Добірка наукової літератури з теми "Photovoltaic thermal- Solar building"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Photovoltaic thermal- Solar building".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Photovoltaic thermal- Solar building"

1

Chang, Jing Yi, and Yean Der Kuan. "Application of CFD to Building Thermal Control Analysis." Applied Mechanics and Materials 271-272 (December 2012): 777–81. http://dx.doi.org/10.4028/www.scientific.net/amm.271-272.777.

Повний текст джерела
Анотація:
Building-integrated photovoltaic system is to import a photovoltaic panel system into the shell structure of a building by using building design techniques, so that the system constituents not only generate power, but are also a part of the building’s shell. If the photovoltaic panel is integrated with a sun shield, a power benefit could be obtained and both solar irradiation and the cooling load could be reduced. This study aimed to use CFD technology for analysis of building surface thermal control and flow field simulation, and further discuss the effects of the relative position of the sun and atmospheric wind flow field on the distribution of building surface temperatures and flow fields at different hours and in different seasons. Understanding the sun's position and other climatic conditions accurately is helpful for locating solar panels and solar collectors on buildings.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, Dian Hua, Xin Guan, and Song Yuan Zhang. "Experimental Study on PV Solar Wall." Advanced Materials Research 250-253 (May 2011): 3134–38. http://dx.doi.org/10.4028/www.scientific.net/amr.250-253.3134.

Повний текст джерела
Анотація:
The solar energy photovoltaic thermal system is a method to achieve grade utilization of solar energy to improve the comprehensive utilization efficiency of energy. A kind of solar energy photovoltaic air conditioning wall is put forward in this paper, adopting the air flow channel with a small hole on the surface and the negative pressure inside, which can provide electricity and hot air heating simultaneously. The comparison test of the solar photovoltaic cells components (PV) and the solar photovoltaic air conditioning wall (PV/T) shows, under the condition that the radiation intensity reaches above 700W/m2,and the ambient temperature exceeds 25°C, the temperature of PV/T components is slightly higher than PV components, so the power generating efficiency decreases slightly, with the average generating efficiency 12.51%, while the efficiency of the PV is 12.96%.each square meter of the solar energy photovoltaic air conditioning wall can provide the building with 40 m3of fresh air per hour, with 20°C higher than outdoor, so the average photo-thermal efficiency is 39%.If the photovoltaic air conditioning wall is installed on outside surface of the building envelope, or replace it, to built the building integrated photovoltaic solar thermal system, the building energy consumption would greatly reduce.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhao, Guomin, Min Li, Lv Jian, Zhicheng He, Jin Shuang, Sun Yuping, Qingsong Zhang, and Liu Zhongxian. "Analysis of Fire Risk Associated with Photovoltaic Power Generation System." Advances in Civil Engineering 2018 (2018): 1–7. http://dx.doi.org/10.1155/2018/2623741.

Повний текст джерела
Анотація:
Because of increasing energy consumption and severe air pollution in China, solar photovoltaic power generation plants are being deployed rapidly. Owing to various factors such as technology, construction, and imperfection of construction standards, solar photovoltaic systems have certain fire risks. This paper focuses on the fire risks of building-integrated solar photovoltaic buildings, as well as temperature and heat flow density near a photovoltaic system in a fire. Based on FDS simulation results, the influence of different building fires on photovoltaic systems is analysed. It is found that the influence of fire on photovoltaic systems installed on a building with a flat roof is stronger than that on a system installed on a building with a sloping roof; the influence of fire on a photovoltaic system installed on a building with external wall thermal insulation is stronger than that on a system installed on a building without such insulation; and in the presence of a skylight, a photovoltaic system installed on a building with a sloping roof is more dangerous.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pokorny, Nikola, and Tomas Matuska. "Performance analysis of glazed PVT collectors for multifamily building." E3S Web of Conferences 172 (2020): 12003. http://dx.doi.org/10.1051/e3sconf/202017212003.

Повний текст джерела
Анотація:
The paper deals with performance analysis of potential application of glazed photovoltaic-thermal collector for domestic hot water preparation for multifamily building in European climatic conditions. Two different solutions are studied, glazed photovoltaic-thermal collectors integrated in the building envelope and glazed photovoltaic-thermal collectors fixed on the roof of the building. Moreover, the paper presents a comparison with conventional side by side installation of solar thermal collectors and photovoltaic panels to show the benefit of photovoltaic-thermal collectors. Simulation analysis has been done in TRNSYS with use of developed and validated mathematical model of glazed photovoltaic-thermal collector.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bandaru, Sree Harsha, Victor Becerra, Sourav Khanna, Jovana Radulovic, David Hutchinson, and Rinat Khusainov. "A Review of Photovoltaic Thermal (PVT) Technology for Residential Applications: Performance Indicators, Progress, and Opportunities." Energies 14, no. 13 (June 26, 2021): 3853. http://dx.doi.org/10.3390/en14133853.

Повний текст джерела
Анотація:
Solar energy has been one of the accessible and affordable renewable energy technologies for the last few decades. Photovoltaics and solar thermal collectors are mature technologies to harness solar energy. However, the efficiency of photovoltaics decays at increased operating temperatures, and solar thermal collectors suffer from low exergy. Furthermore, along with several financial, structural, technical and socio-cultural barriers, the limited shadow-free space on building rooftops has significantly affected the adoption of solar energy. Thus, Photovoltaic Thermal (PVT) collectors that combine the advantages of photovoltaic cells and solar thermal collector into a single system have been developed. This study gives an extensive review of different PVT systems for residential applications, their performance indicators, progress, limitations and research opportunities. The literature review indicated that PVT systems used air, water, bi-fluids, nanofluids, refrigerants and phase-change material as the cooling medium and are sometimes integrated with heat pumps and seasonal energy storage. The overall efficiency of a PVT system reached up to 81% depending upon the system design and environmental conditions, and there is generally a trade-off between thermal and electrical efficiency. The review also highlights future research prospects in areas such as materials for PVT collector design, long-term reliability experiments, multi-objective design optimisation, techno-exergo-economics and photovoltaic recycling.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cinar, Seda, Michal Krajčík, and Muslum Arici. "Performance Evaluation of a Building Integrated Photovoltaic/Thermal System Combined with Air-to-Water Heat Pump." Applied Mechanics and Materials 887 (January 2019): 181–88. http://dx.doi.org/10.4028/www.scientific.net/amm.887.181.

Повний текст джерела
Анотація:
This study presents a research of envelope systems entailing elements that use and control incident solar energy to deliver renewable thermal or electric energy to the systems providing heating, ventilation and air conditioning to buildings. A simulation model of an office building was developed in the simulation program TRNSYS. A photovoltaic / thermal system was integrated into the building´s southern facade to generate electricity and to increase the temperature of the air flowing through the channel behind the photovoltaic modules. Subsequently, the electricity generated was used to power the heat pump and the warm air was used as the primary fluid for the heat pump to generate thermal energy for space heating in the winter. The useful energy gain and power production increased with increasing length of the photovoltaic modules and the air flow rate through the channel in the periods, when there was enough solar radiation impinging on the facade. In January to April, the benefits of the photovoltaic / thermal system were minor because of the low levels of low solar radiation and insufficient efficiency of the system components.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Conti, Schito, and Testi. "Cost-Benefit Analysis of Hybrid Photovoltaic/Thermal Collectors in a Nearly Zero-Energy Building." Energies 12, no. 8 (April 25, 2019): 1582. http://dx.doi.org/10.3390/en12081582.

Повний текст джерела
Анотація:
This paper analyzes the use of hybrid photovoltaic/thermal (PVT) collectors in nearly zero-energy buildings (NZEBs). We present a design methodology based on the dynamic simulation of the whole energy system, which includes the building energy demand, a reversible heat pump as generator, the thermal storage, the power exchange with the grid, and both thermal and electrical energy production by solar collectors. An exhaustive search of the best equipment sizing and design is performed to minimize both the total costs and the non-renewable primary energy consumption over the system lifetime. The results show that photovoltaic/thermal technology reduces the non-renewable primary energy consumption below the nearly zero-energy threshold value, assumed as 15 kWh/(m2·yr), also reducing the total costs with respect to a non-solar solution (up to 8%). As expected, several possible optimal designs exist, with an opposite trend between energy savings and total costs. In all these optimal configurations, we figure out that photovoltaic/thermal technology favors the production of electrical energy with respect to the thermal one, which mainly occurs during the summer to meet the domestic hot water requirements and lower the temperature of the collectors. Finally, we show that, for a given solar area, photovoltaic/thermal technology leads to a higher reduction of the non-renewable primary energy and to a higher production of solar thermal energy with respect to a traditional separate production employing photovoltaic (PV) modules and solar thermal (ST) collectors.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chow, T. T., G. N. Tiwari, and C. Menezo. "Hybrid Solar: A Review on Photovoltaic and Thermal Power Integration." International Journal of Photoenergy 2012 (2012): 1–17. http://dx.doi.org/10.1155/2012/307287.

Повний текст джерела
Анотація:
The market of solar thermal and photovoltaic electricity generation is growing rapidly. New ideas on hybrid solar technology evolve for a wide range of applications, such as in buildings, processing plants, and agriculture. In the building sector in particular, the limited building space for the accommodation of solar devices has driven a demand on the use of hybrid solar technology for the multigeneration of active power and/or passive solar devices. The importance is escalating with the worldwide trend on the development of low-carbon/zero-energy buildings. Hybrid photovoltaic/thermal (PVT) collector systems had been studied theoretically, numerically, and experimentally in depth in the past decades. Together with alternative means, a range of innovative products and systems has been put forward. The final success of the integrative technologies relies on the coexistence of robust product design/construction and reliable system operation/maintenance in the long run to satisfy the user needs. This paper gives a broad review on the published academic works, with an emphasis placed on the research and development activities in the last decade.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pokorny, Nikola, and Tomáš Matuška. "Glazed Photovoltaic-thermal (PVT) Collectors for Domestic Hot Water Preparation in Multifamily Building." Sustainability 12, no. 15 (July 28, 2020): 6071. http://dx.doi.org/10.3390/su12156071.

Повний текст джерела
Анотація:
Photovoltaic–thermal collector generates electrical and thermal energy simultaneously from the same area. In this paper performance analysis of a potentially very promising application of a glazed photovoltaic–thermal collector for domestic hot water preparation in multifamily building is presented. Solar system in multifamily building can be installed on the roof or integrated in the façade of the building. The aim of this simulation study is to show difference of thermal and electrical performance between façade and roof installation of a glazed photovoltaic-thermal collectors at three European locations. Subsequently, this study shows benefit of photovoltaic-thermal collector installation in comparison with side-by-side installation of conventional system. For the purpose of simulation study, mathematical model of glazed photovoltaic-thermal collector has been experimentally validated and implemented into TRNSYS. A solar domestic hot water system with photovoltaic–thermal collectors generates more electrical and thermal energy in comparison with a conventional system across the whole of Europe for a particular installation in a multifamily building. The specific thermal yield of the photovoltaic–thermal system ranges between 352 and 582 kWh/m2. The photovoltaic–thermal system electric yield ranges between 63 and 149 kWh/m2. The increase in electricity production by the photovoltaic–thermal system varies from 19% to 32% in comparison with a conventional side-by-side system. The increase in thermal yield differs between the façade and roof alternatives. Photovoltaic-thermal system installation on the roof has higher thermal yield than conventional system and the increase of thermal yield ranges from 37% to 53%. The increase in thermal yield of façade photovoltaic-thermal system is significantly higher in comparison with a conventional system and ranges from 71% to 81%.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Novelli, N. E., J. Shultz, M. Aly Etman, K. Phillips, M. M. Derby, P. R. H. S. Stark, M. Jensen, and A. H. Dyson. "System-Scale Modeling of a Building-Integrated, Transparent Concentrating Photovoltaic and Thermal Collector." Journal of Physics: Conference Series 2069, no. 1 (November 1, 2021): 012117. http://dx.doi.org/10.1088/1742-6596/2069/1/012117.

Повний текст джерела
Анотація:
Abstract The buildings sector is a principal contributor to global greenhouse gas emissions, but consistently falls short of targets for harnessing on-site energy resources towards sustainable operation. Emerging integrated solar technologies could transform buildings and urban settings into resilient, self-sufficient, and healthy environments. But if effects of these technologies are not understood in the multiple contexts in which they operate (human-scale, building-scale, district-scale), their potential is difficult to project. To explore building-scale metabolization of solar energy, a previously-developed analytical model of a Building Envelope-Integrated, Transparent, Concentrating Photovoltaic and Thermal collector (BITCoPT) was run to project electrical and thermal energy and exergy production (cogeneration) in a range of orientations and operating temperatures. Simulated annual cogeneration efficiency was noted at 27% (exergy) at an operating temperature of 55°C, and up to 55% (energy) at 25°C. Exergetic efficiency remained nearly constant as operating temperatures increased through 75°C, indicating the thermal energy collected would be some heat-engine-based applications. Although the scope of this study excludes broader architectural benefits of daylighting (lighting load reduction), and reduction of solar gains (cooling loads), these results suggest BITCoPT merits further investigation for on-site net-zero and energy-positive commercial building design, and might contribute to expanding net-zero and energy-positive architecture opportunities.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Photovoltaic thermal- Solar building"

1

Riverola, Lacasta Alberto. "Dielectric solar concentrators for building integration of hybrid photovoltaic-thermal systems." Doctoral thesis, Universitat de Lleida, 2018. http://hdl.handle.net/10803/663116.

Повний текст джерела
Анотація:
L'objectiu de la present tesi és desenvolupar, optimitzar, fabricar i caracteritzar experimentalment un sistema solar de baixa concentració, fotovoltaic i tèrmic, per a integració arquitectònica en façanes on les cèl·lules estan submergides en un líquid dielèctric. L'objectiu està alineat cap al compliment de la directiva sobre eficiència energètica en edificis establerta per la Comissió Europea. Els sistemes solars fotovoltaics i tèrmics per integració en edificis permeten la cogeneració d'electricitat i calor al mateix edifici amb unes eficiències globals al voltant del 70% i utilitzen una menor superfície comparat amb un col·lector tèrmic i un mòdul fotovoltaic independents. D'altra banda, els sistemes de baixa concentració permeten reduir costos utilitzant cèl·lules solars estàndards, amb una àrea reduïda i seguiment en un sol eix. A més, la immersió de les cèl·lules en líquids dielèctrics comporta uns beneficis agregats com ara la reducció de les pèrdues de Fresnel i un millor control de la temperatura. La necessitat d'estudiar i desenvolupar aquests sistemes per a la seva integració en edificis ve donada per les qualitats prèviament descrites i per l’estudi de l'estat de l'art realitzat. El disseny proposat està compost d'un xassís cilíndric i una cavitat interna per on circula el líquid dielèctric (aigua desionitzada o alcohol isopropílic) en el qual hi ha les cèl·lules submergides. Cada mòdul segueix l'altura solar rotant i està dissenyat per ser col·locat en files formant una matriu. L'aparença del conjunt és similar a la de les lames que es troben normalment en les finestres. S’ha implementat un moviment secundari que controla la distància vertical entre mòduls per evitar l’ombra entre ells mateixos i controla la il·luminació interior. Per dur a terme un desenvolupament òptim, s'ha modelat la distribució espectral de la llum solar incident a la qual es veuen exposades les cèl·lules solars en condicions reals. S’ha dut a terme un anàlisis exhaustiu dels líquids dielèctrics susceptibles de complir amb els requeriments per a la present aplicació. S'ha modelat la absortivitat / emissivitat de les cèl·lules de silici comercials en un rang espectral que va des del ultraviolat fins a l'infraroig mitjà i s'ha validat experimentalment. A partir d'aquí, s’ha desenvolupat un algoritme de traçat de raigs que computa l'energia per optimitzar el disseny òptic del concentrador per posteriorment fabricar-lo i analitzar-lo mitjançant una simulació CFD. Fet que ens permet caracteritzar el sistema tèrmicament i òpticament. Finalment, s'ha realitzat una simulació energètica amb el sistema instal·lat a les finestres d'una casa estàndard per tal d'avaluar quines parts de les demandes energètiques de l'edifici és capaç de satisfer. Aquesta simulació s’ha dut a terme en tres localitzacions diferents. El rendiment del sistema ha estat estudiat en llocs caracteritzats per hiverns suaus i altures solars no molt elevades, obtenint resultats satisfactoris cobrint una gran part de la demanda de climatització, d'aigua calenta sanitària i elèctrica.
El objetivo de la presente tesis es desarrollar, optimizar, fabricar y caracterizar experimentalmente un sistema solar de baja concentración, fotovoltaico y térmico, para integración arquitectónica en fachadas donde las células están sumergidas en un líquido dieléctrico. Este objetivo está perfectamente alineado con el cumplimiento de la directiva sobre eficiencia energética en edificios establecida por la Comisión Europea. Los sistemas solares fotovoltaicos y térmicos para integración en edificios atesoran la cogeneración de electricidad y calor en el mismo edificio con unas eficiencias globales alrededor del 70% y utilizando una menor superficie que si incorporamos un colector térmico y un módulo fotovoltaico separados. Por otra parte, los sistemas de baja concentración permiten reducir costes utilizando células solares estándar, con un área reducida y seguimiento en un solo eje. Además, la inmersión de las células en líquidos dieléctricos conlleva unos beneficios agregados como son la reducción de las pérdidas de Fresnel y un mejor control de la temperatura. Del estado del arte realizado y las cualidades previamente descritas, se desprende la necesidad de estudiar y desarrollar estos sistemas para su integración en edificios. El diseño propuesto está compuesto de un chasis cilíndrico y una cavidad interna por donde circula el líquido dieléctrico (agua desionizada o alcohol isopropílico) en el cual están las células sumergidas. Cada módulo sigue la altura solar rotando y está diseñado para ser colocado en filas formando una matriz. De este modo, la apariencia del conjunto es similar a la de las lamas que se encuentran comúnmente en ventanas. Además, un movimiento secundario que regula la distancia vertical entre los módulos para evitar sombreo entre ellos mismos y controlar la iluminación interior, ha sido implementado. Para llevar a cabo un desarrollo óptimo, se ha modelado la distribución espectral de la luz solar incidente a la cual se ven expuestas las células solares en condiciones reales. Se ha realizado un análisis exhaustivo de los líquidos dieléctricos susceptibles de cumplir con los requerimientos para la presente aplicación. Se ha modelado la absortividad/emisividad de las células de silicio comerciales en un rango espectral que va desde el ultravioleta hasta el infrarrojo medio y se ha validado experimentalmente. A partir de aquí, se ha desarrollado un algoritmo de trazado de rayos para optimizar el diseño óptico del concentrador con el fin de posteriormente fabricarlo y analizarlo mediante una simulación CFD. Hecho que nos permite caracterizarlo ópticamente y térmicamente. Finalmente, se ha realizado una simulación energética con el sistema instalado sobre las ventanas de una casa estándar para evaluar que parte de las demandas energéticas del edificio es capaz de satisfacer. Esta simulación se ha realizado en tres localizaciones distintas. El rendimiento del sistema ha sido estudiado en lugares caracterizados por inviernos suaves y alturas solares no muy elevadas, cubriéndose una gran parte de las demandas de agua caliente sanitaria, eléctricas y de climatización.
The goal of this thesis is to develop, optimize, fabricate and experimentally test a low-concentrating photovoltaic thermal system (CPVT) for building façade integration where the cells are directly immersed in a dielectric liquid. The objective sought is perfectly aligned with the Energy Performance Building Directive established by the European Commission in terms of energy efficiency. Building-integrated PVT systems present an on-site cogeneration of electricity and heat with global efficiencies around 70% and lower space utilization compared to a separate thermal collector and PV module. On the other hand, low-concentrating systems improve the cost effectiveness by using standard cells, single axis-tracking and reduced cell areas. In addition, direct-immersion of solar cells in dielectric liquids brings associated benefits such as a reduction of Fresnel losses and a better temperature control. From the state-of-the-art performed and the previous facts, the need for further developing and studying these systems for building integration purposes was found. The proposed design is composed by a cylindrical chassis and an inner cavity filled with the circulating dielectric liquid (deionized water or isopropyl alcohol) in which the cells are immersed. The module tracks the solar height by rotation and it is designed to be placed in rows as an array so that the appearance is akin to ordinary window blinds. A secondary movement has been implemented to control the vertical distance between modules and to avoid shading between them while provide lighting control. For an appropriate development, the spectral distribution of the incident solar irradiance to which solar cells are exposed under real working conditions has been modelled. An in-depth analysis of suitable dielectric liquid candidates based on the required properties for this application has been performed. The absorptivity/emissivity of standard silicon solar cells has been modeled from the ultraviolet to the mid-infrared and validated by an experimental measurement. Then, a full ray-tracing algorithm was developed to optimize the concentrator optical design and the optimum collector was fabricated and analyzed by a CFD simulation to thermally characterize the system. Finally, an energetic simulation with the concentrators superimposed in front of the windows in a standard house aiming to partially cover the building demands has been performed for three locations. The system performance has been studied for locations with mild winters and latitudes not achieving very high solar heights with satisfactory solar fractions regarding domestic hot water, electrical and space heating and cooling demands.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Aldubyan, Mohammad Hasan. "Thermo-Economic Study of Hybrid Photovoltaic-Thermal (PVT) Solar Collectors Combined with Borehole Thermal Energy Storage Systems." University of Dayton / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1493243575479443.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Saadon, Syamimi. "Modeling and simulation of a ventilated building integrated photovoltaic/thermal (BIPV/T) envelope." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0049.

Повний текст джерела
Анотація:
La demande d'énergie consommée par les habitants a connu une croissance significative au cours des 30 dernières années. Par conséquent, des actions sont menées en vue de développement des énergies renouvelables et en particulier de l'énergie solaire. De nombreuses solutions technologiques ont ensuite été proposées, telles que les capteurs solaires PV/T dont l'objectif est d'améliorer la performance des panneaux PV en récupérant l’énergie thermique qu’ils dissipent à l’aide d’un fluide caloporteur. Les recherches en vue de l'amélioration des productivités thermiques et électriques de ces composants ont conduit à l'intégration progressive à l’enveloppe des bâtiments afin d'améliorer leur surface de captation d’énergie solaire. Face à la problématique énergétique, les solutions envisagées dans le domaine du bâtiment s’orientent sur un mix énergétique favorisant la production locale ainsi que l’autoconsommation. Concernant l’électricité, les systèmes photovoltaïques intégrés au bâtiment (BIPV) représentent l’une des rares technologies capables de produire de l’électricité localement et sans émettre de gaz à effet de serre. Cependant, le niveau de température auquel fonctionnent ces composants et en particulier les composants cristallins, influence sensiblement leur efficacité ainsi que leur durée de vie. Ceci est donc d’autant plus vrai en configuration d’intégration. Ces deux constats mettent en lumière l’importance du refroidissement passif par convection naturelle de ces modules. Ce travail porte sur la simulation numérique d'une façade PV partiellement transparente et ventilée, conçu pour le rafraichissement en été (par convection naturelle) et pour la récupération de chaleur en hiver (par ventilation mécanique). Pour les deux configurations, l'air dans la cavité est chauffé par la transmission du rayonnement solaire à travers des surfaces vitrées, et par les échanges convectif et radiatif. Le système est simulé à l'aide d'un modèle multi-physique réduit adapté à une grande échelle dans des conditions réelles d'exploitation et développé pour l'environnement logiciel TRNSYS. La validation du modèle est ensuite présentée en utilisant des données expérimentales du projet RESSOURCES (ANR-PREBAT 2007). Cette étape a conduit, dans le troisième chapitre du calcul des besoins de chauffage et de refroidissement d'un bâtiment et l'évaluation de l'impact des variations climatiques sur les performances du système. Les résultats ont permis enfin d'effectuer une analyse énergétique et exergo-économique
The demand of energy consumed by human kind has been growing significantly over the past 30 years. Therefore, various actions are taken for the development of renewable energy and in particular solar energy. Many technological solutions have then been proposed, such as solar PV/T collectors whose objective is to improve the PV panels performance by recovering the heat lost with a heat removal fluid. The research for the improvement of the thermal and electrical productivities of these components has led to the gradual integration of the solar components into building in order to improve their absorbing area. Among technologies capable to produce electricity locally without con-tributing to greenhouse gas (GHG) releases is building integrated PV systems (BIPV). However, when exposed to intense solar radiation, the temperature of PV modules increases significantly, leading to a reduction in efficiency so that only about 14% of the incident radiation is converted into electrical energy. The high temperature also decreases the life of the modules, thereby making passive cooling of the PV components through natural convection a desirable and cost-effective means of overcoming both difficulties. A numerical model of heat transfer and fluid flow characteristics of natural convection of air is therefore undertaken so as to provide reliable information for the design of BIPV. A simplified numerical model is used to model the PVT collector so as to gain an understanding of the complex processes involved in cooling of integrated photovoltaic arrays in double-skin building surfaces. This work addresses the numerical simulation of a semi-transparent, ventilated PV façade designed for cooling in summer (by natural convection) and for heat recovery in winter (by mechanical ventilation). For both configurations, air in the cavity between the two building skins (photovoltaic façade and the primary building wall) is heated by transmission through transparent glazed sections, and by convective and radiative exchange. The system is simulated with the aid of a reduced-order multi-physics model adapted to a full scale arrangement operating under real conditions and developed for the TRNSYS software environment. Validation of the model and the subsequent simulation of a building-coupled system are then presented, which were undertaken using experimental data from the RESSOURCES project (ANR-PREBAT 2007). This step led, in the third chapter to the calculation of the heating and cooling needs of a simulated building and the investigation of impact of climatic variations on the system performance. The results have permitted finally to perform the exergy and exergoeconomic analysis
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lai, Chi-Ming. "Development and thermal performance assessment of the opaque PV façades for subtropical climate region." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/204562.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ramadan, Khaled Mohamed. "Modelling and Experimental Characterization of Photovoltaic/Thermal Systems for Cooling and Heating of Buildings in different climate conditions." Doctoral thesis, Universitat Rovira i Virgili, 2021. http://hdl.handle.net/10803/670914.

Повний текст джерела
Анотація:
La integración de sistemas de fotovoltaicos/térmicos (PV/T) y un eficiente aire acondicionado en los edificios permite el suministro de calefacción, refrigeración y electricidad con una reducción de las emisiones de efecto invernadero. Las configuraciones de integración de: a) sistemas fotovoltaicos (PV) con enfriadores eléctricos refrigerados por aire y sistemas de bombas de calor aire-agua; b) sistemas fotovoltaicos/térmicos (PV/T) basados en aire con sistemas de bomba de calor aire-agua; y c) Los sistemas fotovoltaicos/térmicos de baja concentración (LCPV/T) con enfriadores de compresión y absorción tienen un gran potencial para aumentar la proporción de electricidad fotovoltaica in situ. La flexibilidad de incorporar energía LCPV/T para la red bidireccional de baja temperatura en distritos urbanos reduce las pérdidas térmicas y proporciona edificios de productores y consumidores (prosumidores). En comparación con la configuración típica del enfriador de compresión integrado fotovoltaico, la configuración propuesta de LCPV/T junto con los enfriadores de compresión y absorción reduce el período de recuperación en un 10-40% en el edificio de cajas en El Cairo. Sustituir la conexión a la red de agua del campus por el uso de bomba de calor reversible reduce en un 15-30% el coste operativo de refrigeración y calefacción en el edificio de cajas en España.
The integration of photovoltaic/thermal (PV/T) and efficient air conditioning systems into buildings allows the provision of heating, cooling and electricity with a reduction in greenhouse emissions. The integration configurations of: a) photovoltaic (PV) systems with air-cooled electric chillers and air-to-water heat pump (HP) systems; b) air-based PV/T systems with air-to-water HP systems; c) Low concentrated photovoltaic/thermal systems (LCPV/T) with compression and absorption chillers; and d) LCPV/T coupled with water-to-water HP have a great potential in boosting the share of onsite PV-electricity. The flexibility of incorporating LCPV/T energy for the bidirectional low temperature network in urban districts reduces thermal losses and provides producer and consumer (prosumer) buildings. In comparison to the typical configuration of PV integrated compression chiller, the proposed configuration of LCPV/T coupled with the compression and absorption chillers reduces the payback period by 10-40% in the case building in Cairo. Substituting the connection to the campus water network with the use of reversible
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Brogren, Maria. "Optical Efficiency of Low-Concentrating Solar Energy Systems with Parabolic Reflectors." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3988.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

SILENZI, FEDERICO. "DYNAMIC THERMAL ANALYSIS OF NEARLY ZERO EMISSION BUILDINGS WITH GEOTHERMAL AND SOLAR PLANTS." Doctoral thesis, Università degli studi di Genova, 2020. http://hdl.handle.net/11567/1002027.

Повний текст джерела
Анотація:
At the present day, the need for the reduction of energy consumption is one of the main issues, from the technical, economic and environmental point of view. Buildings are responsible for more than 40% of energy utilization in European countries in 2017 [1]. Thus, actions that increase building energy efficiency are mandatory. Some interventions on the envelope and the internal operating conditions are addressed to the reduction of the heating and cooling loads of the building (i.e. the energy needs). Others pertain directly to the plants that must be properly selected and sized considering, if possible, also the use of renewable energies. In this framework, the present study is devoted to the analysis of energy-efficient buildings, with features aimed to reduce the loads and equipped with efficient plant solutions including innovative ground coupled water-to-water heat pumps and high efficiency air to air heat pump with energy recovery. The first part of the study is devoted to the ground heat exchangers and in particular to the modeling of energy geopiles in which the geothermal heat exchangers are integrated into the foundations of the building. To correctly size a ground heat exchanger (HE) field, in terms of total length, the number of HE and spacing, the ground response is needed and is provided in terms of g–function. A new semi-analytical method is proposed, based on the spatial superposition of a basic analytical solution, namely the single point source solution. This method allows generating ground response function (g-functions) for shapes of the heat exchanger different from classical linear one, as for the case of helix. The method has been validated by comparison with literature analytical solutions and with FEM simulations with Comsol Multiphysics. The second part of the research is devoted to developing a comprehensive model for dynamical energy simulations of a Nearly-Zero-Emission-Building. The model, developed with three different software (Sketch-Up, Openstudio and Energy Plus), represents the Smart Energy Building (SEB) located in the Savona Campus of the University of Genoa. The SEB is a very innovative building for both the envelope (ventilated facades) and the energy systems (i.e. geothermal heat pump and high efficiency air-to-air heat pump with energy recovery). Moreover, it has a complete monitoring system with numerous sensors that provide in real-time numerous thermal and electrical data (temperature, mass flow rates, electrical power, current, etc). All the detailed features of the building have been analyzed: the geometry, the materials, and the internal operating conditions. The climatic conditions of the site where the building is located are considered through a proper weather file. That information allows evaluating, firstly, the heating and cooling loads, which means the energy needs of the building during winter and summer. Then, the thermal plants have been introduced into the model, namely the ground coupled water-to-water heat pump and the air handler associated to a high efficiency air-to-air heat pump with energy recovery. For both the heat pumps, the performance (COP and EER) depends on the load and source-side fluid temperatures. This feature has been carefully implemented in the Energyplus model. The main results from the simulations are zone temperatures and primary energy consumption from the heating and cooling plants. Finally, the PV modules located on the roof of the SEB have been included in the model. The PV field has been analyzed considering electrical power production, cell temperature and solar irradiance received. The SEB is included in the complex and complete monitoring system of the Smart Polygeneration Microgrid of the Savona Campus The validation process of the model with real measurements from the SEB monitoring system would represent an important and original contribution of this study. Unfortunately, a complete analysis is not possible at the moment due to the unavailability of data series about the ventilation system. However, a preliminary comparison between model and measured data has been realized for the electrical production from the PV modules of the roof of the building. In particular, the EnergyPlus model has been updated by inserting a properly modified weather file with the measured values of outdoor air temperature and solar irradiance (global horizontal value). The calculation is done for two sample months (i.e. January and June 2018). The comparison shows a quite good agreement between simulated data trends and measured values, with a discrepancy at peak values. It is not clear if this disagreement is imputable to poor simulation parameter choice or errors in measures acquisition. Future work will be aimed towards completing the validation of the model using the huge amount of data from the monitoring system. Moreover, the model will be used to study the SEB thermal flexibility to different control strategies.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Böhme, Florén Simon. "Solel och solvärme ur LCC-perspektiv för ett passiv-flerbostadshus." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-162430.

Повний текст джерела
Анотація:
This master’s degree project concerns the combination of a multi dwelling passive house with solar energy for the generation of electricity and domestic hot water (DHW). Different alternatives with either solar thermal systems or photovoltaic (PV) systems are compared with two reference alternatives producing DHW from electricity or district heating. The economical comparison uses a life cycle cost (LCC) perspective based on the present value of expenditures for investment, energy and annual operating and maintenance. The energy yields from the solar energy systems were calculated by hand and with simulation software. Calculation and dimensioning of PV systems were carried out with a software called PVSYST. Solar thermal systems were calculated by hand and with the software Winsun Villa Education. Both softwares use hourly weather data for the calculations. The LCCs are lower for the two reference alternatives than for the solar energy alternatives. The reference alternative with district heating generates the lowest LCC. The alternatives with solar thermal energy replace more energy and have significantly lower LCCs than the PV alternatives. The study also shows the importance of using cheap and environmentally friendly backup energy for producing DHW. When aiming for a quantitative energy use target, the DHW-circulation losses ought to be taken into account as these can be extensive.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hrazdira, David. "Energetický audit." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-372193.

Повний текст джерела
Анотація:
The theme of this master's thesis is the elaborating of an energy audit according to the valid legislation in the Czech Republic a five-storey apartment building. The master's thesis consists of three main parts. Theoretical, Computional and Energy Audit. The theoretical part focuses on the theme of solar thermal collectors. In the calculation part, the energy consumption of the assessed object is analyzed in both the initial and the new state. The energy audit is drawn up in accordance the Decree number 480/2012 Sb. in the current version.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Abu, Qadourah Jenan [Verfasser], Christoph [Akademischer Betreuer] Nytsch-Geusen, Christoph [Gutachter] Nytsch-Geusen, and Christoph [Gutachter] Gengnagel. "Architectural integration of photovoltaic and solar thermal technologies in multi-family residential buildings in the Mediterranean area / Jenan Abu Qadourah ; Gutachter: Christoph Nytsch-Geusen, Christoph Gengnagel ; Betreuer: Christoph Nytsch-Geusen." Berlin : Universität der Künste Berlin, 2020. http://d-nb.info/1215340222/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Photovoltaic thermal- Solar building"

1

Henry, Tom. The solar photovoltaic workbook. [U.S.?]: Henry Publications, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Balfour, John. Introduction to photovoltaic installations. Burlington, MA: Jones & Bartlett Learning, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Co, Business Communications, ed. Solar thermal and photovoltaics: World growth markets. Norwalk, CT: Business Communications Co., 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Robert, Moran. Solar thermal and photovoltaics: World growth markets. Norwalk, CT: Business Communications Co., 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mooney, J. Michael. Just add sunshine: Solar electricity will set you free. Cane Hill, AR: ARC Press of Cane Hill, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

S, Mehos Mark, and National Renewable Energy Laboratory (U.S.), eds. Enabling greater penetration of solar power via the use of CSP with thermal energy storage. Golden, CO: National Renewable Energy Laboratory, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Architects, Kiss Cathcart Anders, and National Renewable Energy Laboratory (U.S.), eds. Building-integrated photovoltaics: Final report. Golden, Colo: National Renewable Energy Laboratory, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

The new solar electric home: The photovoltaics how-to handbook. Ann Arbor, Mich: Aatec, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Do it yourself 12 volt solar power. 2nd ed. East Meon: Permanent Publications, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Daniek, Michel. Do it yourself 12 volt solar power. East Meon, Hampshire: Permanent Publications, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Photovoltaic thermal- Solar building"

1

Zhao, Xudong, and Xingxing Zhang. "Solar Photovoltaic/Thermal Technologies and Their Application in Building Retrofitting." In Nearly Zero Energy Building Refurbishment, 615–58. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5523-2_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chieli, Giulia, and Lucia Ceccherini Nelli. "Photovoltaic and Thermal Solar Concentrator Integrated into a Dynamic Shading Device." In Sustainable Building for a Cleaner Environment, 335–45. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94595-8_28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Othman, Mohd Yusof Hj, and Faridah Hussain. "Designs of Various Hybrid Photovoltaic-Thermal (PV/T) Solar Collectors." In Photovoltaics for Sustainable Electricity and Buildings, 95–112. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39280-6_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sopian, K., P. Ooshaksaraei, S. H. Zaidi, and M. Y. Othman. "Recent Advances in Air-Based Bifacial Photovoltaic Thermal Solar Collectors." In Photovoltaics for Sustainable Electricity and Buildings, 161–76. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39280-6_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Safaei, Samaneh, Farshid Keynia, Sam Haghdady, Azim Heydari, and Mario Lamagna. "Design of CCHP System with the Help of Combined Chiller System, Solar Energy, and Gas Microturbine." In The Urban Book Series, 79–91. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-29515-7_9.

Повний текст джерела
Анотація:
AbstractThis work was conducted to design a combined cooling, heating, and power (CCHP) system with photovoltaic energy which provides simultaneous generation of electricity, heat, and cold for a high-rise office building (23 floors) in the city of Mashhad in Iran. Our strategy was to supply load electric, thermal, and refrigeration with the help of solar energy. In addition, its superiority over other systems was evaluated. Analysis and study of solar radiation and the maximum level of solar panels use, according to the architectural plan, were carried out at the project site. The analysis of shadow points, the use of inverters and electrical detectors to increase the maximum solar power, and its cost-effectiveness were carefully studied via PVSOL software. Additionally, the amount of heat, cold, and electricity consumption was accurately calculated according to international standards and utilizing HAP software. The criteria for saving on the initial cost reduction, carbon dioxide emission reduction, operating cost reduction, payback period, revenue, and the minimum life expectancy of the equipment compared to those in other methods were also evaluated. The results obtained from the designed system of simultaneous generation of electricity, heat, and refrigeration, which combines gas microturbines as the primary stimulus, a combination of absorption and compression chiller to provide refrigeration load, a boiler for auxiliary heat load, and a thermal photovoltaic system to produce both electric and thermal loads, were finally revealed. This is believed to be a cost-effective strategy for high-rise residential or commercial buildings with a geographical location like that of Mashhad. Based on the electricity sales to the grid, with the rate of increase in inflation in electricity tariffs, this design in the Mashhad project was estimated to have an annual income of 166.676 thousand dollars. Moreover, the initial capital return period in this project was calculated to be 5.19 years.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chen, YuXiang, A. K. Athienitis, K. E. Galal, and Y. Poissant. "Design and Simulation for a Solar House with Building Integrated Photovoltaic-Thermal System and Thermal Storage." In Proceedings of ISES World Congress 2007 (Vol. I – Vol. V), 327–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75997-3_55.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ceccherini Nelli, Lucia, and Alberto Reatti. "Smart Active Envelope Solutions, Integration of Photovoltaic/Thermal Solar Concentrator in the Building Façade." In Innovative Renewable Energy, 459–67. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30841-4_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gu, Yaxiu, and Xingxing Zhang. "A Solar Photovoltaic/Thermal (PV/T) Concentrator for Building Application in Sweden Using Monte Carlo Method." In Data-driven Analytics for Sustainable Buildings and Cities, 141–61. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2778-1_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hj. Othman, Mohd Yusof, Kamaruzzaman Sopian, Mohd Hafidz Ruslan, Sohif Mat, and Suhaila Abdul Hamid. "Evolution of Photovoltaic-Thermal Hybrid Solar Technology for the Tropics: A Case Study of Malaysia." In Renewable Energy and Sustainable Buildings, 401–9. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18488-9_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jarimi, Hasila, Mohd Nazari Abu Bakar, Mahmod Othman, and Mahadzir Din. "Bi-fluid Photovoltaic/Thermal PV/T Solar Collector with Three Modes of Operation: Experimental Validation of a Theoretical Model." In Mediterranean Green Buildings & Renewable Energy, 445–64. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30746-6_33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Photovoltaic thermal- Solar building"

1

Fanney, A. Hunter, Brian P. Dougherty, and Mark W. Davis. "Measured Performance of Building Integrated Photovoltaic Panels." In ASME 2001 Solar Engineering: International Solar Energy Conference (FORUM 2001: Solar Energy — The Power to Choose). American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/sed2001-138.

Повний текст джерела
Анотація:
Abstract The photovoltaic industry is experiencing rapid growth. Industry analysts project that photovoltaic sales will increase from their current $1.5 billion level to over $27 billion by 2020, representing an average growth rate of 25% [1]. To date, the vast majority of sales have been for navigational signals, call boxes, telecommunication centers, consumer products, off-grid electrification projects, and small grid-interactive residential rooftop applications. Building integrated photovoltaics, the integration of photovoltaic cells into one of more of the exterior surfaces of the building envelope, represents a small but growing photovoltaic application. In order for building owners, designers, and architects to make informed economic decisions regarding the use of building integrated photovoltaics, accurate predictive tools and performance data are needed. A building integrated photovoltaic test bed has been constructed at the National Institute of Standards and Technology to provide the performance data needed for model validation. The facility incorporates four identical pairs of building integrated photovoltaic panels constructed using single-crystalline, polycrystalline, silicon film, and amorphous silicon photovoltaic cells. One panel of each identical pair is installed with thermal insulation attached to its rear surface. The second paired panel is installed without thermal insulation. This experimental configuration yields results that quantify the effect of elevated cell temperature on the panels’ performance for different cell technologies. This paper presents the first set of experimental results from this facility. Comparisons are made between the electrical performance of the insulated and non-insulated panels for each of the four cell technologies. The monthly and overall conversion efficiencies for each cell technology are presented and the seasonal performance variations discussed. Daily efficiencies are presented for a selected month. Finally, hourly plots of the power output and panel temperatures are presented and discussed for the single-crystalline and amorphous silicon panels.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yewdall, Zeke, Peter S. Curtiss, and Jan F. Kreider. "Photovoltaic and Solar Thermal Market Penetration Analysis." In ASME Solar 2002: International Solar Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/sed2002-1052.

Повний текст джерела
Анотація:
An overview of the market potential of various solar electric technologies considers the application to both distributed generation (DG) systems and building integrated systems. The State of California is used as an example of the analysis of system performance, economic return on investment and market penetration over the next decade. California was chosen as a test case because of recent central generation and T&D shortages. In the distributed generation context, solar energy has the potential to meet a large portion of the peak demand of California. With existing tax credits, systems are cost effective in certain locations at the present time. PV can be installed relatively quickly (weeks) on existing residential and commercial buildings with no requirements for the lengthy environmental reviews and siting problems of most power plants; therefore they are the fastest source which can be deployed in most locations in California. The approach in this article uses hourly loads derived from standard simulations. Along with the California building inventory by building type, hourly solar system simulations for standard buildings from each sector (e.g., hospitals, restaurants, schools, offices) and microeconomic calculations, returns on investment for each location and each building type are found. Finally the Bass diffusion model is used to calculate the number of solar modules that will be sold each year for the next decade. Results show that much of the output of the US photovoltaic industry could be economically dispatched in California.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hwang, David J., Seungkuk Kuk, Zhen Wang, Won Mok Kim, and Jeung-hyun Jeong. "LASER-ASSISTED MANUFACTURING OF BUILDING-INTEGRATED PHOTOVOLTAIC SOLAR CELLS." In 5-6th Thermal and Fluids Engineering Conference (TFEC). Connecticut: Begellhouse, 2021. http://dx.doi.org/10.1615/tfec2021.sol.032212.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Davis, Mark W., A. Hunter Fanney, and Brian P. Dougherty. "Measured Versus Predicted Performance of Building Integrated Photovoltaics." In ASME Solar 2002: International Solar Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/sed2002-1050.

Повний текст джерела
Анотація:
The lack of predictive performance tools creates a barrier to the widespread use of building integrated photovoltaic panels. The National Institute of Standards and Technology (NIST) has created a building integrated photovoltaic (BIPV) “test bed” to capture experimental data that can be used to improve and validate previously developed computer simulation tools. Twelve months of performance data have been collected for building integrated photovoltaic panels using four different cell technologies – crystalline, polycrystalline, silicon film, and triple-junction amorphous. Two panels using each cell technology were present, one without any insulation attached to its rear surface and one with insulation having a nominal thermal resistance value of 3.5 m2·K/W attached to its rear surface. The performance data associated with these eight panels, along with meteorological data, were compared to the predictions of a photovoltaic model developed jointly by Maui Solar Software and Sandia National Laboratories (SNL), which is implemented in their IV Curve Tracer software [1]. The evaluation of the predictive performance tools was done in the interest of refining the tools to provide BIPV system designers with a reliable source for economic evaluation and system sizing.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rounis, Efstratios (Stratos) Dimitrios, Olesia Kruglov, Zisis Ioannidis, Andreas Athienitis, and Konstantions Kapsis. "Experimental Investigation of Thermal Enhancements for a Building Integrated Photovoltaic/Thermal Curtain Wall." In ISES Solar World Conference 2017 and the IEA SHC Solar Heating and Cooling Conference for Buildings and Industry 2017. Freiburg, Germany: International Solar Energy Society, 2017. http://dx.doi.org/10.18086/swc.2017.12.10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

McCabe, Joseph. "Optimization of Photovoltaic/Thermal Collectors." In ASME 2004 International Solar Energy Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/isec2004-65180.

Повний текст джерела
Анотація:
Recent designs in the Solar Decathlon have incorporated solar electric modules with heat capture. Zero Energy Buildings (ZEB) solicitations through the National Renewable Energy Laboratory (NREL) have recently awarded photovoltaic / thermal (PV/T) projects incorporating air and fluid based heat transfer mediums. This paper introduces the PV/T collector with a quick history of four different research and development projects starting with the Massachusetts Institute of Technology (MIT) in 1978. Suggestions for engineering design and performance guidelines are provided. A demonstration of a zero glazed thin film amorphous silicon photovoltaic module with air as the fluid transfer medium, captured off the backside, is presented. The paper provides suggestions on applications and appropriate environments for various PV/T collector types.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yang, Siliang, Francesco Fiorito, Alistair Sproul, and Deo Prasad. "Studies on Optimal Application of Building-Integrated Photovoltaic/Thermal Facade for Commercial Buildings in Australia." In ISES Solar World Conference 2017 and the IEA SHC Solar Heating and Cooling Conference for Buildings and Industry 2017. Freiburg, Germany: International Solar Energy Society, 2017. http://dx.doi.org/10.18086/swc.2017.12.13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kruglov, Olesia, Efstratios Rounis, Andreas Athienitis, Bruno Lee, Ashutosh Bagchi, Hua Ge, and Theodore Stathopoulos. "Modular Rooftop Building-Integrated Photovoltaic/Thermal Systems for Low-Rise Buildings in India." In ISES EuroSun 2018 Conference – 12th International Conference on Solar Energy for Buildings and Industry. Freiburg, Germany: International Solar Energy Society, 2018. http://dx.doi.org/10.18086/eurosun2018.06.12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fumo, N., V. Bortone, and J. C. Zambrano. "Comparative Analysis of Solar Thermal Cooling and Solar Photovoltaic Cooling Systems." In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54162.

Повний текст джерела
Анотація:
The Energy Information Administration of the United States Department of Energy projects that more than 80% of the energy consumption of the U.S. by 2035 will come from fossil fuels. This projection should be the fuel to promote projects related to renewable energy in order to reduce energy consumption from fossil fuels to avoid their undesirable consequences such as carbon dioxide emissions. Since solar radiation match pretty well building cooling demands, solar cooling systems will be an important factor in the next decades to meet or exceed the green gases reduction that will be demanded by the society and regulations in order to mitigate environmental consequences such as global warming. Solar energy can be used as source of energy to produce cooling through different technologies. Solar thermal energy applies to technology such as absorption chillers and desiccant cooling, while electricity from solar photovoltaic can be used to drive vapor compression electric chillers. This study focuses on the comparison of a Solar Thermal Cooling System that uses an absorption chiller driven by solar thermal energy, and a Solar Photovoltaic Cooling System that uses a vapor compression system (electric chiller) driven by solar electricity (solar photovoltaic system). Both solar cooling systems are compared against a standard air cooled cooling system that uses electricity from the grid. The models used in the simulations to obtain the results are described in the paper along with the parameters (inputs) used. Results are presented in two figures. Each figure has one curve for the Solar Thermal Cooling System and one for the Solar Photovoltaic Cooling System. One figure allows estimation of savings calculated based the net present value of energy consumption cost. The other figure allows estimating primary energy consumption reduction and emissions reduction. Both figures presents the result per ton of refrigeration and as a function of area of solar collectors or/and area of photovoltaic modules. This approach to present the result of the simulations of the systems makes these figures quite general. This means that the results can be used to compare both solar cooling systems independently of the cooling demand (capacity of the system), as well as allow the analysis for different sizes of the solar system used to harvest the solar energy (collectors or photovoltaic modules).
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dougherty, Brian P., A. Hunter Fanney, and Mark W. Davis. "Measured Performance of Building Integrated Photovoltaic Panels: Round 2." In ASME 2004 International Solar Energy Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/isec2004-65154.

Повний текст джерела
Анотація:
Architects, building designers, and building owners presently lack sufficient resources for thoroughly evaluating the economic impact of building integrated photovoltaics (BIPV). The National Institute of Standards and Technology (NIST) is addressing this deficiency by evaluating computer models used to predict the electrical performance of BIPV components. To facilitate this evaluation, NIST is collecting long-term BIPV performance data that can be compared against predicted values. The long-term data, in addition, provides insight into the relative merits of different building integrated applications, helps to identify performance differences between cell technologies, and reveals seasonal variations. This paper adds to the slowly growing database of longterm performance data on BIPV components. Results from monitoring eight different building-integrated panels over a twelve-month period are summarized. The panels are installed vertically, face true-south, and are an integral part of the building’s shell. The eight panels comprise the second set of panels evaluated at the NIST test facility. Cell technologies evaluated as part of this second round of testing include single crystalline silicon, polycrystalline silicon, and two thin film materials: tandem-junction amorphous silicon (2-a-Si) and copper-indium-diselenide (CIS). Two 2-a-Si panels and two CIS panels were monitored. For each pair of BIPV panels, one was insulated on its backside while the backside of the second panel was open to the indoor conditioned space. The panel with the backside thermal insulation experienced higher midday operating temperatures. The higher operating temperatures caused a greater dip in maximum power voltage. The maximum power current increased slightly for the 2-a-Si panel but remained virtually unchanged for the CIS panel. Three of the remaining four test specimens were custom-made panels having the same polycrystalline solar cells but different glazings. Two different polymer materials, Tefzel and Kynar, were tested along with 6 mm-thick, low-iron float glass. The two panels having the much thinner polymer front covers consistently outperformed the panel having the glass front. When compared on an annual basis, the energy production of each polymer-front panel was 8.5% higher than the glass-front panel. Comparison of panels of the same cell technology and comparisons between panels of different cell technologies are made on daily, monthly, and annual bases. Efficiency based on coverage area, which excludes the panel’s inactive border, is used for most “between” panel comparisons. Annual coverage-area conversion efficiencies for the vertically-installed BIPV panels range from a low of 4.6% for the 2-a-Si panels to a high of 12.2% for the two polycrystalline panels having the polymer front covers. The insulated single crystalline panel only slightly outperformed the insulated CIS panel, 10.1% versus 9.7%.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Photovoltaic thermal- Solar building"

1

Baker, Nicholas, Rafaella Belmonte Monteiro, Alessia Boccalatte, Karine Bouty, Johannes Brozovsky, Cyril Caliot, Rafael Campamà Pizarro, et al. Identification of existing tools and workflows for solar neighborhood planning. Edited by Jouri, Kanters. IEA SHC Task 63, June 2022. http://dx.doi.org/10.18777/ieashc-task63-2022-0001.

Повний текст джерела
Анотація:
Planning for sustainable neighborhoods is a high priority for many cities. It is therefore important to take the right decisions during the planning phase to ensure that important aspects are considered. One of these important aspects is to consider the harvesting of solar energy in the best possible way. It is however difficult to define the best ways to exploit the incoming solar energy. Solar energy can be used by means of active solar energy production, passively by means of daylighting buildings or outside buildings on the ground for direct solar access or thermal comfort. This different usage can sometimes be conflicting (for example at a building level, in order to maximize the photovoltaic production, it may be necessary to use all the surfaces, therefore preventing the access to daylight). The access to daylight in the street is appreciated during cold days, but shading is preferred during the hotter days.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Baechler, Michael C., Kathleen A. Ruiz, Heidi E. Steward, and Pat M. Love. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems. Office of Scientific and Technical Information (OSTI), June 2007. http://dx.doi.org/10.2172/968958.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Farkas, Klaudia, and Miljana Horvat. Building Integration of Solar Thermal and Photovoltaics – Barriers, Needs and Strategies. IEA Solar Heating and Cooling Programme, May 2012. http://dx.doi.org/10.18777/ieashc-task41-2012-0001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wortman, D., Echo-Hawk, L. [authors] and Wiechman, J., S. Hayter, and D. Gwinner. Photovoltaic and solar-thermal technologies in residential building codes, tackling building code requirements to overcome the impediments to applying new technologies. Office of Scientific and Technical Information (OSTI), October 1999. http://dx.doi.org/10.2172/750931.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Baechler, M., T. Gilbride, K. Ruiz, H. Steward, and P. Love. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems. Office of Scientific and Technical Information (OSTI), June 2007. http://dx.doi.org/10.2172/909990.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Davidson, Carolyn, Pieter Gagnon, Paul Denholm, and Robert Margolis. Nationwide Analysis of U.S. Commercial Building Solar Photovoltaic (PV) Breakeven Conditions. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1225926.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kuruganti, Teja, Mohammed Olama, Jin Dong, Yaosuo Xue, Christopher Winstead, James Nutaro, Seddik Djouadi, Linquan Bai, Godfried Augenbroe, and Justin Hill. Dynamic Building Load Control to Facilitate High Penetration of Solar Photovoltaic Generation: Final Technical Report. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1819555.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Long, R. C. The design, construction, and monitoring of photovoltaic power system and solar thermal system on the Georgia Institute of Technology Aquatic Center. Volume 1. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/656880.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tywoniak, Jan, Kateřina Sojková, and Zdenko Malík. Building Physics in Living Lab. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541565072.

Повний текст джерела
Анотація:
Team from Czech Technical University in Prague participated in prestigious international contest Solar Decathlon Europe 21-22. The topic of its FIRSTLIFE project was an extension of student dormitory by adding of new floors on the building together with a retrofit of the existing part. The paper deals with the pedagogical context of this activity. Students got an extraordinary opportunity to actually implement their theoretical proposals based on calculations. They also received feedback on the extent to which detailed designs are feasible in normal construction practice. New knowledge can be applied in future better estimation of the effect of imperfections, for example in calculations of heat conduction, the effect of thermal bridges, leaks for moisture transport and air tightness. Information about future research in Living Lab is given at the end of the paper.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Brozovsky, Johannes, Odne Oksavik, and Petra Rüther. Temperature measurements in the air gap of highly insulated wood-frame walls in a Zero Emission Building. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541595903_2.

Повний текст джерела
Анотація:
Especially for wooden wall constructions, ventilated rain-screen walls have been used for many decades to prohibit moisture-induced damage. The air gap behind the façade cladding provides drainage, enhances ventilation, and thus facilitates drying of wetted façade components. The conditions in the air gap behind different cladding materials, however, are still an object of research. In the presented study, the interim findings after more than two years of ongoing measurements in the air gap behind different cladding materials of a zero-emission office building in the high-latitude city of Trondheim, Norway are presented. The results provide valuable insight into the temperature conditions in the air gap of ventilated claddings in order to determine the in-use conditions of building materials and develop improved testing schemes. The results indicate that the air and surface temperature in the air cavity of the walls is strongly influenced by the solar radiation incidence on the facades. Both the highest and lowest values were observed on the roof with 81 °C and -21.9 °C, respectively, at the back side of the building integrated photovoltaic modules, resulting in a total temperature range of almost 103 °C.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії