Добірка наукової літератури з теми "Phenomenology of quantum gravity"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Phenomenology of quantum gravity".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Phenomenology of quantum gravity":

1

Amelino-Camelia, Giovanni. "Quantum-gravity phenomenology." Physics World 16, no. 11 (November 2003): 43–47. http://dx.doi.org/10.1088/2058-7058/16/11/37.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rovelli, Carlo. "Considerations on Quantum Gravity Phenomenology." Universe 7, no. 11 (November 15, 2021): 439. http://dx.doi.org/10.3390/universe7110439.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

SUDARSKY, DANIEL. "PERSPECTIVES ON QUANTUM GRAVITY PHENOMENOLOGY." International Journal of Modern Physics D 14, no. 12 (December 2005): 2069–94. http://dx.doi.org/10.1142/s0218271805008145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The idea that quantum gravity manifestations are associated with a violation of Lorentz invariance is very strongly bounded and faces serious theoretical challenges. Other related ideas seem to be drowning in interpretational quagmires. This leads us to consider alternative lines of thought for such a phenomenological search. We discuss the underlying viewpoints and briefly mention their possible connections with other current theoretical ideas.
4

AMELINO-CAMELIA, GIOVANNI. "QUANTUM-GRAVITY PHENOMENOLOGY: STATUS AND PROSPECTS." Modern Physics Letters A 17, no. 15n17 (June 7, 2002): 899–922. http://dx.doi.org/10.1142/s0217732302007612.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Over the last few years part of the quantum-gravity community has modified its attitude toward the possibility of finding experimental contexts that provide insight on non-classical properties of spacetime. I review those quantum-gravity phenomenology proposals which were instrumental in bringing about this change of attitude, and I discuss the prospects for the short-term future of quantum-gravity phenomenology.
5

Liberati, S., and L. Maccione. "Quantum Gravity phenomenology: achievements and challenges." Journal of Physics: Conference Series 314 (September 22, 2011): 012007. http://dx.doi.org/10.1088/1742-6596/314/1/012007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sudarsky, Daniel. "A path towards quantum gravity phenomenology." Journal of Physics: Conference Series 66 (May 1, 2007): 012037. http://dx.doi.org/10.1088/1742-6596/66/1/012037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bonder, Yuri. "An algorithm for quantum gravity phenomenology." Journal of Physics: Conference Series 1030 (May 2018): 012001. http://dx.doi.org/10.1088/1742-6596/1030/1/012001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Weinfurtner, Silke, Stefano Liberati, and Matt Visser. "Analogue model for quantum gravity phenomenology." Journal of Physics A: Mathematical and General 39, no. 21 (May 10, 2006): 6807–13. http://dx.doi.org/10.1088/0305-4470/39/21/s83.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Olmo, Gonzalo J. "Palatini actions and quantum gravity phenomenology." Journal of Cosmology and Astroparticle Physics 2011, no. 10 (October 13, 2011): 018. http://dx.doi.org/10.1088/1475-7516/2011/10/018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Amelino-Camelia, Giovanni, Giacomo Rosati, and Suzana Bedić. "Phenomenology of curvature-induced quantum-gravity effects." Physics Letters B 820 (September 2021): 136595. http://dx.doi.org/10.1016/j.physletb.2021.136595.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Phenomenology of quantum gravity":

1

Morgan, Dean Robert. "Quantum gravity phenomenology and high-energy neutrinos." Thesis, University of Sheffield, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425199.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Blair, G. A. "Superstring inspired phenomenology." Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375220.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Waldron, Alison. "Quantum gravity induced decoherence and phenomenology of discrete symmetries." Thesis, King's College London (University of London), 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435195.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hersent, Kilian. "Field theories on quantum space-times : towards the phenomenology of quantum gravity." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La géométrie noncommutative est un formalisme mathématique qui exprime la structure de l’espace-temps avec des algèbres d’opérateurs. On s’attend à ce que les espace-temps noncommutatifs fassent émerger des effets de gravité quantiques, au moins dans un certain régime, notamment parce qu’ils utilisent les outils de la mécanique quantique pour décrire la géométrie. Ce manuscrit se concentre sur les aspects physiques de ces espace-temps quantiques, tout particulièrement à travers le formalisme des théories de champs et de jauge. Il est montré que les théories de champs scalaires engendrent possiblement des divergences dans l’infra-rouge et l’ultra-violet pour la fonction 2-point à une boucle. Ce phénomène s’appelle génériquement le mélange UV/IR et découle de la divergence du propagateur. L’analyse de ces divergences diffèrent du cas commutatif car l’espace des moments y est noncommutatif. D’autre part, une théorie de jauge sur κ-Minkowski, une déformation quantique de l’espace de Minkowski, est construite. Un premier calcul perturbatif produit une brisure de l’invariance de jauge, un comportement pathologique commun à d’autres espace-temps quantiques. Un modèle-jouet de causalité est aussi développé sur κ-Minkowski, dans lequel apparaît un analogue de la vitesse de lumière comme vitesse limite. La phénoménologie de la gravité quantique émergeant des espace-temps quantiques est abordée, avec les contraintes qu’elle impose. Finalement, un modèle-jouet de gravité noncommutative, utilisant κ-Minkowski pour décrire l’espace tangent, est traité. Il nécessite le concept de partition de l’unité noncommutative spécialement défini dans ce contexte
Noncommutative geometry is a mathematical framework that expresses the structure of space-time in terms of operator algebras. By using the tools of quantum mechanics to describe the geometry, noncommutative space-times are expected to give rise to quantum gravity effects, at least in some regime. This manuscript focuses on the physical aspects of these so-called quantum space-times, in particular through the formalism of field and gauge theories. Scalar field theories are shown to possibly trigger mixed divergences in the infra-red and ultra-violet for the 2-point function at one loop. This phenomenon is generically called UV/IR mixing and stems from a diverging behaviour of the propagator. The analysis of such divergences differs from the commutative case because the momentum space is now also noncommutative. From another perspective, a gauge theory on κ-Minkowski, a quantum deformation of the Minkowski space-time, is derived. A first perturbative computation is shown to break the gauge invariance, a pathological behaviour common to other quantum space-times. A causality toy model is also developed on κ-Minkowski, in which an analogue of the speed-of-light limit emerges. The phenomenology of quantum gravity arising from quantum space-times is discussed, together with the actual constraints it imposes. Finally, a toy model for noncommutative gravity is tackled, using the former κ-Minkowski space-time to describe the tangent space. It necessitates the notion of noncommutative partition of unity specifically defined there
5

Sheppeard, Marni Dee. "Gluon Phenomenology and a Linear Topos." Thesis, University of Canterbury. Physics and Astronomy, 2007. http://hdl.handle.net/10092/1436.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In thinking about quantum causality one would like to approach rigorous QFT from outside the perspective of QFT, which one expects to recover only in a specific physical domain of quantum gravity. This thesis considers issues in causality using Category Theory, and their application to field theoretic observables. It appears that an abstract categorical Machian principle of duality for a ribbon graph calculus has the potential to incorporate the recent calculation of particle rest masses by Brannen, as well as the Bilson-Thompson characterisation of the particles of the Standard Model. This thesis shows how Veneziano n point functions may be recovered in such a framework, using cohomological techniques inspired by twistor theory and recent MHV techniques. This distinct approach fits into a rich framework of higher operads, leaving room for a generalisation to other physical amplitudes. The utility of operads raises the question of a categorical description for the underlying physical logic. We need to consider quantum analogues of a topos. Grothendieck's concept of a topos is a genuine extension of the notion of a space that incorporates a logic internal to itself. Conventional quantum logic has yet to be put into a form of equal utility, although its logic has been formulated in category theoretic terms. Axioms for a quantum topos are given in this thesis, in terms of braided monoidal categories. The associated logic is analysed and, in particular, elements of linear vector space logic are shown to be recovered. The usefulness of doing so for ordinary quantum computation was made apparent recently by Coecke et al. Vector spaces underly every notion of algebra, and a new perspective on it is therefore useful. The concept of state vector is also readdressed in the language of tricategories.
6

Giusti, Andrea. "Planck stars: theory and phenomenology." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9315/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
General Relativity (GR) is one of the greatest scientific achievements of the 20th century along with quantum theory. Despite the elegance and the accordance with experimental tests, these two theories appear to be utterly incompatible at fundamental level. Black holes provide a perfect stage to point out these difficulties. Indeed, classical GR fails to describe Nature at small radii, because nothing prevents quantum mechanics from affecting the high curvature zone, and because classical GR becomes ill-defined at r = 0 anyway. Rovelli and Haggard have recently proposed a scenario where a negative quantum pressure at the Planck scales stops and reverts the gravitational collapse, leading to an effective “bounce” and explosion, thus resolving the central singularity. This scenario, called Black Hole Fireworks, has been proposed in a semiclassical framework. The purpose of this thesis is twofold: - Compute the bouncing time by means of a pure quantum computation based on Loop Quantum Gravity; - Extend the known theory to a more realistic scenario, in which the rotation is taken into account by means of the Newman-Janis Algorithm.
7

Brighenti, Francesco <1988&gt. "Quantum Gravity Phenomenology: Thermal Dimension of Quantum Spacetime, Casuality and Momentum Conservation from Relative Locality." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amsdottorato.unibo.it/7807/1/Brighenti_Francesco_tesi.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The original results presented in this thesis regard two very common topics of discussion in the quantum gravity debate: the dynamical dimensional reduction of spacetime and locality in quantum gravity regime. The dimensionality of quantum spacetime is often understood in terms of the spectral dimension; here, a different notion of dimensionality, the thermal dimension, is proposed. I discuss its physical properties in relation to those of the spectral dimension through the study of specific models of quantum gravity, including preliminary results obtained in the case of models with relative locality. I show that, in those cases where the spectral dimension has puzzling properties, the thermal dimension gives a different and more meaningful picture. The statistical mechanics developed to define the thermal dimension is applied also to the study of the production of primordial cosmological perturbations assuming a running Newton constant and Rainbow gravity. Concerning locality, I study in particular the theory of Relative Locality, a theoretical framework in which different observers may describe the same event as being local or non-local, depending whether it happens in the origin of their reference frame or far away from it, respectively. I show that requiring that locality is relative is enough to guarantee the objectivity of cause-effect relation in chains of events, the absence of causality-violating loops and processes violating the law of conservation of momentum.
I risultati originali presentati in questa tesi riguardano due argomenti di discussione molto comuni nel dibattito sulla gravità quantistica: la riduzione dimensionale dinamica dello spaziotempo e la località nel regime di gravità quantistica. La dimensionalità dello spaziotempo quantistico viene spesso descritta in termini della dimensione spettrale; qui viene proposta una nuova nozione di dimensione, la dimensione termale. Discuto le sue proprietà fisiche in relazione a quelle della dimensione spettrale attraverso lo studio di modelli specifici di gravità quantistica, comprendendo anche risultati preliminari ottenuti nel caso di modelli con località relativa. Mostro che , in quei casi in cui la dimensione spettrale ha proprietà bizzarre, la dimensione termale fornisce un quadro diverso e più significativo. La meccanica statistica costruita per definire la dimensione termale è applicata anche allo studio della produzione delle perturbazioni cosmologiche primordiali, assumendo che costante di Newton dipenda dall'energia e la gravità "Rainbow". Per quanto riguarda la località, studio in particolare la teoria delle Località Relativa, un paradigma teorico in cui diversi osservatori possono descrivere uno stesso evento come locale o non locale, a seconda se questo avviene nell'origine del loro sistema di riferimento o lontano dall'origine, rispettivamente. Mostro che richiedere che la località sia relativa è sufficiente a garantire l'oggettività della relazione di causa-effetto in catene di eventi, l'assenza di processi che violano la causalità e di processi che violano la conservazione del momento.
8

Vernieri, Daniele. "Gravity beyond General Relativity: New Proposals and their Phenomenology." Doctoral thesis, SISSA, 2014. http://hdl.handle.net/20.500.11767/3860.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This Thesis is devoted to the study of phenomenologically viable gravitational theories, in order to address the most pressing open issues both at very small and very large energy scales. Lovelock’s theorem singles out General Relativity as the only theory with secondorder field equations for the metric tensor. So, two possible ways to circumvent it and modify the gravitational sector are taken into account. The first route consists in giving up diffeomorphism invariance, which generically leads to extra propagating degrees of freedom. In this framework Horava gravity is discussed, presenting two restrictions, called respectively "projectability" and "detailed balance", which are imposed in order to reduce the number of terms in the full theory. We introduce a new version of the theory assuming detailed balance but not projectability, and we show that such theory is dynamically consistent as both the spin-0 and spin-2 gravitons have a well behaved dynamics at low-energy. Moreover three-dimensional rotating black hole solutions are found and fully studied in the context of Horava gravity, shedding light on its causal structure. A new concept of black hole horizon, dubbed "universal horizon", arises besides the usual event horizon one, since in Lorentz-violating gravity theories there can be modes propagating even at infinite speed. The second route which is considered, consists in adding extra fields to the gravitational action while diffeomorphism invariance is preserved. In this respect we consider the less explored option that such fields are auxiliary fields, so they do not satisfy dynamical equations but can be instead algebraically eliminated. A very general parametrization for these theories is constructed, rendering also possible to put on them very tight, theory-independent constraints. Some insight about the cosmological implications of such theories is also given. Finally in the conclusions we discuss about the future challenges that the aforementioned gravity theories have to face.
9

Coutant, Antonin. "On the phenomenology of quantum gravity : stability properties of Hawking radiation in the presence of ultraviolet violation of local Lorentz invariance." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112213/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans cette thèse, nous étudions plusieurs aspects de la radiation de Hawking en présence de violations de l'invariance locale de Lorentz. Ces violations sont introduites par une modification de la relation de dispersion, devenant non-linéaire aux courtes longueurs d’onde. Les principales motivations de ces travaux ont une double origine. Il y a d’une part le développement en matière condensée de trous noirs analogues, ou l’écoulement d’un fluide est perçu comme une métrique d’espace-temps pour les ondes de perturbations et ou la radiation de Hawking pourrait être détectée expérimentalement. D’autre part, il se pourrait que des effets de gravité quantique puissent être modélisés par une modification de la relation de dispersion. En premier lieu, nous avons obtenu des caractérisations précises des conditions nécessaires au maintien de l’effet Hawking en présence de violation de l’invariance de Lorentz. De plus, nous avons étudié l’apparition d’une onde macroscopique de fréquence nulle, dans des écoulements de type trous blancs et également pour des champs massifs. Une autre partie de ce travail a consisté à analyser une instabilité engendrée par les effets dispersifs, ou la radiation de Hawking est auto-amplifiée, générant ainsi un flux sortant exponentiellement croissant dans le temps
In this thesis, we study several features of Hawking radiation in the presence of ultraviolet Lorentz violations. These violations are implemented by a modified dispersion relation that becomes nonlinear at short wavelengths. The motivations of this work arise on the one hand from the developing field of analog gravity, where we aim at measuring the Hawking effect in fluid flows that mimic black hole space-times, and on the other hand from the possibility that quantum gravity effects might be approximately modeled by a modified dispersion relation. We develop several studies on various aspects of the prob- lem. First we obtain precise characterizations about the deviations from the Hawking result of black hole radiation, which are induced by dispersion. Second, we study the emergence, both in white hole flows or for massive fields, of a macroscopic standing wave, spontaneously produced from the Hawking effect, and known as ‘undulation’. Third, we describe in detail an instability named black hole laser, which arises in the presence of two horizons, where Hawking radiation is self-amplified and induces an exponentially growing in time emitted flux
10

Belenchia, Alessio. "Exploring spacetime phenomenology: from Lorentz violations to experimental tests of non-locality." Doctoral thesis, SISSA, 2016. http://hdl.handle.net/20.500.11767/4889.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis deals primarily with the phenomenology associated to quantum aspects of spacetime. In particular, it aims at exploring the phenomenological consequences of a fundamental discreteness of the spacetime fabric, as predicted by several quantum gravity models and strongly hinted by many theoretical insights. The first part of this work considers a toy-model of emergent spacetime in the context of analogue gravity. The way in which a relativistic Bose– Einstein condensate can mimic, under specific configurations, the dynamics of a scalar theory of gravity will be investigated. This constitutes proof-ofconcept that a legitimate dynamical Lorentzian spacetime may emerge from non-gravitational (discrete) degrees of freedom. Remarkably, this model will emphasize the fact that in general, even when arising from a relativistic system, any emergent spacetime is prone to show deviations from exact Lorentz invariance. This will lead us to consider Lorentz Invariance Violations as first candidate for a discrete spacetime phenomenology. Having reviewed the current constraints on Lorentz Violations and studied in depth viable resolutions of their apparent naturalness problem, the second part of this thesis focusses on models based on Lorentz invariance. In the context of Casual Set theory, the coexistence of Lorentz invariance and discreteness leads to an inherently nonlocal scalar field theory over causal sets well approximating a continuum spacetime. The quantum aspects of the theory in flat spacetime will be studied and the consequences of its non-locality will be spelled out. Noticeably, these studies will lend support to a possible dimensional reduction at small scales and, in a classical setting, show that the scalar field is characterized by a universal nonminimal coupling when considered in curved spacetimes. Finally, the phenomenological possibilities for detecting this non-locality will be investigated. First, by considering the related spontaneous emission of particle detectors, then by developing a phenomenological model to test nonlocal effects using opto-mechanical, non-relativistic systems. In both cases, one could be able to cast in the near future stringent bounds on the non-locality scale.

Книги з теми "Phenomenology of quantum gravity":

1

Mexican Meeting on Mathematical and Experimental Physics (4th 2010 Mexico City, Mexico). Recent developments in gravitation and BEC's phenomenology: IV Mexican Meeting on Mathematical and Experimental Physics: symposium on gravitation BEC's phenomenology, El Colegio Nacional, México City, México, 19-23 July 2010. Edited by Macías A. (Alfredo) and Maceda Marco. Melville, N.Y: American Institute of Physics, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fauser, Bertfried, Jürgen Tolksdorf, and Eberhard Zeidler, eds. Quantum Gravity. Basel: Birkhäuser Basel, 2007. http://dx.doi.org/10.1007/978-3-7643-7978-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Giulini, Domenico J. W., Claus Kiefer, and Claus Lämmerzahl, eds. Quantum Gravity. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/b13561.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sobreiro, Rodrigo. Quantum gravity. Rijeka: InTech, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Seminar, on Quantum Gravity (4th 1987 Moscow R. S. F. S. R. ). Quantum gravity. Singapore: World Scientific Pub., 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rovelli, Carlo. Quantum gravity. Cambridge: Cambridge University Press, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kiefer, Claus. Quantum gravity. Oxford: Clarendon Press, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kiefer, Claus. Quantum gravity. 3rd ed. Oxford: Oxford University Press, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Faccio, Daniele, Francesco Belgiorno, Sergio Cacciatori, Vittorio Gorini, Stefano Liberati, and Ugo Moschella, eds. Analogue Gravity Phenomenology. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00266-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Calcagni, Gianluca, Lefteris Papantonopoulos, George Siopsis, and Nikos Tsamis, eds. Quantum Gravity and Quantum Cosmology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33036-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Phenomenology of quantum gravity":

1

Amelino-Camelia, G. "Introduction to Quantum-Gravity Phenomenology." In Planck Scale Effects in Astrophysics and Cosmology, 59–100. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11377306_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Eller, Alexander Maximilian. "Essay on Planck Star Phenomenology." In Experimental Search for Quantum Gravity, 49–53. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64537-7_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Vidotto, F., A. Barrau, B. Bolliet, M. Schutten, and C. Weimer. "Quantum-Gravity Phenomenology with Primordial Black Holes." In Springer Proceedings in Physics, 157–63. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94256-8_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Acero, Mario A., and Yuri Bonder. "Phenomenology of Quantum Gravity and its Possible Role in Neutrino Anomalies." In Springer Proceedings in Physics, 461–68. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06761-2_66.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

’t Hooft, Gerard. "Quantum Gravity." In Fundamental Theories of Physics, 89–90. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41285-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kiefer, Claus. "Quantum Gravity." In Springer Handbook of Spacetime, 709–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41992-8_33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bahr, Benjamin, Boris Lemmer, and Rina Piccolo. "Quantum Gravity." In Quirky Quarks, 278–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49509-4_67.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

DeWitt-Morette, Cécile. "Quantum Gravity." In The Pursuit of Quantum Gravity, 51–117. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14270-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kiefer, Claus. "Quantum Gravity — A General Introduction." In Quantum Gravity, 3–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45230-0_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Abele, Hartmut, Stefan Baeßler, and Alexander Westphal. "Quantum States of Neutrons in the Gravitational Field and Limits for Non-Newtonian Interaction in the Range between 1 μm and 10 μm." In Quantum Gravity, 355–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45230-0_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Phenomenology of quantum gravity":

1

Nanopoulos, D. V. "Quantum Gravity Phenomenology." In Proceedings of the International School of Cosmology and Gravitation XVI Course. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792938_0009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Morales-Técotl, Hugo A., and Luis F. Urrutia. "Quantum Gravity Phenomenology." In PARTICLES AND FIELDS: X Mexican Workshop on Particles and Fields. AIP, 2006. http://dx.doi.org/10.1063/1.2359405.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Edmonds, Douglas, Djordje Minic, and Tatsu Takeuchi. "On quantum gravity and quantum gravity phenomenology." In Proceedings of the MG16 Meeting on General Relativity. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811269776_0344.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Liberati, Stefano. "Quantum gravity phenomenology via Lorentz violations." In School on Particle Physics, Gravity and Cosmology. Trieste, Italy: Sissa Medialab, 2007. http://dx.doi.org/10.22323/1.034.0018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Capozziello, Salvatore. "Extended Gravity: Theory and Phenomenology." In From Quantum to Emergent Gravity: Theory and Phenomenology. Trieste, Italy: Sissa Medialab, 2008. http://dx.doi.org/10.22323/1.043.0015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

AMELINO-CAMELIA, GIOVANNI. "A PERSPECTIVE ON QUANTUM GRAVITY PHENOMENOLOGY." In Proceedings of the MG10 Meeting held at Brazilian Center for Research in Physics (CBPF). World Scientific Publishing Company, 2006. http://dx.doi.org/10.1142/9789812704030_0015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Loret, Niccoló, Leonardo Barcaroli, and Giulia Gubitosi. "Quantum gravity phenomenology and metric formalism." In Proceedings of the MG14 Meeting on General Relativity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226609_0534.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Litim, Daniel. "Fixed points of quantum gravity." In From Quantum to Emergent Gravity: Theory and Phenomenology. Trieste, Italy: Sissa Medialab, 2008. http://dx.doi.org/10.22323/1.043.0024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

KOWALSKI-GLIKMAN, J. "DOUBLY SPECIAL RELATIVITY AND QUANTUM GRAVITY PHENOMENOLOGY." In Proceedings of the MG10 Meeting held at Brazilian Center for Research in Physics (CBPF). World Scientific Publishing Company, 2006. http://dx.doi.org/10.1142/9789812704030_0072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ling, Yi. "Quantum gravity phenomenology and black hole physics." In Proceedings of the VII Asia-Pacific International Conference. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772923_0022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Phenomenology of quantum gravity":

1

Rizzo, T. Warped Phenomenology of Higher-Derivative Gravity. Office of Scientific and Technical Information (OSTI), December 2004. http://dx.doi.org/10.2172/839791.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Svetlichny, George. Nonlinear Quantum Gravity. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-6-2006-118-126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tsamis, N. C., and R. P. Woodard. Quantum gravity slows inflation. Office of Scientific and Technical Information (OSTI), February 1996. http://dx.doi.org/10.2172/203905.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Alexander, S. Quantum Gravity and Inflation. Office of Scientific and Technical Information (OSTI), May 2004. http://dx.doi.org/10.2172/826908.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lorente, Miguel. Spin Networks in Quantum Gravity. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-6-2006-85-100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Perelstein, M. Topics in Theories of Quantum Gravity. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/839827.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gleiser, M., R. Holman, and N. P. Neto. First order formalism for quantum gravity. Office of Scientific and Technical Information (OSTI), May 1987. http://dx.doi.org/10.2172/6507242.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jafferis, Daniel. Topics in string theory, quantum field theory and quantum gravity. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1846570.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hartman, Thomas. Universality in Quantum Gravity: Final Technical Report. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1779062.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Leigh, Robert. Entanglement in Gravity and Quantum Field Theory. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1984935.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії