Добірка наукової літератури з теми "Phytopathogenic microorganisms Biological control"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Phytopathogenic microorganisms Biological control".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Phytopathogenic microorganisms Biological control"
Malta, Camilla Martins, Eskálath Morganna Silva Ferreira, Thamar Holanda Da Silva, Divina Anne Batista Oliveira, Filipe Miguel Pereira Da Silva, Juliana Fonseca Moreira Da Silva, and Raphael Sanzio Pimenta. "Isolation of epiphytic yeasts from Eugenia dysenterica DC. fruits and evaluation of their antimicrobial activity against phytopathogenic fungi." Boletim do Museu Paraense Emílio Goeldi - Ciências Naturais 14, no. 2 (August 27, 2019): 223–31. http://dx.doi.org/10.46357/bcnaturais.v14i2.176.
Повний текст джерелаMoreno-Gavíra, Alejandro, Victoria Huertas, Fernando Diánez, Brenda Sánchez-Montesinos, and Mila Santos. "Paecilomyces and Its Importance in the Biological Control of Agricultural Pests and Diseases." Plants 9, no. 12 (December 10, 2020): 1746. http://dx.doi.org/10.3390/plants9121746.
Повний текст джерелаGHARBI, Samia, Pelias RAFANOMEZANTSOA, Ryme TERBECHE, Nassima DRAOU, and Noureddine KARKACHI. "Evaluation of the antagonistic potential of bacterial strains isolated from Algerian soils for the biological control of phytopathogenic fungi." Journal of Applied and Natural Science 14, no. 2 (June 18, 2022): 647–51. http://dx.doi.org/10.31018/jans.v14i2.3479.
Повний текст джерелаNatsiopoulos, Dimitrios, Apostolos Tziolias, Ioannis Lagogiannis, Spyridon Mantzoukas, and Panagiotis A. Eliopoulos. "Growth-Promoting and Protective Effect of Trichoderma atrobrunneum and T. simmonsii on Tomato against Soil-Borne Fungal Pathogens." Crops 2, no. 3 (June 29, 2022): 202–17. http://dx.doi.org/10.3390/crops2030015.
Повний текст джерелаBillar de Almeida, Angela, Jonathan Concas, Maria Doroteia Campos, Patrick Materatski, Carla Varanda, Mariana Patanita, Sergio Murolo, Gianfranco Romanazzi, and Maria do Rosário Félix. "Endophytic Fungi as Potential Biological Control Agents against Grapevine Trunk Diseases in Alentejo Region." Biology 9, no. 12 (November 26, 2020): 420. http://dx.doi.org/10.3390/biology9120420.
Повний текст джерелаBasso Valeria, González. "Biological control, an important tool for sustainable agriculture." Journal of Applied Biotechnology & Bioengineering 9, no. 5 (2022): 176–80. http://dx.doi.org/10.15406/jabb.2022.09.00307.
Повний текст джерелаSCHRADER, Stefan, Friederike WOLFARTH, and Elisabeth OLDENBURG. "Biological Control of Soil-borne Phytopathogenic Fungi and their Mycotoxins by Soil Fauna." Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Agriculture 70, no. 2 (November 25, 2013): 291–98. http://dx.doi.org/10.15835/buasvmcn-agr:9743.
Повний текст джерелаZhou, Yang, Shuoxing Yi, Yi Zang, Qing Yao, and Honghui Zhu. "The Predatory Myxobacterium Citreicoccus inhibens gen. nov. sp. nov. Showed Antifungal Activity and Bacteriolytic Property against Phytopathogens." Microorganisms 9, no. 10 (October 12, 2021): 2137. http://dx.doi.org/10.3390/microorganisms9102137.
Повний текст джерелаFontana, Daniele Cristina, Samuel de Paula, Abel Galon Torres, Victor Hugo Moura de Souza, Sérgio Florentino Pascholati, Denise Schmidt, and Durval Dourado Neto. "Endophytic Fungi: Biological Control and Induced Resistance to Phytopathogens and Abiotic Stresses." Pathogens 10, no. 5 (May 8, 2021): 570. http://dx.doi.org/10.3390/pathogens10050570.
Повний текст джерелаAsaturova, Anzhela, Natalya Zhevnova, Natalya Tomashevich, Marina Pavlova, Oksana Kremneva, Galina Volkova, and Nikita Sidorov. "Efficacy of New Local Bacterial Agents against Pyrenophora tritici-repentis in Kuban Region, Russia." Agronomy 12, no. 2 (February 1, 2022): 373. http://dx.doi.org/10.3390/agronomy12020373.
Повний текст джерелаДисертації з теми "Phytopathogenic microorganisms Biological control"
Kabir, Nasreen Zahan. "Selection of effective antagonists against Rhizoctonia solani (AG-3), the causal agent of Rhizoctonia disease of potato." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=27351.
Повний текст джерелаAlfaro, Lemus Ana Lilia. "Factors influencing the control of citrophilous mealybug Pseudococcus calceolarie (Maskell) by Coccophagus gurneyi Compere in the Riverland of South Australia." Title page, contents and abstract only, 2001. http://web4.library.adelaide.edu.au/theses/09IM/09iml562.pdf.
Повний текст джерелаMphahlele, Mogalatjane Patrick. "Honey bee dissemination of Bacillus subtilis to citrus flowers for control of Alternaria." Diss., University of Pretoria, 2003. http://hdl.handle.net/2263/24207.
Повний текст джерелаDissertation (Magister Institutiones Agrariae)--University of Pretoria, 2006.
Plant Production and Soil Science
unrestricted
Ghajar, Feridon Ghasem Khan. "Stimulatory and inhibitory effects of UVA and UVB radiation on some physiological and pathogenic characteristics of fungal biocontrol agents to enhance mycoherbistat effectiveness." View thesis, 2004. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20050722.084927/index.html.
Повний текст джерелаGumede, Halalisani. "The development of a putative microbial product for use in crop production." Thesis, Rhodes University, 2008. http://eprints.ru.ac.za/1352/.
Повний текст джерелаBecker, John van Wyk 1975. "Evaluation of the role of PGIPs in plant defense responses." Thesis, Stellenbosch : Stellenbosch University, 2007. http://hdl.handle.net/10019.1/17476.
Повний текст джерелаENGLISH ABSTRACT: Plants have developed sophisticated means of combating plant diseases. The events that prepare the plant for, and follow plant-pathogenic interactions, are extremely complex and have been the topic of intensive investigation in recent years. These interactions involve a plethora of genes and proteins, and intricate regulation thereof; from the host and pathogen alike. Studying the contribution of single genes and their encoded proteins to the molecular dialogue between plant and pathogen has been a focus of plant molecular biologists. To this end, a gene encoding a polygalacturonase-inhibiting protein (PGIP) was recently cloned from Vitis vinifera. These proteins have the ability to inhibit fungal endopolygalacturonases (ePGs), enzymes which have been shown to be required for the full virulence of several fungi on their respective plant hosts. The activity of PGIP in inhibiting fungal macerating enzymes is particularly attractive for the improvement of disease tolerance of crop species. The VvPGIP-encoding gene was subsequently transferred to Nicotiana tabacum for high-level expression of VvPGIP. These transgenic plants were found to be less susceptible to infection by Botrytis cinerea in an initial detached leaf assay. Also, it was shown that ePG inhibition by protein extracts from these lines correlated to the observed decrease in susceptibility to B. cinerea. This study expands on previous findings by corroborating the antifungal nature of the introduced PGIP by whole-plant, timecourse infection assays. Six transgenic tobacco lines and an untransformed wildtype (WT) were infected and the lesions measured daily from day three to seven, and again at day 15. The transgenic lines exhibited smaller lesions sizes from three to seven days post-inoculation, although these differences only became statistically significant following seven days of incubation. At this point, four of the six lines exhibited significantly smaller lesions than the WT, with reductions in disease susceptibility ranging between 46 and 69% as compared to the WT. Two of the lines exhibited disease susceptibility comparable to the WT. In these resistant plant lines, a correlation could be drawn between Vvpgip1 expression, PGIP activity and ePG inhibition. These lines were therefore considered to be PGIP-specific resistant lines, and provided ideal resources to further study the possible in planta roles of PGIP in plant defense. The current hypothesis regarding the role(s) of PGIP in plant defense is twofold. Firstly, PGIPs have the ability to specifically and effectively inhibit fungal ePGs. This direct inhibition results in reduced fungal pathogenicity. Alternatively, unhindered action of these enzymes results in maceration of plant tissue and ultimately, tissue necrosis. Subsequently, it could be shown that, in vitro, the inhibition of ePGs prolongs the existence of oligogalacturonides, molecules with the ability to activate plant defense responses. Thus, PGIPs limit tissue damage by inhibition of ePG; this inhibition results in activation of plant defense responses aimed at limiting pathogen ingress. Several publications reported reduced susceptibility to Botrytis in transgenic plant lines overexpressing PGIP-encoding genes. However, none of these publications could expand on the current hypotheses regarding the possible in planta roles of PGIP in plant defense. In this study we used transgenic tobacco lines overexpressing Vvpgip1 as resources to study the in planta roles for PGIP. Transcriptomic and hormonal analyses were performed on these lines and a WT line, both before and following inoculation with Botrytis cinerea. Transcriptomic analysis was performed on uninfected as well as infected tobacco leaf material utilizing a Solanum tuberosum microarray. From the analysis with healthy, uninfected plant material, it became clear that genes involved in cell wall metabolism were differentially expressed between the transgenic lines and the WT. Under these conditions, it could be shown and confirmed that the gene encoding tobacco xyloglucan endotransglycosylase (XET/XTH) was downregulated in the transgenic lines. Additionally, genes involved in the lignin biosynthetic pathway were affected in the individual transgenic lines. Biochemical evidence corroborated the indication of increased lignin deposition in their cell walls. Additionally, phytohormone profiling revealed an increased indole-acetic acid content in the transgenic lines. These results show that constitutive levels of PGIP may affect cell wall metabolism in the Vvpgip1-transgenic lines which may have a positive impact on the observed reduced susceptibilities of these plants. An additional role for PGIP in the contribution to plant defenses is therefore proposed. PGIP may directly influence defense responses in the plant leading to the strengthening of cell walls. This might occur by virtue of its structural features or its integration in the cell wall. These reinforced cell walls are thus “primed” before pathogen ingress and contribute to the decrease in disease susceptibility observed in lines accumulating high levels of PGIP. Transcriptional and hormonal analyses, at the localized response, were performed on Botrytis-infected leaf tissue of the transgenic lines and a WT line. Several Botrytis responsive genes were found to be upregulated in both the WT and the transgenic lines. Although limited differential expression was observed between the two genotypes, the analyses identified a gene which was upregulated two-fold in the transgenic lines, as compared to WT. This was confirmed by quantitative Real-Time PCR. This gene is involved in the lipoxygenase pathway, specifically the 9-LOX branch, leading to the synthesis of the divinyl ether oxylipins colneleic and colnelenic acid, which show inhibitory effects on Botrytis spore germination. Phytohormone profiling revealed that the transgenic lines accumulated more of the defense-related hormone pool of jasmonates. These are formed via the 13-LOX pathway and have been shown to be important for the restriction of Botrytis growth at the site of infection. Collectively, the results from the infection analyses indicate that in these transgenic lines, both branches of the lipoxygenase pathway are differentially induced at the level of the localized response to Botrytis infection. Similarly, an increased induction of the synthesis of the defense-related hormone salicylic acid could be observed, although this hormone did not accumulate to significantly higher levels. These results are the first report of differential induction of a defense-related pathway in pgip-overexpressing lines and substantiate the proposal that following ePG inhibition by PGIP, signaling which activates plant defense responses, takes place. Taken together, these results significantly contribute to our understanding of the in planta role of PGIP in plant defense responses.
AFRIKAANSE OPSOMMING: Plante het deur evolusie gesofistikeerde meganismes teen die aanslag van plantsiektes ontwikkel. Die gebeure wat die plant voorberei, asook dié wat op plant-patogeen interaksies volg, is uiters kompleks en vorm die kern van verskeie navorsingstemas die afgelope paar jaar. Etlike plant- én patogeengene en proteïene is by hierdie interaksies betrokke en aan komplekse reguleringsprosesse onderworpe. Die bestudering van die bydrae van enkelgene en hul gekodeerde proteïene tot die molekulêre interaksie tussen ‘n plant en patogeen is ‘n sterk fokus van plant-molekulêre bioloë. Met hierdie doel as fokus, is ‘n geen wat vir ‘n poligalakturonaseinhiberende proteïen (PGIP) kodeer, van Vitis vinifera gekloneer. Hierdie proteïene beskik oor die vermoë om fungiese endopoligalakturonases (ePG's), ensieme wat benodig word vir die virulensie van verskeie fungi op hul gasheerplante, te inhibeer. Die inhibisie van ePG's deur PGIP en die gepaardgaande verminderde weefseldegradasie is ‘n baie belowende strategie vir die verbetering van verboude gewasse se patogeentoleransie. Die VvPGIPenkoderende geen is gevolglik na Nicotiana tabacum oorgedra vir hoëvlakuitdrukking van VvPGIP. Daar is gevind dat hierdie transgeniese plante minder vatbaar vir Botrytis cinerea-infeksies was in ‘n inisiële antifungiese toets wat gebruik gemaak het van blaarweefsel wat van die moederplant verwyder is. Daar is ook ‘n korrelasie gevind tussen B. cinerea-siekteweerstand en ePG-inhibisie deur proteïenekstrakte van die transgeniese populasie. Die huidige studie bou voort op en bevestig vorige bevindinge betreffende die antfungiese aard van die heteroloë PGIP in die heelplant en oor tyd. Ses transgeniese tabaklyne en 'n ongetransformeerde wilde-tipe (WT) is geïnfekteer en die lesies is vanaf dag drie tot sewe, en weer op dag 15, gemeet. Die transgeniese lyne het in die tydperk van drie tot sewe dae ná-inokulasie kleiner lesies as die WT getoon, alhoewel hierdie verskille slegs statisties beduidend geword het na sewe dae van inkubasie. Op daardie tydstip het vier van die ses lyne aansienlik kleiner lesies as die WT getoon, en verlagings in siektevatbaarheid het, in vergelyking met die WT, van 46% tot 69% gewissel. Twee van die lyne het siektevatbaarheid getoon wat vergelykbaar was met dié van die WT. In die siekteweerstandbiedende plantlyne was daar 'n verband tussen Vvpgip1-ekspressie, PGIP-aktiwiteit en ePG-inhibisie. Hierdie plantlyne is dus as PGIP-spesifieke siekteweerstandslyne beskou en dien dus as ideale eksperimentele bronne vir die ontleding van die moontlike in plantafunksies van PGIP in plantsiekteweerstandbiedendheid. Die huidige hipotese betreffende die funksie(s) van PGIP in plantsiekteweerstand is tweeledig. Eerstens het PGIP die vermoë om fungusePG's spesifiek en doeltreffend te inhibeer. Hierdie direkte inhibisie veroorsaak ‘n vermindering in patogenisiteit van die fungus op die gasheer. Indien ePG's egter hulle ensimatiese aksie onverstoord voortsit, sal weefseldegradasie en uiteindelik weefselnekrose die gevolg wees. Daar kon ook bewys word dat die in vitroinhibisie van ePG's deur PGIP die leeftyd van oligogalakturoniede, molekules wat die vermoë het om die plantweerstandsrespons aan te skakel, kan verleng. PGIP het dus nie net die vermoë om ePG's, en dus weefseldegradasie, te inhibeer nie; maar hierdie inhibisie lei ook daartoe dat plantweerstandsresponse aangeskakel word met die oog op die vermindering van patogeenindringing. Verskeie publikasies het reeds gerapporteer oor verminderde Botrytisvatbaarheid in PGIP transgeniese plantlyne. Geeneen van hierdie publikasies kon egter uitbrei op die huidige hipotese aangaande die moontlike in planta-funksie van PGIP in plantsiekteweerstand nie. In hierdie studie is transgeniese tabaklyne wat PGIP ooruitgedruk gebruik om hierdie moontlike in planta-funksies vir PGIP uit te klaar. Transkriptoom- en hormonale analises is op hierdie plantlyne en ‘n WT voor en ná inokulasie met die nekrotroof Botrytis cinerea uitgevoer,. Transkriptoomanalises is uitgevoer op ongeïnfekteerde, sowel as geïnfekteerde tabakblaarmateriaal deur gebruik te maak van ‘n Solanum tuberosum-mikroraster. Die analises met gesonde, ongeïnfekteerde plantmateriaal het daarop gewys dat gene betrokke by selwandmetabolisme tussen die transgeniese lyne en die WT verskillend uitgedruk was. Dit kon bewys word dat, sonder infeksiedruk, die geen wat xiloglukaan-endotransglikosilase (XET) kodeer, in die transgeniese lyne afgereguleer was. Gene wat betrokke is in die lignien-biosintetiese pad was ook in die individuele transgeniese lyne beïnvloed. Biochemiese toetse het ook die aanduiding van verhoogde ligniendeposisie in die transgeniese lyne se selwande bevestig. Addisionele fitohormoonprofiele het getoon dat hierdie lyne ook beskik oor verhoogde vlakke van indoolasynsuur (IAA). Hierdie resultate wys daarop dat konstitutiewe vlakke van PGIP selwandmetabolisme in die Vvpgip1-transgeniese lyne moontlik kan beïnvloed, wat plantsiekteweerstand in dié lyne positief kan beïnvloed. Dit wil dus voorkom asof PGIP 'n bykomende funksie in plantsiekteweerstand het. Plantweerstandsreponse kan direk deur PGIP beïnvloed word, wat tot die versterking van plantselwande kan lei; dit kan geskied by wyse van die strukturele eienskappe van die proteïen of die integrasie daarvan in die selwand. Hierdie selwande is dus “voorberei” alvorens patogeenindringing plaasvind en kon bydra tot die verminderde siektevatbaarheid wat waargeneem is in lyne wat hoë vlakke van PGIP akkumuleer. Transkriptoom- en hormonale analises is ook uitgevoer op Botrytisgeïnfekteerde blaarmateriaal van beide die transgeniese lyne en ‘n WT. Verskeie Botrytis-responsgene is in beide die transgeniese lyne en die WT opgereguleer. Differensïele geenekspressie tussen die twee genotipes was taamlik beperk, maar in die analises kon ‘n geen geïdentifiseer word wat tweevoudig in die transgeniese lyne opgereguleer was in vergelyking met die WT. Hierdie resultaat is ook bevestig met behulp van die “Real-Time” Polimerasekettingreaksie (PKR). Hierdie geen is betrokke in die lipoksigenase (LOX) -pad (spesifiek die 9-LOXarm), wat tot die sintese van die diviniel-eter oksilipiene “colneleic-” en “colnelenic”-suur lei. Daar is al bewys dat hierdie twee verbindings Botrytisspoorontkieming kan inhibeer. Fitohormoonprofiele van die geïnfekteerde plante het gewys dat die transgeniese lyne verhoogde vlakke van die poel van jasmonate wat plantsiekteweerstands-hormone is, ná inokulasie akkumuleer. Hierdie hormone word in die 13-LOX-arm van die lipoksigenase pad gevorm en is belangrik vir die beperking van Botrytis by die infeksiesetel. Die resultate van die analises wat op Botrytis-infeksie volg, dui daarop dat beide arms van die lipoksigenasepad in die transgeniese lyne verskillend by die lokale respons geïnduseer word. ‘n Verhoogde induksie van ‘n ander plantsiekteweerstandshormoon, salisielsuur, kon ook opgemerk word, alhoewel die totaal geakkumuleerde vlakke nie beduidend hoër was as dié van die WT nie. Hierdie resultate is die eerste wat onderskeidende induksie van ‘n siekteweerstandspad in enige van die pgip-ooruitgedrukte plantlyne rapporteer. Daarmee ondersteun dit ook die hipotese dat, seintransduksie wat plantweerstandsresponse aanskakel, ná inhibisie van ePG deur PGIP plaasvind. Die resultate wat met hierdie studie verkry is, dra dus beduidend by tot die huidige kennis van die in planta-funksie van PGIP in plantsiekteweerstandsresponse.
Pretorius, Rudolph Johannes. "A plant health management system for aphididae on lettuce under variable shadehouse conditions in the central Free State, South Africa." Thesis, Bloemfontein : Central University of Technology, Free State, 2008. http://hdl.handle.net/11462/114.
Повний текст джерелаAphids (Hemiptera: Aphididae) are amongst the most destructive insects in agricultural crop production systems. This reputation stems from their complex life cycles which are mostly linked to a parthenogenetic mode of reproduction, allowing them to reach immense population sizes within a short period of time. They are also notorious as important and efficient vectors of several plant viral diseases. Their short fecund life cycles allow them to be pests on crops with a short growth period, e.g. lettuce (Lactuca sativa L.). It is common practice to provide this crop with some degree of protection from environmental extremes on the South African Highveld. Shadehouses are popular in this regard, but aphids are small enough to find their way into these structures, and their presence on lettuce is discouraged due to phytosanitary issues. In addition, the excessive use of insecticides is criticized due to the negative influence on human health, and because aphids can rapidly develop resistance. This necessitates the use of alternative control options in order to suppress aphid numbers. Biological control is popular in this regard and the use of predatory ladybirds (Coleoptera: Coccinellidae) is a popular choice. This study investigated the aphid and coccinellid species complex encountered under varying shadehouse conditions on cultivated head lettuce in the central Free State Province (South Africa). Their seasonality was also examined, along with variations in their population size throughout a one-year period. Finally, the impact of varying aphid populations on some physical characteristics of head lettuce was examined, and recommendations for aphid control (using naturally occurring coccinellid predators) were made. Two shadehouse structures were evaluated during this study. One was fully covered with shade netting and designed to exclude the pugnacious ant, Anoplolepis custodiens (Hymenoptera: Formicidae), while the other was partially covered with shade netting (on the roof area) allowing access to the ants. Six cycles of head lettuce were planted and sampled four times during each cycle. These were scheduled to monitor the seedling, vegetative and heading stage of lettuce. Four important aphid species were recorded on the lettuce, namely Acyrthosiphon lactucae, Nasonovia ribisnigri, Myzus persicae and Macrosiphum euphorbiae. Both structures harboured similar aphid and coccinellid species, but their population dynamics differed. A. lactucae dominated in the absence of A. custodiens in the fully covered structure (whole study), while N. ribisnigri dominated in the partially covered structure in the presence of these ants during the warmer months (December – January). M. euphorbiae replaced this species as the dominant species in the absence of A. custodiens (April – September). M. persicae occured during the winter (May – August) in the fully covered structure. Promising coccinellid predators were Hippodamia variegata and Scymnus sp. 1, and to a lesser extent, Exochomus flavipes and Cheilomenes lunata. However, the fully covered structure hampered the entrance of the larger adult coccinellid species, resulting in their lower occurrence. Aphid and coccinellid activity peaked during the summer months (October – January), and the fully covered structure attained the highest aphid infestation levels and coccinellid larval numbers during this time. On the other hand, aphid numbers were higher in the partially covered structure during the cooler months of the year (April – July) and this structure also harboured more adult coccinellids. In most cases, aphid infestation levels did not affect the amount of leaves formed. However, symptomatic damage in terms of head weight reduction did occur under severe infestation levels. Specific environmental conditions within a shadehouse structure concurrently contributed to this reduction, with less favourable conditions accelerating this condition. Results from this study have shown that even though the type of shadehouse structure does not influence the insect species complex found on lettuce, it does have an influence on detrimental and beneficial insect population dynamics. Aphid species infesting lettuce have been identified, along with coccinellid predators that could potentially be used in their control. Both types of structures had advantages and disadvantages, and therefore, decisions concerning shadehouses should not be focused on which type of structure to use, but rather which type of structure to use during different seasons of the year.
Helps, Joseph Christopher. "Cultivar mixtures and the control of plant pathogens." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708199.
Повний текст джерелаKay, Stuart James. "The biological control of sapstain of Pinus radiata with microorganisms." Thesis, University of Auckland, 1995. http://hdl.handle.net/2292/2474.
Повний текст джерелаMorin, Louise. "Development of the field bindweed bioherbicide, Phomopsis convolvulus : spore production and disease development." Thesis, McGill University, 1989. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=59614.
Повний текст джерелаIn controlled environment studies, a minimum of 18 hr of dew was required for severe disease development on inoculated plants. The addition of gelatin, Sorbo $ sp{ rm TM}$, or BOND$ sp{ rm TM}$ to the inoculum did not enhance the disease under various leaf wetness periods. A continuous dew period of 18 hr was superior to the cumulative effect of three interrupted 6 hr dew periods. Secondary inoculum was produced on diseased plants placed under moist conditions for 48 hr or more.
In greenhouse experiments, seedlings at the cotyledon and 3- to 5- leaf stage were severely diseased and killed when inoculated with 10$ sp9$ conidia/m$ sp2$. This inoculum density adversely affected the regenerative ability of 4 wk old seedlings and established plants, but few plants were killed. Inoculation of the healthy regrowth from plants previously inoculated with the fungus resulted in much less disease symptoms than expected.
Книги з теми "Phytopathogenic microorganisms Biological control"
S, Gnanamanickam S., ed. Biological control of crop diseases. New York: M. Dekker, 2002.
Знайти повний текст джерелаDale, Walters, ed. Disease control in crops: Biological and environmentally-friendly approaches. Oxford, UK: Wiley-Blackwell, 2009.
Знайти повний текст джерела1954-, Boland Greg J., and Kuykendall L. David 1952-, eds. Plant-microbe interactions and biological control. New York: Marcel Dekker, 1997.
Знайти повний текст джерела1939-, Chet Ilan, ed. Innovative approaches to plant disease control. New York: Wiley, 1987.
Знайти повний текст джерелаInternational Symposium on Biological Control of Plant Diseases for the New Century--Mode of Action and Application Technology (2001 Taichung, Taiwan). Proceedings of the International Symposium on Biological Control of Plant Diseases for the New Century--Mode of Action and Application Technology. Taichung: Dept. of Plant Pathology, National Chung Hsing University, 2001.
Знайти повний текст джерелаRice, Elroy L. Biological control of weeds and plant diseases: Advances in applied allelopathy. Norman: University of Oklahoma Press, 1995.
Знайти повний текст джерелаFinckh, Maria R., Ariena H. C. van Bruggen, and Lucius Tamm. Plant diseases and their management in organic agriculture. St. Paul, Minnesota: The American Phytopathological Society, 2015.
Знайти повний текст джерелаG, Mukerji K., Chamola B. P, and Upadhyay R. K. 1953-, eds. Biotechnological approaches in biocontrol of plant pathogens. New York: Kluwer Academic/Plenum Publishers, 1999.
Знайти повний текст джерелаCampbell, R. E. Biological control of microbial plant pathogens. Cambridge: Cambridge University Press, 1989.
Знайти повний текст джерелаAgriculture, National Research Council (U S. ). Committee on Biological Control Research Needs and Priorities in Plant-Microbe Interactions in. The ecology of plant-associated microorganisms: Basic research needed to support development of biological control of plant diseases. Washington, D.C: National Academy Press, 1989.
Знайти повний текст джерелаЧастини книг з теми "Phytopathogenic microorganisms Biological control"
Rhodes, D. J. "Formulation of biological control agents." In Exploitation of Microorganisms, 411–39. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1532-2_16.
Повний текст джерелаSelari, Priscila Jane Romano Gonçalves, Sarina Tsui, Tiago Tognolli de Almeida, Luiz Ricardo Olchanheski, and Manuella Nôbrega Dourado. "Biological Control of Phytopathogenic Fungi: Mechanisms and Potentials." In Agricultural Biocatalysis, 3–39. New York: Jenny Stanford Publishing, 2022. http://dx.doi.org/10.1201/9781003313144-2.
Повний текст джерелаTeBeest, D. O. "Biological control of weeds with fungal plant pathogens." In Exploitation of Microorganisms, 1–17. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1532-2_1.
Повний текст джерелаWeeks, Richard, and Michael Leonidas Chikindas. "Biological Control of Food-Challenging Microorganisms." In Food Microbiology, 733–54. Washington, DC, USA: ASM Press, 2019. http://dx.doi.org/10.1128/9781555819972.ch28.
Повний текст джерелаPérez-García, Alejandro, Diego Romero, Houda Zeriouh, and Antonio de Vicente. "Biological Control of Phytopathogenic Fungi by Aerobic Endospore-Formers." In Soil Biology, 157–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19577-8_8.
Повний текст джерелаLi, Juan, James Borneman, Paul Ruegger, Lianming Liang, and Ke-Qin Zhang. "Molecular Mechanisms of the Interactions Between Nematodes and Nematophagous Microorganisms." In Progress in Biological Control, 421–41. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51034-3_16.
Повний текст джерелаGuigón López, César, Héctor Adrián García Ramírez, and Laila Nayzzel Muñoz Castellanos. "Control of Pepper Powdery Mildew Using Antagonistic Microorganisms: An Integral Proposal." In Progress in Biological Control, 385–420. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51034-3_15.
Повний текст джерелаSindhu, Satyavir S., and Anju Sehrawat. "Rhizosphere Microorganisms: Application of Plant Beneficial Microbes in Biological Control of Weeds." In Microorganisms for Sustainability, 391–430. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6241-4_19.
Повний текст джерелаParulekar-Berde, Chanda Vikrant, Sujog Ashok Joshi, and Vikrant Balkrishna Berde. "Fungal Communities as Biological Control Agents for Different Phytopathogenic Organisms." In Fungal Biology, 189–201. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-60659-6_8.
Повний текст джерелаKerry, Brian. "The use of microbial agents for the biological control of plant parasitic nematodes." In Exploitation of Microorganisms, 81–104. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1532-2_4.
Повний текст джерелаТези доповідей конференцій з теми "Phytopathogenic microorganisms Biological control"
Vasilchenko, N. G., A. V. Gorovtsov, V. A. Chistyakov, and M. S. Mazanko. "BACTERIA OF THE ORDER BACILLALES AS PROMISING ANTAGONISTS OF FUSARIUM PATHOGENS AND THEIR IMPACT ON WINTER WHEAT PLANTS." In INNOVATIVE TECHNOLOGIES IN SCIENCE AND EDUCATION. DSTU-Print, 2020. http://dx.doi.org/10.23947/itno.2020.324-327.
Повний текст джерелаЯнковская, Е., Дмитрий Войтка, М. Федорович та А. Михнюк. "Антагонистическая активность энтомопатогенных грибов в отношении фитопатогенных микромицетов". У VIIth International Scientific Conference “Genetics, Physiology and Plant Breeding”. Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2021. http://dx.doi.org/10.53040/gppb7.2021.85.
Повний текст джерелаZhenchenko, K. G., E. N. Turin, and A. A. Gongalo. "Effect of Pisum sativum L. seed treatment with the complex of microbiological preparation on the plants’ growth and development under direct sowing." In РАЦИОНАЛЬНОЕ ИСПОЛЬЗОВАНИЕ ПРИРОДНЫХ РЕСУРСОВ В АГРОЦЕНОЗАХ. Federal State Budget Scientific Institution “Research Institute of Agriculture of Crimea”, 2020. http://dx.doi.org/10.33952/2542-0720-15.05.2020.27.
Повний текст джерелаLukjanova, Е. А., А. N. Sysoeva, D. А. Ivasenko, D. А. Ivasenko, and Y. А. Frank. "EFFECT OF THE “BIOBAKT “MICROCLIMATE” BIOLOGICAL PREPARATION ON MICROFLORA OF INDOOR LIVESTOCK FARM SECTIONS." In STATE AND DEVELOPMENT PROSPECTS OF AGRIBUSINESS. DSTU-PRINT, 2020. http://dx.doi.org/10.23947/interagro.2020.1.683-685.
Повний текст джерелаSoldatenko, E. A. "PIG COLIBACTERIOSIS IN THE CONDITIONS OF INDUSTRIAL COMPLEXES AND MEASURES TO COMBAT THIS DISEASE." In DIGEST OF ARTICLES ALL-RUSSIAN (NATIONAL) SCIENTIFIC AND PRACTICAL CONFERENCE "CURRENT ISSUES OF VETERINARY MEDICINE: EDUCATION, SCIENCE, PRACTICE", DEDICATED TO THE 190TH ANNIVERSARY FROM THE BIRTH OF A.P. Stepanova. Publishing house of RGAU - MSHA, 2021. http://dx.doi.org/10.26897/978-5-9675-1853-9-2021-22.
Повний текст джерелаShuliko, N. N. "THE BIOLOGICAL ACTIVITY OF THE RHIZOSPHERE OF SPRING BARLEY UNDER THE APPLICATION OF FERTILIZERS IN THE CONDITIONS OF THE SOUTHERN FOREST STEPPE OF WESTERN SIBERIA." In 11-я Всероссийская конференция молодых учёных и специалистов «Актуальные вопросы биологии, селекции, технологии возделывания и переработки сельскохозяйственных культур». V.S. Pustovoit All-Russian Research Institute of Oil Crops, 2021. http://dx.doi.org/10.25230/conf11-2021-270-274.
Повний текст джерелаChaikovskaya, L. A., V. V. Klyuchenko, M. I. Baranskaya, and O. L. Ovsienko. "Influence of microbial preparations and mineral fertilizers on the yield and quality of winter wheat grain." In CURRENT STATE, PROBLEMS AND PROSPECTS OF THE DEVELOPMENT OF AGRARIAN SCIENCE. Federal State Budget Scientific Institution “Research Institute of Agriculture of Crimea”, 2020. http://dx.doi.org/10.33952/2542-0720-2020-5-9-10-116.
Повний текст джерелаKruteakova, V., Nina V. Pilyak, V. Dishliuk, and O. Nikipelova. "The influence of bioderified on the basis of urban wastewater sediments on agricultural productivity on the example of corn on grain." In International Scientific Symposium "Plant Protection – Achievements and Prospects". Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2020. http://dx.doi.org/10.53040/9789975347204.27.
Повний текст джерелаShi, Xiang, Julia R. de Rezende, and Kenneth Sorbie. "Microbial Ecology Metrics to Assess the Effect of Biocide on Souring Control and Improve Souring Modelling." In SPE International Oilfield Corrosion Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/205037-ms.
Повний текст джерелаMikhailouskaya, N. A., D. V. Voitka, E. K. Yuzefovich, and T. B. Barashenko. "Effect of three-component microbial inoculant on winter rye and spring barley yields." In РАЦИОНАЛЬНОЕ ИСПОЛЬЗОВАНИЕ ПРИРОДНЫХ РЕСУРСОВ В АГРОЦЕНОЗАХ. Federal State Budget Scientific Institution “Research Institute of Agriculture of Crimea”, 2020. http://dx.doi.org/10.33952/2542-0720-15.05.2020.17.
Повний текст джерелаЗвіти організацій з теми "Phytopathogenic microorganisms Biological control"
Cytryn, Eddie, Mark R. Liles, and Omer Frenkel. Mining multidrug-resistant desert soil bacteria for biocontrol activity and biologically-active compounds. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7598174.bard.
Повний текст джерелаWerren, John H., Einat Zchori-Fein, and Moshe Coll. Parthenogenesis-Inducing Microorganisms in Parasitic Hymenoptera: Their Mode of Action and Utilization for Improvement of Biological Control Agents. United States Department of Agriculture, June 1996. http://dx.doi.org/10.32747/1996.7573080.bard.
Повний текст джерелаWilson, Charles, and Edo Chalutz. Biological Control of Postharvest Diseases of Citrus and Deciduous Fruit. United States Department of Agriculture, September 1991. http://dx.doi.org/10.32747/1991.7603518.bard.
Повний текст джерелаLindow, Steven E., Shulamit Manulis, Dan Zutra, and Dan Gaash. Evaluation of Strategies and Implementation of Biological Control of Fire Blight. United States Department of Agriculture, July 1993. http://dx.doi.org/10.32747/1993.7568106.bard.
Повний текст джерелаLindow, Steven, Isaac Barash, and Shulamit Manulis. Relationship of Genes Conferring Epiphytic Fitness and Internal Multiplication in Plants in Erwinia herbicola. United States Department of Agriculture, July 2000. http://dx.doi.org/10.32747/2000.7573065.bard.
Повний текст джерелаDroby, Samir, Joseph W. Eckert, Shulamit Manulis, and Rajesh K. Mehra. Ecology, Population Dynamics and Genetic Diversity of Epiphytic Yeast Antagonists of Postharvest Diseases of Fruits. United States Department of Agriculture, October 1994. http://dx.doi.org/10.32747/1994.7568777.bard.
Повний текст джерела