and the type AB hydride tank: series topology and parallel topology. In the series topology, the same heat transfer fluid circulates in the reservoir and in the fuel cell, which means that the two components have the same operating temperatures. This can cause difficulties in the operation of the POC which generally requires higher operating temperatures than those of the tank. The parallel topology provides the solution to this problem by offering the possibility of two distinct operating temperatures for the PàC and the tank
Rodriguez, Julien. "Production d'hydrogène par photocatalyse et conversion électrochimique dans une pile à combustible." Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00978688.
Повний текст джерелаChallet, Sylvain. "Stockage de l'hydrogène dans les hydrures métalliques pour l'alimentation en hydrogène de véhicules à pile à combustible." Paris 12, 2005. https://athena.u-pec.fr/primo-explore/search?query=any,exact,990002314920204611&vid=upec.
Повний текст джерелаHydrogen storage remains an issue for its use in mobile applications. Despite its weight, storage in metal hydrides presents advantages in term of safety and volumic capacity. In this work, several families of hydrides have been studied to answer to the working conditions of a main tank or a buffer tank for cold start. The thermodynamic properties of LaNi5 and TiFe type hydrides have been adjusted by suitable substitutions allowing to obtain potentially usable compounds for both kinds of tanks. In order to increase the weight capacity, the effect of M element on thermodynamics properties of lighter hydrides based on Ti-V-M solid solutions (M=Mn, Fe, Co, Ni) has been studied showing the best hydrogenation properties for the Fe compound. Finally, the discovery of hydrogen reactivity of the Ti3Si compound opens new routes
Piffard, Maxime. "Conception d’observateurs pour la commande d’un système pile à combustible embarqué en vue d’optimiser performances et durabilité." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI121/document.
Повний текст джерелаFuel cells are considered as a promising source of energy for the future, thanks to their non-polluting aspect. However, the deployment of these solutions on a large scale is still conditioned by the improvement of their performance and especially of their durability in order to guarantee a low cost industrialization. The transport application also imposes a variable power demand, which complicates the improvement of performance and durability. The approach adopted for this work consists of the design of a system management law that generates the optimal operating conditions to be applied to the stack (pressures, temperature, current, stoichiometries) as a function of the power demand, the state of health (active surface loss) and current humidity. Optimality is understood in the sense of increasing system efficiency and decreasing the degradation of the membrane and the platinum dissolution. This law is based on degradation and performance models of a fuel cell system. This management law requires in real time the data of the state of health of the fuel cell and the humidity rate. The assessment of the state of health is already the subject of many diagnostic work. On the other hand, the humidity rate must be estimated by a state observer because the humidity sensors are not reliable for a transport application. Therefore, a state observer was developed to estimate the relative humidities in the stack channels and also the membrane water content, the hydrogen at the anode as well as the nitrogen saturation at the anode. This last data makes it possible to propose a purge strategy for a dead-end architecture, based on nitrogen saturation, which limits the losses in hydrogen and reduces the damage associated with this architecture
Gerbaux, Luc. "Modélisation d'une pile à combustible de type hydrogène/air et validation expérimentale." Grenoble INPG, 1996. http://www.theses.fr/1996INPG0163.
Повний текст джерелаMosdale, Renaut. "Etude et développement d'une pile à combustible hydrogène/oxygène en technologie électrolyte polymère solide." Grenoble INPG, 1992. http://www.theses.fr/1992INPG0116.
Повний текст джерелаRabih, Samer. "Contribution à la modélisation de systèmes réversibles de types électrolyseur et pile à hydrogène en vue de leur couplage aux générateurs photovoltaïques." Phd thesis, Toulouse, INPT, 2008. http://oatao.univ-toulouse.fr/7731/1/rabih.pdf.
Повний текст джерелаVichard, Loic. "Contribution à l’étude du vieillissement des composants batterie et pile à combustible en usage réel." Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCA018.
Повний текст джерелаThese thesis works are associated to the AsDeCoEUR project. This project is part of the current context of the development of new energy technologies for mobility and focuses more specifically on the study of battery and fuel cell components located in the heart of electric power train. The project is based on the work already carried out by the UTBM and IFSTTAR actors of the FCLAB research federation among the Mobypost project. Mobypost european project has allowed the experimentation of a fleet of 10 fuel cell electric vehicles under actual operating conditions on two postal platforms in the Franche-Comté region.During the Mobypost experiment, a deep monorting was performed on all the vehicles so numerous physical data of their power train were recorded. All of these information now constitutes a very rich database to exploit. Among the AsDeCoEUR project, we propose a scientific approach carried out around a thesis work wich aims at understanding dynamic behavior, studying aging and estimating the state of health of batteries and fuel cells in real use. This approach is based on the analysis of the data recorded on these components among the Mobypost project and is reinforced by specific experiments set up in the laboratory. The implementation of skills and digital analysis tools developed especially for batteries by the Ampère laboratory and IFSTTAR aims at understanding and reproducing the degradation phenomena. The works should finally allow, by combining the skills of UFC, UTBM, IFSTTAR and Ampère laboratory researchers, to contribute to the study of batteries and fuel cells aging and to estimate their state of health under actual operating conditions. This constitutes a remarkable advance in this field, particularly with a view to the industrialization of vehicles equipped with this type of component
Iosub, Vasile. "Développement et optimisation d'une unité de stockage de l'ydrogène sur hydrures métalliques utilisée dans les systèmes stationnaires de pile à combustible." Paris 12, 2004. https://athena.u-pec.fr/primo-explore/search?query=any,exact,990002109170204611&vid=upec.
Повний текст джерелаThe work bas started with a thorough study of tbe bibliography on the metal hydrides application as hydrogen storage materials in solid gas process. This study has made possible to determine two familles of intermetallic compounds able to reach the needs of the specific application: the AB5-type compounds with MmNi5-xSnx compositions (Mm stands for mischmetal, a mixture of La, Ce, Nd and Pr as well as tbe AB2-type compounds with Zr-pTipMn2-r-sNirVs compositions. In a second time we have tried to optimise hydrogen absorption properties by modifying the alloy composition and structure. Moreover, a study of the kinetics and ageing during cycling was made. From the experimental results, new relations composition - structure - thermodvnamic properties bave been determined in order to adapt other types of hvdrogen storage materials to the specifications
Miachon, Sylvain. "Développement d'une pile à combustible hydrogène/oxygène à électrolyte polymère solide de 100 cm2 à hydratation interne." Université Joseph Fourier (Grenoble), 1995. http://www.theses.fr/1995GRE10048.
Повний текст джерелаКниги з теми "Pile à hydrogène"
Canada, Canada Ressources naturelles. L' industrie canadienne de l'hydrogène et des piles à combustible: De l'énergie sans pollution pour le XXIe siècle. Ottawa, Ont: Ressources naturelles Canada, 2001.
Знайти повний текст джерелаF, Dewsnap R., and Great Britain. Dept. of Energy., eds. A Review of information on hydrogen induced cracking and sulphide stress corrosion cracking in linepipe steels: Report. London: H.M.S.O., 1987.
Знайти повний текст джерелаCanada, Canada Industrie, ed. Vers une stratégie nationale sur l'hydrogène et les piles à combustible: Un document de discussion pour le Canada. [Ottawa, Ont.]: Industrie Canada, 2005.
Знайти повний текст джерелаCanada. Groupe consultatif national sur les sciences et technologies relatives à l'énergie durable. Construire des alliances puissantes: Priorités et orientations en sciences et en technologies énergétiques au Canada : rapport du Groupe consultatif national sur les sciences et technologies relatives à l'énergie durable. [Ottawa]: Groupe consultatif national sur les sciences et technologies relatives à l'énergie durable, 2006.
Знайти повний текст джерела(Editor), Dr Nigel Brandon, and Dr David Thompsett (Editor), eds. Fuel Cells Compendium. Elsevier Science, 2005.
Знайти повний текст джерелаImpacting Commercialization of Rapid Hydrogen Fuel Cell Electric Vehicles. SAE International, 2016.
Знайти повний текст джерелаEvaluation of Pipeline Steels for Resistance to Stepwise Cracking. AMPP, 1987. https://doi.org/10.5006/nace_tm0284-1987.
Повний текст джерелаL' économie hydrogène: Après la fin du pétrole, la nouvelle révolution économique. Paris: La Découverte, 2002.
Знайти повний текст джерелаLee, Beom-Goo. Removal of fungal stain from ponderosa pine sapwood using peroxide and caustic bleaches. 1994.
Знайти повний текст джерелаLi, Hui, Haijiang Wang, Dmitri Bessarabov, and Nana Zhao. PEM Electrolysis for Hydrogen Production: Principles and Applications. Taylor & Francis Group, 2016.
Знайти повний текст джерелаЧастини книг з теми "Pile à hydrogène"
Huston, David L., Crystal Laflamme, Georges Beaudoin, and Stephen Piercey. "Light Stable Isotopes in Volcanic-Hosted Massive Sulfide Ore Systems." In Isotopes in Economic Geology, Metallogenesis and Exploration, 245–82. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-27897-6_9.
Повний текст джерелаKlepikov, A. Kh, T. V. Kulsartov, O. G. Romanenko, Y. V. Chikhray, V. P. Shestakov, and I. L. Tazhibaeva. "Out of Pile Experiments on the Investigation of Hydrogen Interaction With Reduced Activation Ferritic-Martensitic Steel F82H." In Hydrogen Recycling at Plasma Facing Materials, 307–12. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4331-8_34.
Повний текст джерелаZhang, J. X., C. An, D. F. Wei, B. Q. Chen, and C. Guedes Soares. "Structural behaviour of hydrogen flexible pipe under internal pressure." In Trends in Renewable Energies Offshore, 943–48. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003360773-104.
Повний текст джерелаShabalov, Ivan, Yury Matrosov, Alexey Kholodnyi, Maxim Matrosov, and Valery Velikodnev. "Effect of Hydrogen Sulfide-Containing Media on Pipe Steels." In Pipeline Steels for Sour Service, 1–28. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00647-1_1.
Повний текст джерелаKhoma, Myroslav, Vasyl Vynar, Maryan Chuchman, and Chrystyna Vasyliv. "Corrosion-Mechanical Failure of Pipe Steels in Hydrogen Sulfide Environments." In Lecture Notes in Civil Engineering, 231–39. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58073-5_18.
Повний текст джерелаPluvinage, Guy. "Defect Assessment on Pipe Transporting a Mixture of Natural Gas and Hydrogen." In Damage and Fracture Mechanics, 19–32. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2669-9_3.
Повний текст джерелаZheng, Dukui, Jingfa Li, Bo Yu, Zhiqiang Huang, Yindi Zhang, Yafan Yang, Dongxu Han, and Jianli Li. "Molecular Dynamics Study of Hydrogen Dissolution and Diffusion in Different Nonmetallic Pipe Materials." In Computational Science – ICCS 2023, 361–68. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-36030-5_29.
Повний текст джерелаPang, Xin, Su Xu, Isabella Ferrara, Xingqi Wang, and Yu Zou. "Toughness Testing for Investigating Hydrogen Embrittlement of Pipe Steels: Tests, Significance, and Limitations." In Proceedings of the 62nd Conference of Metallurgists, COM 2023, 493–503. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-38141-6_68.
Повний текст джерелаBinulal, B. R., Suryan Abhilash, and Kochupillai Jayaraj. "Analysis of Coriolis Effect in a Curved Pipe Conveying Hydrogen Using Timoshenko Beam Element." In Exergy for A Better Environment and Improved Sustainability 1, 147–58. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-62572-0_10.
Повний текст джерелаFilippenko, George V., and Tatiana V. Zinovieva. "Analysis of Axisymmetric Vibrations of a Hydrogen Weakened Pipe in a Layered Shell Model." In Advances in Mechanical Engineering, 78–85. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-91553-7_9.
Повний текст джерелаТези доповідей конференцій з теми "Pile à hydrogène"
Hoang, Triem T., and Jentung Ku. "Hydrogen Advanced Loop Heat Pipe." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2007. http://dx.doi.org/10.4271/2007-01-3194.
Повний текст джерелаWang, Duncan, James Hogan, and Lyndon Lamborn. "Safe Life of Line Pipe in Hydrogen Blended Transport." In ASME 2023 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/pvp2023-105812.
Повний текст джерелаLeishear, Robert A. "A Hydrogen Ignition Mechanism for Explosions in Nuclear Facility Pipe Systems." In ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/pvp2010-25261.
Повний текст джерелаLiu, Hanchen, Kai Yuan, and Xuewu Cao. "Numerical Study on Hydrogen Flow Behavior for Different Connecting Pipe Structures." In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-67375.
Повний текст джерелаTazhibaeva, Irina L., Vladimir P. Shestakov, Oleg G. Romanenko, Alexander H. Klepikov, Yuri S. Cherepnin, Vyacheslav I. Tarasov, Ergazy A. Kenjin, Alexander V. Basov, Mohamed S. El-Genk, and Mark D. Hoover. "Hydrogen Interaction with Constructional Materials of Nuclear-Power Devices “In Situ” the Pile Irradiation." In SPACE NUCLEAR POWER AND PROPULSION: Eleventh Symposium. AIP, 1994. http://dx.doi.org/10.1063/1.2950292.
Повний текст джерелаHöhler, Susanne, Elke Wanzenberg, Nikolai Jacob, Christoph Bosch, Holger Brauer, Djordje Mirkovic, and Elke Muthmann. "Material Performance of Line Pipe Steels for the Hydrogen Infrastructure." In 2024 15th International Pipeline Conference. American Society of Mechanical Engineers, 2024. https://doi.org/10.1115/ipc2024-133063.
Повний текст джерелаSergeyeva, Tatyana K., Igor A. Tychkin, and Gennady G. Vasiliev. "Hydrogen-Induced Stress Corrosion Cracking of Pipe Lines of Russia." In 1996 1st International Pipeline Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/ipc1996-1857.
Повний текст джерелаHill, R., and A. Perez. "Line Pipe Material Consideration for Transport of High-Pressure Hydrogen." In AISTech 2022 Proceedings of the Iron and Steel Technology Conference. AIST, 2022. http://dx.doi.org/10.33313/386/113.
Повний текст джерелаWoollin, P., and A. Kostrivas. "Use of Supermartensitic Stainless Steel Pipe for Offshore Flowline Applications." In 25th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/omae2006-92351.
Повний текст джерелаPrewitt, Thomas, and Saba Esmaeely. "Hydrogen Storage Lifecycle Assessment." In ASME 2024 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/pvp2024-123478.
Повний текст джерелаЗвіти організацій з теми "Pile à hydrogène"
Guest, Stuart, Aaron Dinovitzer, and Sanjay Tiku. PR-214-214504-R01 Identification of Hydrogen Susceptible Line Pipe. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 2022. http://dx.doi.org/10.55274/r0000001.
Повний текст джерелаDavis, Eiber, and Parkins. NR199306 Microbial Effects on SCC of Line-pipe Steels in Low-pH Environments. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 1993. http://dx.doi.org/10.55274/r0010963.
Повний текст джерелаWilliams and Maxey. NR198709 Evaluation of a Heat-Treated X80 Grade Pipe. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 1987. http://dx.doi.org/10.55274/r0011140.
Повний текст джерелаBalda, S. NR199002 Monitoring Hydrogen Cracking in Sleeve Welds. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), July 1990. http://dx.doi.org/10.55274/r0011408.
Повний текст джерелаPayer. L51903 Damage to FBE and Liquid Epoxy Coating from Hydrogen Outgassing from Welds. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), May 2004. http://dx.doi.org/10.55274/r0010383.
Повний текст джерелаWilliams, D. N., and W. A. Maxey. NG-18-145-R01 Evaluation of an X70 Low-Carbon Bainitic-Steel Pipe. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 1985. http://dx.doi.org/10.55274/r0011900.
Повний текст джерелаOlson, David L., Brajendra Mishra, and Angelique N. Lasseigne. DTRS56-03-X-0044 Electromagnetic Sensor for Hydrogen Content Determination in Coated Line Pipe Steel. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), February 2007. http://dx.doi.org/10.55274/r0011959.
Повний текст джерелаHolbrook, J., and H. Cialone. L51472 Effects of SNG-Hydrogen Gas Mixtures on High Pressure Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 1985. http://dx.doi.org/10.55274/r0011396.
Повний текст джерелаLozev. L52029 Ultrasonic Inspection of Hot Tap Branch and Repair Sleeve-Fillet Welds Using Phased Arrays. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2003. http://dx.doi.org/10.55274/r0011116.
Повний текст джерелаJones. L51751 Evaluation of Low Hydrogen Welding Processes for Pipeline Construction in High Strength Steel. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 1996. http://dx.doi.org/10.55274/r0010220.
Повний текст джерела