Добірка наукової літератури з теми "Physics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Physics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Physics":

1

Smith, Cyril W. "Physicks and Physics." Journal of Alternative and Complementary Medicine 5, no. 2 (April 1999): 191–93. http://dx.doi.org/10.1089/acm.1999.5.191.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Commissariat, Tushna. "From physica to physics." Physics World 31, no. 3 (March 2018): 47. http://dx.doi.org/10.1088/2058-7058/31/3/35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Arabatzis, Theodore. "How Physica Became Physics." Science & Education 27, no. 1-2 (December 5, 2017): 211–18. http://dx.doi.org/10.1007/s11191-017-9946-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sytsma, David S. "Calvin, Daneau, and Physica Mosaica." Church History and Religious Culture 95, no. 4 (2015): 457–76. http://dx.doi.org/10.1163/18712428-09504005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This essay argues that there are overlooked lines of continuity between Jean Calvin (1509–1564) and the Mosaic physics of Lambert Daneau (ca. 1530–1595). Specifically, the essay demonstrates lines of continuity between Calvin and Daneau on the value and errors of natural philosophy, their relation to the patristic hexaemeral literature, and their understanding of Mosaic accommodation. The evidence produced challenges prevailing scholarship which views Daneau’s Physica Christiana as a radical departure from Calvin’s thought or associates Calvin’s accommodation doctrine with Copernicanism alone. Sources used include multiple editions of Calvin’s Institutio, Calvin’s commentaries, Daneau’s Physica Christiana (1576) and Physices christianae pars altera (1580), Johann Heinrich Alsted’s Physica Harmonica, Jacob van Lansbergen’s Apologia (1633), and post-Reformation commentaries on Genesis by Franciscus Junius, David Pareus, and Johann Piscator.
5

Kim, Hong-Jeong, and Sungmin Im. "Pre-service Physics Teachers’ Beliefs about Learning Physics and Their Learning Achievement in Physics." Asia-Pacific Science Education 7, no. 2 (December 9, 2021): 500–521. http://dx.doi.org/10.1163/23641177-bja10038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract This study investigates pre-service teachers’ beliefs about learning physics and explores how beliefs correlate with learning achievement as evidenced by conceptual understanding and grades in a year-long physics course. To investigate beliefs about learning physics, 14 second-year pre-service teachers in a teacher training program in South Korea completed a Likert-style questionnaire called the Beliefs About Learning Physics Survey (BAPS). To measure learning achievement, final grades for the physic course were obtained and the Force Concept Inventory (FCI) was used to assess conceptual understanding. Analysis revealed that pre-service physics teachers’ beliefs about learning physics had a positive correlation with conceptual understanding but not with motivational beliefs. Students’ grades in physics had a positive correlation with cognitive beliefs, regardless of changes in pre- and post-test responses. Implications about how to utilize pre-service physics teachers’ beliefs about learning physics as an epistemological resource for teaching and learning physics are discussed.
6

Warner, Benjamin. "PhysiCL: An OpenCL-Accelerated Python Physics Simulator." Journal of Undergraduate Reports in Physics 31, no. 1 (January 2021): 100012. http://dx.doi.org/10.1063/10.0006351.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ross, S. M., and J. P. R. Bolton. "Physica: A Computer Environment for Physics Problem-Solving." Interactive Learning Environments 10, no. 2 (August 2002): 157–75. http://dx.doi.org/10.1076/ilee.10.2.157.7445.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hofmann, Tobias, Jacob Hamar, Marcel Rogge, Christoph Zoerr, Simon Erhard, and Jan Philipp Schmidt. "Physics-Informed Neural Networks for State of Health Estimation in Lithium-Ion Batteries." Journal of The Electrochemical Society 170, no. 9 (September 1, 2023): 090524. http://dx.doi.org/10.1149/1945-7111/acf0ef.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
One of the most challenging tasks of modern battery management systems is the accurate state of health estimation. While physico-chemical models are accurate, they have high computational cost. Neural networks lack physical interpretability but are efficient. Physics-informed neural networks tackle the aforementioned shortcomings by combining the efficiency of neural networks with the accuracy of physico-chemical models. A physics-informed neural network is developed and evaluated against three different datasets: A pseudo-two-dimensional Newman model generates data at various state of health points. This dataset is fused with experimental data from laboratory measurements and vehicle field data to train a neural network in which it exploits correlation from internal modeled states to the measurable state of health. The resulting physics-informed neural network performs best with the synthetic dataset and achieves a root mean squared error below 2% at estimating the state of health. The root mean squared error stays within 3% for laboratory test data, with the lowest error observed for constant current discharge samples. The physics-informed neural network outperforms several other purely data-driven methods and proves its advantage. The inclusion of physico-chemical information from simulation increases accuracy and further enables broader application ranges.
9

Anisa, Latifatu, Nyoto Suseno, and M. Barkah Salim. "PERAN LABORATORIUM PENDIDIKAN FISIKA UNIVERSITAS MUHAMMADIYAH METRO DALAM PENYELENGGARAAN PENELITIAN." JURNAL FIRNAS 3, no. 1 (May 27, 2022): 1–8. http://dx.doi.org/10.24127/firnas.v3i1.3408.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract: Pure experimental research in the UM Metro Physics Education study program is very minimal, therefore the role of the Physics Education Laboratory is needed in helping students or lecturers.The goal of this study to exsplore the role and constraints of the Laboratory of Physics Education of Muhammadiyah University of Metro for conducting research. This is a qualitative descriptive research, using interview, observation and questionnaire method. The sources of data are laboratory users, laboratory managers, and laboratory assistants. The analysis of data using qualitative by doing source triangulation and method triangulation. The result found that (1) Laboratory of Physic Education was 78% with good role playing categorie, its role is to provide laboratory facilities, measuring instruments and tools and materials.(2) Constraints faced are in physical facilities 23.68% with little constraint. The recomendation of this reseach,(1) Laboratory of Physic Education of Muhammadiyah University Of Metro to improve laboratory facilities even better. (2) Researchers can use Laboratory of Physic Education of Muhammadiyah University Of Metro to conduct research. (3) Schools can make laboratory of physics education of Muhammadiyah University Of Metro as models of research laboratories in schools.Keywords: The role, physics education laboratory
10

Nurmasyitah, Nur Azizah Lubis, Hendri Saputra, and Derlina. "Impact of Basic Physics E-Module Using Problem Oriented on Critical Thinking Skilss of Physics Teacher Candidate Student." Jurnal Penelitian Pendidikan IPA 9, no. 9 (September 25, 2023): 7346–53. http://dx.doi.org/10.29303/jppipa.v9i9.5002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The aim of this work was to investigate the effect of problem-oriented basic physics modules on improving the critical thinking skills of physics teacher candidate students. The type of research used was semi-experimental in two different classes. The next target of this research was the students of Samudra University's FKIP Physics Graduate Program. The data collection tools and techniques used in this study are basic physics questions that enhance critical thinking through problem-based basic physic e-modules. The results of this study, namely the hypothesis test results, were obtained sig (2-tailed) = 0.000 < 0.05, when testing the hypothesis that H0 is rejected and Ha is accepted. Therefore, it can be concluded that the e-module of basic physics has a problem-based effect on the critical thinking skills of physics teacher candidate students. Effect size value is d = 2.90 > 0.08, so it can be considered high. Therefore, it can be concluded that there is an influence of the electronic module of basic physics using a problem-oriented approach on the critical thinking skills of prospective physics teacher students. This research shows how effective E-modules are in fostering critical thinking abilities.

Дисертації з теми "Physics":

1

Ahmed, Zubair. "Rock Physics Characterization using Physical Methods on Powders." Thesis, Curtin University, 2018. http://hdl.handle.net/20.500.11937/75690.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This study describes a detailed investigation of quantifying key micro-structural parameters of the unconsolidated granular media and their relationship with the grain shape factors calculated from micro-CT images. These parameters are combined with the contact based effective medium models to calculate the elastic properties of the constituent grains after utilising stress dependent ultrasonic velocities of the samples. Thus developed techniques produce good results for mono-mineral quartz sands and one of the poly-mineral rock powder.
2

Amos, Nathaniel. "Connecting Symbolic Integrals to Physical Meaning in Introductory Physics." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1492617581975923.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sumensari, Olcyr. "Search of new physics through flavor physics observables." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS315/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La recherche indirecte des effets de la physique au-delà du Modèle Standard à travers les processus de la saveur est complémentaire aux efforts au LHC pour observer directement la nouvelle physique. Dans cette thèse nous discutons plusieurs scénarios au-delà du Modèle Standard (a) en utilisant une approche basée sur les théories de champs effective et (b) en considérant des extensions explicites du Modèle Standard, à savoir les modèles à deux doublets de Higgs et les scénarios postulant l'existence des bosons leptoquarks scalaires à basse énergie. En particulier, nous discutons le phénomène de la brisure de l'universalité des couplages leptoniques dans les désintégrations basées sur les transitions b → sℓℓ et b → cτν, et la possibilité de chercher les signatures de la violation de la saveur leptonique à travers les modes de désintégration similaires. Une proposition pour tester la présence d'un boson pseudoscalaire léger à travers les désintégrations des quarkonia est aussi présentée
Indirect searches of physics beyond the Standard Model through flavor physics processes at low energies are complementary to the ongoing efforts at the LHC to observe the New Physic phenomena directly. In this thesis we discuss several scenarios of physics beyond the Standard Model by (a) reusing the effective field theory approach and (b) by considering explicit extensions of the Standard Model, namely the two-Higgs doublet models and the scenarios involving the low energy scalar leptoquark states. Particular emphasis is devoted to the issue of the lepton flavor universality violation in the exclusive decays based on b → sℓℓ and b → cτν, and to the possibility of searching for signs of lepton flavor violation through similar decay modes. A proposal for testing the presence of the light CP-odd Higgs through quarkonia decays is also made
4

Kapucu, Serkan. "Physics Teachers." Phd thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614422/index.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The purpose of this study was to investigate four in-service physics teachers&rsquo
beliefs related to Turkish High School Physics Curriculum (THSPC) and to what extent these beliefs are reflected in their instructional practices. Data were collected through interviews, classroom observations and an open-ended questionnaire. Teachers&rsquo
responses to interview questions showed that they believed that teaching physics according to the THSPC helped students use their skills, become interested in physics lessons, relate physics to their daily life and have a permanent knowledge. Besides, teachers believe that they can teach physics according to the THSPC generally by giving examples from daily life and creating a discussion environment. The data obtained from classroom observations showed that the beliefs of teachers about how to teach physics according to the THSPC were reflected in their instructional practices. Teachers&rsquo
responses to open-ended questionnaire showed that teachers believed the necessity of attainment of majority of the skill objectives in the THSPC by students. However, they do not consider that students can attain many of the problem solving and information and communication skills. The data obtained from classroom observations showed that they seldom attempted to help students attain them or they never attempted. The data gathered from interviews and an open questionnaire showed that there were some factors that influence teachers&rsquo
instructional practices according to the THSPC. For example, they believe that students&rsquo
interest in physics lessons and teacher&rsquo
s opportunity to give more examples about daily life made their teaching physics according to the THSPC easy. However, they believe that university entrance exam, inadequacy of laboratory environment and lesson hours, students&rsquo
low economic status and lack of information and communication technologies affected their teaching physics according to the THSPC negatively.
5

Drechsel, Dieter. "Evolution Physics." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-175494.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This work is a revised edition of the former article "Evolution and Mutation Physics” by the same author. Some unclear formulations have been eliminated. New ideas and new calculations have been included, especially the important connection between successive entropy - changes and increasing DNA –length at slowly decreasing temperature-decrease of surroundings.
6

Newton, Harry. "B Physics." Thesis, University of Edinburgh, 1999. http://hdl.handle.net/1842/11871.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
I introduce and define Quantum Chromodynamics. I describe various well-known nonperturbative techniques for calculating quantities from the theory and discuss their merits and deficiencies. I then motivate and define a non-relativistic formulation (NRQCD) of the theory. I discuss the mechanics of the extraction of numbers from numerical simulations, and present general arguments as to the expected form of these data. I present results and details of their extraction from simulations of heavy-heavy and heavy-light mesons using NRQCD. I compare these results with those from other calculations and with experimental data, where they exist. I make suggestions for further work. An appendix contains details of the code used in the simulation together with the input parameters of the simulation.
7

Drechsel, Dieter. "Evolution Physics." Dieter Drechsel, 2018. https://slub.qucosa.de/id/qucosa%3A21175.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In a process called 'base rivalry', irreparable mutations are provoked in the replication of monotonous sequences, which depend on the cell temperature, the cell viscosity and monotonous sequence length. This explains the very long monotonous sequences and very long DNAs that occur over long evolutionary epochs. Presumably, base rivalry (with tautomerism or too low cell viscosity) also provokes the formation of tumors and the emergence of dangerous viral mutations.
8

Drechsel, Dieter. "Evolution Physics." Dieter Drechsel, 2016. https://slub.qucosa.de/id/qucosa%3A7666.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In a previous publication [1] the author described the base rivalry in monotonous DNA sequences and their effect on the DNA repair mechanism. As described in the article, during the monotonous sequence replication, energies appear theoretically to increase with a progressive replication fork up to the quantum mechanical energy level n=2 because of the base rivalry, and these rivalry energies affect the bond strength between the complementary bases. If there is a tautomeric base pair in the replication position where the rivalry energy is large enough, then in this position an irreparable mutation will occur, since the DNA repair mechanism cannot repair that error because too much binding energy. Thus a mutation (caused by base rivalry) can occur only on condition that a transition of a base pair into its tautomeric form is happened. It is remarkable that this transition likewise can occur by the effect of base rivalry energy. The base rivalry - energy which has an effect on a normal base pair provokes a tunnel process in its hydrogen bond, and produces the tautomeric form. After whose replication a different, irreparable base pair develops from the tautomeric base pair, when the rivalry - energy leads into a very strong hydrogen bond. This happens, however, by chance and in the following we will compute the probabilities of such accidental events. The result of these calculations is the equation (32) which could be useful for the theory of evolution and besides for clearing up of virus mutations. It is remarkable that follows from these calculations that the length of DNA increases itself in the course of evolution (section 7).
9

Thompson, Travis W. "Tuning the Photochemical Reactivity of Electrocyclic Reactions| A Non-adiabatic Molecular Dynamics Study." Thesis, California State University, Long Beach, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10839950.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

We use non-adiabatic ab initio molecular dynamics to study the influence of substituent side groups on the photoactive unit (Z)-hexa-1,3,5-triene (HT). The Time-Dependent Density Functional Theory Surface Hopping method (TDDFT-SH) is used to investigate the influence of substituted isopropyl and methyl groups on the excited state dynamics. The 1,4 and 2,5-substituted molecules are simulated: 2,5-dimethylhexa-1,3,5-triene (DMHT), 2-isopropyl-5-methyl-1,3,5-hexatriene (2,5-IMHT), 3,7-dimethylocta-1,3,5-triene (1,4-IMHT), and 2,5-diisopropyl-1,3,5-hexatriene (DIHT). We find that HT and 1,4-IMHT have the lowest ring-closing branching ratios of 5.3% and 1.0%, respectively. For the 2,5-substituted derivatives, the branching ratio increases with increasing size of the substituents, exhibiting yields of 9.78%, 19%, and 24% for DMHT, 2,5-IMHT, and DIHT, respectively. The reaction channels are shown to prefer certain conformation configurations at excitation, where the ring-closing reaction tends to originate from the gauche-Z-gauche (gZg) rotamer almost exclusively. In addition, there is a conformational dependency on absorption, gZg conformers have on average lower S1 ← S0 excitation energies that the other rotamers. Furthermore, we develop a method to calculate a predicted quantum yield that is in agreement with the wavelength-dependence observed in experiment for DMHT. In addition, the quantum yield method also predicts DIHT to have the highest CHD yield of 0.176 at 254 nm and 0.390 at 290 nm.

Additionally, we study the vitamin D derivative Tachysterol (Tachy) which exhibits similar photochemical properties as HT and its derivatives. We find the reaction channels of Tachy also have a conformation dependency, where the reactive products toxisterol-D1 (2.3%), previtamin D (1.4%) and cyclobutene toxisterol (0.7%) prefer cEc, cEt, and tEc configurations at excitation, leaving the tEt completely non-reactive. The rotamers similarly have a dependence on absorption as well, where the cEc configuration has the lowest energy S 1 ← S0 excitation of the rotamers. The wavelength dependence of the rotamers should lead to selective properties of these molecules at excitation. An excitation to the red-shifted side of the maximum absorption peak will on average lead to excitations of the gZg rotamers more exclusively.

10

Pfeiffer, Benoite Jeanne Françoise. "Soft physics: healing the mind/body split in physics education." Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/43278.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Physics education is facing a crisis of meaning: students can “plug” numbers into formulas, but research shows they do not give much meaning to physical concepts. This thesis explores how the cultural context of physics education, in particular the mind/body cartesian split, contributes to a loss of meaning. Drawing from sensory scholarship, cognitive linguistics, feminist critiques of science, her own teaching experience and education research on student misconceptions and intuitive knowledge, the author challenges the mind/body dichotomy by exploring how the body can make sense of the physical world through the senses. Physical concepts can be more-than-representational, exist beyond mathematical symbols and signifiers, but nevertheless be perceived through touch. In her quest for a mind/body truce, the author has created provocative stories for the physics classroom that welcome the body and its physic-al knowledge, and that reconcile intuition and Newtonian physics. This subtle change of perspective leads her to replace the alleged mind/body war with a respectful quest for compromise and fine tuning, and to analyze the dominant patriarchal narratives of the physics community. The author advocates for an intuition-based, sensory, student-centred pedagogy that redefines traditional power relationships in the physics classroom and challenges indoctrinating scientific discourses, hoping it will contribute to improving the inclusiveness of the physics community. Such a paradigm shift requires a re-storying of collective narratives. Physics is not about dominating nature but about learning from nature; it is time to abandon the myth of the detached observer and study nature from inside, at the confluence of everything that make us humans.

Книги з теми "Physics":

1

Pearce, Eli M., and G. E. Zaikov. New steps in physical chemistry, chemical physics, and biochemical physics. Edited by Kirshenbaum Gerald S. Hauppauge, N.Y: Nova Science Publishers, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Royal Society of Chemistry (Great Britain). Physical chemistry chemical physics: PCCP. Cambridge, England: Royal Society of Chemistry, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

McDermott, Lillian C. Physics by inquiry: An introduction to physics and the physical sciences. New York: J. Wiley, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hewitt, Paul G. Conceptual physics: Practicing physics. San Francisco: Addison-Wesley, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hewitt, Paul G. Conceptual physics: Practicing physics. 9th ed. San Francisco: Addison-Wesley, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Canada, Atomic Energy of. Progress report: Physical sciences : physics division. Chalk River, Ont: Chalk River Laboratories, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lazar, Miriam A. Let's review: Physics-- the physical setting. 2nd ed. Hauppauge, NY: Barron's Educational Series, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lazar, Miriam A. Let's review: Physics--the physical setting. 4th ed. Hauppauge, NY: Barrons Educational Series, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lazar, Miriam A. Let's review: Physics-- the physical setting. Hauppauge, NY: Barron's Educational Series, Inc, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bedrit͡skiĭ, Anatoliĭ. New theoretical physics: Global physical theory. Netania, Israel: A. Bedritsky, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Physics":

1

Varvoglis, Harry. "Physical Sciences and Physics." In History and Evolution of Concepts in Physics, 3–10. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04292-3_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kapuścik, Edward. "Physics Without Physical Constants." In Frontiers of Fundamental Physics, 387–91. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2560-8_46.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jost, Jürgen. "Physics." In Geometry and Physics, 97–207. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00541-1_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

de Haas, W. J., and P. M. van Alphen. "Physics." In Quantum Hall Effect: A Perspective, 72–84. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-010-9709-3_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Schubnikow, L., and W. J. de Haas. "Physics." In Quantum Hall Effect: A Perspective, 85–88. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-010-9709-3_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Reid, Constance. "Physics." In Hilbert, 125–36. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-0739-9_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ruder, Hanns. "Physics." In High Performance Computing in Science and Engineering ’98, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58600-2_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Escudé, Lluis, David Ortiz de Urbina, and Enrico Tangco. "Physics." In Intraoperative Radiotherapy, 11–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84183-5_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Greene, D., and S. K. Stephenson. "Physics." In The Radiotherapy of Malignant Disease, 1–32. London: Springer London, 1985. http://dx.doi.org/10.1007/978-1-4471-3322-3_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nishio, Teiji. "Physics." In Stereotactic Body Radiation Therapy, 27–43. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-54883-6_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Physics":

1

MCLERRAN, L. "SMALL X PHYSICS: A PHYSICAL PICTURE." In Fifth Rio de Janeiro International Workshop. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789814528917_0011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Li, Jiatong, Ryo Suzuki, and Ken Nakagaki. "Physica: Interactive Tangible Physics Simulation based on Tabletop Mobile Robots Towards Explorable Physics Education." In DIS '23: Designing Interactive Systems Conference. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3563657.3596037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Feiner, Louis Felix. "Orbital Physics versus Spin Physics." In HIGHLIGHTS IN CONDENSED MATTER PHYSICS. AIP, 2003. http://dx.doi.org/10.1063/1.1639589.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Park, Youngah. "Korean Physical Society’s Physics Camp for High School Girls." In WOMEN IN PHYSICS: 2nd IUPAP International Conference on Women in Physics. AIP, 2005. http://dx.doi.org/10.1063/1.2128385.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hamann, Fred. "The physics and physical properties of quasar outflows." In Nuclei of Seyfert galaxies and QSOs - Central engine & conditions of star formation. Trieste, Italy: Sissa Medialab, 2013. http://dx.doi.org/10.22323/1.169.0020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hu, Haoyu, Xinyu Yi, Hao Zhang, Jun-Hai Yong, and Feng Xu. "Physical Interaction: Reconstructing Hand-object Interactions with Physics." In SA '22: SIGGRAPH Asia 2022. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3550469.3555421.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rafiqah, Santih Anggereni, Andi Ferawati Jafar, Muh Syihab Ikbal, Andi Hasrianti, and Hasmawati. "Developing Physical Learning Multimedia Based on Physics Edutainment." In 3rd International Conference on Education, Science, and Technology (ICEST 2019). Paris, France: Atlantis Press, 2020. http://dx.doi.org/10.2991/assehr.k.201027.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

CROCA, JOSE R. "From Nonlinear Quantum Physics to Eurhythmic Physics." In Unified Field Mechanics II: Preliminary Formulations and Empirical Tests, 10th International Symposium Honouring Mathematical Physicist Jean-Pierre Vigier. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813232044_0028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kirby, Kate P. "Atmospheric physics, collision physics, and global change." In The eighteenth international conference on the physics of electronic and atomic collisions. AIP, 1993. http://dx.doi.org/10.1063/1.45264.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Velarde, Manuel G., and Francisco Cuadros. "Thermodynamics and Statistical Physics; Teaching Modern Physics." In 4th IUPAP Teaching Modern Physics Conference. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789814532211.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Physics":

1

Petersson, N., F. Garcia, S. Guenther, Y. Choi, and R. Vogt. Quantum Physics without the Physics. Office of Scientific and Technical Information (OSTI), December 2020. http://dx.doi.org/10.2172/1729745.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Umarova, G. A., R. N. Suleymanov, and R. A. Nabiullin. Virtual Physics Labs: Quantum Physics. SIB-Expertise, March 2022. http://dx.doi.org/10.12731/er0542.17032022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hurth, Tobias. New Physics Search in Flavour Physics. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/878000.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hinchliffe, I. Old physics, new physics and colliders. Office of Scientific and Technical Information (OSTI), January 1987. http://dx.doi.org/10.2172/6687496.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Grinkrug, M. S., N. A. Novgorodov, and YU I. Tkacheva. Physics course: Mechanics. Molecular physics and thermodynamics. OFERNIO, July 2021. http://dx.doi.org/10.12731/ofernio.2021.24875.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Green, D. Particle physics. Office of Scientific and Technical Information (OSTI), May 1994. http://dx.doi.org/10.2172/10156370.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Seidel, Sally. Collider Physics. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1647331.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nefkens, B. M. K. Particle physics. Office of Scientific and Technical Information (OSTI), October 1991. http://dx.doi.org/10.2172/6137538.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hardis, Jonathan E., Jonathan E. Hardis, and William R. Ott. Physics Laboratory. Gaithersburg, MD: National Institute of Standards and Technology, 2008. http://dx.doi.org/10.6028/nist.sp.1075.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Seidel, Sally. Collider Physics. Office of Scientific and Technical Information (OSTI), May 2017. http://dx.doi.org/10.2172/1357015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії