Добірка наукової літератури з теми "Perovskite"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Perovskite".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Perovskite":

1

Zhang, Lei, Mingze Xia, Yuan Zhang, Li Song, Xiwei Guo, Yong Zhang, Yulei Wang, and Yuanqin Xia. "The Effect of Organic Spacer Cations with Different Chain Lengths on Quasi-Two-Dimensional Perovskite Properties." Inorganics 12, no. 1 (December 27, 2023): 12. http://dx.doi.org/10.3390/inorganics12010012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the past 20 years, perovskite-related research has attracted wide attention. The related research into two-dimensional/quasi-two-dimensional perovskite has propelled the research of perovskite materials to a new height. To improve the properties of quasi-2D perovskite, improve the stability of materials, and achieve specific functions, using different types, volumes, and lengths of organic spacers is an essential method. In this paper, quasi-2D perovskites with EDA (ethylene diammonium), PDA (1,3-propanediammonium), and BDA (1,4-butanediammonium) (m = 2–4) as organic spacers were prepared, and the effects of different organic spacers on the 2D perovskite were investigated. The results show that the length of the organic spacer significantly impacts the perovskite’s properties. A shorter organic spacer can effectively reduce the quantum confinement and dielectric confinement in perovskite. It should be noted that if the organic spacer is too short, the stability of the quasi-2D perovskite will be greatly reduced.
2

Zhou, Dahua, Leyong Yu, Peng Zhu, Hongquan Zhao, Shuanglong Feng, and Jun Shen. "Lateral Structured Phototransistor Based on Mesoscopic Graphene/Perovskite Heterojunctions." Nanomaterials 11, no. 3 (March 5, 2021): 641. http://dx.doi.org/10.3390/nano11030641.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Due to their outstanding optical properties and superior charge carrier mobilities, organometal halide perovskites have been widely investigated in photodetection and solar cell areas. In perovskites photodetection devices, their high optical absorption and excellent quantum efficiency contribute to the responsivity, even the specific detectivity. In this work, we developed a lateral phototransistor based on mesoscopic graphene/perovskite heterojunctions. Graphene nanowall shows a porous structure, and the spaces between graphene nanowall are much appropriated for perovskite crystalline to mount in. Hot carriers are excited in perovskite, which is followed by the holes’ transfer to the graphene layer through the interfacial efficiently. Therefore, graphene plays the role of holes’ collecting material and carriers’ transporting channel. This charge transfer process is also verified by the luminescence spectra. We used the hybrid film to build phototransistor, which performed a high responsivity and specific detectivity of 2.0 × 103 A/W and 7.2 × 1010 Jones, respectively. To understand the photoconductive mechanism, the perovskite’s passivation and the graphene photogating effect are proposed to contribute to the device’s performance. This study provides new routes for the application of perovskite film in photodetection.
3

Meyer, Edson, Dorcas Mutukwa, Nyengerai Zingwe, and Raymond Taziwa. "Lead-Free Halide Double Perovskites: A Review of the Structural, Optical, and Stability Properties as Well as Their Viability to Replace Lead Halide Perovskites." Metals 8, no. 9 (August 27, 2018): 667. http://dx.doi.org/10.3390/met8090667.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Perovskite solar cells employ lead halide perovskite materials as light absorbers. These perovskite materials have shown exceptional optoelectronic properties, making perovskite solar cells a fast-growing solar technology. Perovskite solar cells have achieved a record efficiency of over 20%, which has superseded the efficiency of Gräztel dye-sensitized solar cell (DSSC) technology. Even with their exceptional optical and electric properties, lead halide perovskites suffer from poor stability. They degrade when exposed to moisture, heat, and UV radiation, which has hindered their commercialization. Moreover, halide perovskite materials consist of lead, which is toxic. Thus, exposure to these materials leads to detrimental effects on human health. Halide double perovskites with A2B′B″X6 (A = Cs, MA; B′ = Bi, Sb; B″ = Cu, Ag, and X = Cl, Br, I) have been investigated as potential replacements of lead halide perovskites. This work focuses on providing a detailed review of the structural, optical, and stability properties of these proposed perovskites as well as their viability to replace lead halide perovskites. The triumphs and challenges of the proposed lead-free A2B′B″X6 double perovskites are discussed here in detail.
4

McDonald, Calum, Chengsheng Ni, Paul Maguire, Paul Connor, John Irvine, Davide Mariotti, and Vladimir Svrcek. "Nanostructured Perovskite Solar Cells." Nanomaterials 9, no. 10 (October 18, 2019): 1481. http://dx.doi.org/10.3390/nano9101481.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Over the past decade, lead halide perovskites have emerged as one of the leading photovoltaic materials due to their long carrier lifetimes, high absorption coefficients, high tolerance to defects, and facile processing methods. With a bandgap of ~1.6 eV, lead halide perovskite solar cells have achieved power conversion efficiencies in excess of 25%. Despite this, poor material stability along with lead contamination remains a significant barrier to commercialization. Recently, low-dimensional perovskites, where at least one of the structural dimensions is measured on the nanoscale, have demonstrated significantly higher stabilities, and although their power conversion efficiencies are slightly lower, these materials also open up the possibility of quantum-confinement effects such as carrier multiplication. Furthermore, both bulk perovskites and low-dimensional perovskites have been demonstrated to form hybrids with silicon nanocrystals, where numerous device architectures can be exploited to improve efficiency. In this review, we provide an overview of perovskite solar cells, and report the current progress in nanoscale perovskites, such as low-dimensional perovskites, perovskite quantum dots, and perovskite-nanocrystal hybrid solar cells.
5

Yang, Bilin, Yujun Xie, Pan Zeng, Yurong Dong, Qiongrong Ou, and Shuyu Zhang. "Tightly Compacted Perovskite Laminates on Flexible Substrates via Hot-Pressing." Applied Sciences 10, no. 6 (March 11, 2020): 1917. http://dx.doi.org/10.3390/app10061917.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Pressure and temperature are powerful tools applied to perovskites to achieve recrystallization. Lamination, based on recrystallization of perovskites, avoids the limitations and improves the compatibility of materials and solvents in perovskite device architectures. In this work, we demonstrate tightly compacted perovskite laminates on flexible substrates via hot-pressing and investigate the effect of hot-pressing conditions on the lamination qualities and optical properties of perovskite laminates. The optimized laminates achieved at a temperature of 90 °C and a pressure of 10 MPa could sustain a horizontal pulling pressure of 636 kPa and a vertical pulling pressure of 71 kPa. Perovskite laminates exhibit increased crystallinity and a crystallization orientation preference to the (100) direction. The optical properties of laminated perovskites are almost identical to those of pristine perovskites, and the photoluminescence quantum yield (PLQY) survives the negative impact of thermal degradation. This work demonstrates a promising approach to physically laminating perovskite films, which may accelerate the development of roll-to-roll printed perovskite devices and perovskite tandem architectures in the future.
6

Janendra Pratap, Et al. "Modeling and Investigation of Highly Efficient Environment Friendly Perovskite Solar Cell with CuSbS2 as Hole Transport Layer." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 9 (November 5, 2023): 4385–93. http://dx.doi.org/10.17762/ijritcc.v11i9.9925.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The presence of lead and its associated toxicity represents a hindrance to the broad commercial production of lead halide perovskites and their utilization in solar photovoltaic devices. Although lead halide perovskites have found extensive application in solar cell technology, questions have arisen regarding the hazardous nature and durability of lead (Pb) in photovoltaic systems. This research seeks to address these concerns by exploring alternative materials, such as tin-based perovskites, to pave the way for cleaner and more sustainable energy solutions. The scientific community has shown increased interest in tin-based perovskites due to their superior efficiency and stability compared to lead-based perovskite solar cell. This research introduces a planar heterojunction solar cell utilizing tin-based perovskites that are free of lead. The simulation task was conducted using SCAPS-1d software. Device parameters for a lead-free PSC (perovskite solar cell) using significant framework FTO/WS2/CH3NH3SnI3(perovskite)/CuSbS2 included an examination of factors like perovskite layer thickness, the obsession of acceptors in the perovskite layer, defects density of perovskite layer, and the band gap of the perovskite layer. In this setup, WS2 served as the ETL material, CuSbS2 functioned as the HTL material, and the CH3NH3SnI3(Perovskite) was used as the absorber layer material. This configuration achieved an impressive PCE 32.5%, along with a Jsc34.1mAcm-², Voc1.02V and FF85.5%. These optimized results likelihood indicates the strong prospect for development of an eco-friendly and efficient model of PSC (perovskite solar cell).
7

Ji, Long, and Shibin Li. "Large organic cations are beneficial for slowing tin-based perovskites crystallization rate and improving efficiency." Journal of Physics: Conference Series 2306, no. 1 (November 1, 2022): 012017. http://dx.doi.org/10.1088/1742-6596/2306/1/012017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract In the past few years, the efficiency of perovskite cells has been improved rapidly, and the current efficiency can reach 25.8%. Since the lead in perovskite materials will pollute the environment, so people turn their attention to lead-free tin-based perovskites. Tin-based perovskites are becoming a research hotspot recently due to their nontoxic properties. However, due to the fast crystallization rate of tin-based perovskite, the improvement of the efficiency of tin-based perovskite cells is limited. In this work, by introducing ethylammonium iodine (EAI) into FA0.98SnI3 perovskite, it not only slowed down the crystallization rate of tin-based perovskite cells, but also improved the film morphology and slowed down the rate of Sn2+ oxidation, and finally achieved a solar cell conversion efficiency of 7.6%. This work provides a new strategy for the study of lead-free perovskites.
8

Era, Masanao, Yumeko Komatsu, and Naotaka Sakamoto. "Enhancement of Exciton Emission in Lead Halide-Based Layered Perovskites by Cation Mixing." Journal of Nanoscience and Nanotechnology 16, no. 4 (April 1, 2016): 3338–42. http://dx.doi.org/10.1166/jnn.2016.12295.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Spin-coated films of a lead halide, PbX: X = I and Br, layered perovskites having cyclohexenylethyl ammonium molecule as an organic layer, which were mixed with other metal halide-based layered perovskites consisting of various divalent metal halides (for example, CaI2, CdI2, FeI2, SnBr2 and so on), were prepared. The results of X-ray diffraction measurements exhibited that solid solution formation between PbX-based layered perovskite and other divalent metal halide-based layered perovskites was observed up to very high molar concentration of 50 molar% in the mixed film samples when divalent cations having ionic radius close to that of Pb2+ were employed. In the solid solution films, the exciton emission was much enhanced at room temperature. Exciton emission intensity of PbI-based layered perovskite mixed with CaI-based layered perovskite (20 molar%) is about 5 times large that of the pristine PbI-based layered perovskite, and that of PbBr-based layered perovskite mixed with SnBr-based layered perovskite (20 molar%) was also about 5 times large that of the pristine PbBr-based layered perovskite at room temperature.
9

Korolev, Viacheslav I., Anatoly P. Pushkarev, Petr A. Obraztsov, Anton N. Tsypkin, Anvar A. Zakhidov, and Sergey V. Makarov. "Enhanced terahertz emission from imprinted halide perovskite nanostructures." Nanophotonics 9, no. 1 (December 27, 2019): 187–94. http://dx.doi.org/10.1515/nanoph-2019-0377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractLead halide perovskites were known to be a prospective family of materials for terahertz (THz) generation. On the other hand, perovskite nanostructures, nanoantennas, and metasurfaces allow tailoring perovskites optical characteristics, resulting in more efficient interaction with incident or emitted light. Moreover, the perovskites are robust materials against formation of defects caused by mechanical deformations and can be efficiently nanostructured by various high throughput methods. In this work, we have enhanced THz emission from MAPbI3 perovskite upon femtosecond laser irradiation using nanoimprint lithography. The formed nanostructures not only improve absorption of the incident laser pulses, but also lead to a non-symmetric near-field distribution. As a result, we have enhanced the efficiency of THz emission from the nanostructured perovskite by 3.5 times as compared with a smooth perovskite film. Our results paved the way for a new application of large-scale perovskite nanostructuring, making halide perovskites competitive with more expensive conventional semiconductors for THz generation.
10

Adjogri, Shadrack J., and Edson L. Meyer. "Chalcogenide Perovskites and Perovskite-Based Chalcohalide as Photoabsorbers: A Study of Their Properties, and Potential Photovoltaic Applications." Materials 14, no. 24 (December 18, 2021): 7857. http://dx.doi.org/10.3390/ma14247857.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In 2015, a class of unconventional semiconductors, Chalcogenide perovskites, remained projected as possible solar cell materials. The MAPbI3 hybrid lead iodide perovskite has been considered the best so far, and due to its toxicity, the search for potential alternatives was important. As a result, chalcogenide perovskites and perovskite-based chalcohalide have recently been considered options and potential thin-film light absorbers for photovoltaic applications. For the synthesis of novel hybrid perovskites, dimensionality tailoring and compositional substitution methods have been used widely. The study focuses on the optoelectronic properties of chalcogenide perovskites and perovskite-based chalcohalide as possibilities for future photovoltaic applications.

Дисертації з теми "Perovskite":

1

Bufaiçal, Leandro Félix de Sousa. "Propriedades estruturais, eletrônicas e magnéticas dos óxidos Ca2-xLaxFelrO6, Sr2-xLaxFelrO6 e TbMnO3." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/278527.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Orientador: Pascoal José Giglio Pagliuso
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin
Made available in DSpace on 2018-08-15T19:42:04Z (GMT). No. of bitstreams: 1 Bufaical_LeandroFelixdeSousa_D.pdf: 2467040 bytes, checksum: 4460b75c04d570fb27584b7dfff2c5f3 (MD5) Previous issue date: 2010
Resumo: Há muitas décadas os óxidos de metais de transição são tema de grande interesse científico devido à grande variedade de propriedades físicas interessantes que apresentam, com suas possíveis aplicações tecnológicas. Mais recentemente, por exemplo, os óxidos de metais de transição com propriedades multiferróicas ganharam destaque na comunidade científica como potenciais dispositivos magneto-eletrônicos. Muitos óxidos de metais de transição se formam na estrutura cristalina chamada perovskita simples, com simetria cúbica ou distorcida. Muitos outros óxidos podem se cristalizar numa variante da perovskita simples, a chamada perovskita dupla ordenada (PDO), que possui fórmula geral A2B¿B¿¿O6, onde o íon A ocupa os vértices do cubo enquanto os cátions B¿ e B¿¿ se alternam nos centros dos octaedros de oxigênio. Dois compostos com estrutura PDO bastante estudados são o Sr2FeReO6 e Sr2FeMoO6 devido ao fato de apresentarem, entre outras propriedades interessantes, comportamento meio-metálico (halfmetal), magnetrorresistência por tunelamento à temperatura ambiente, ferrimagnetismo com TC acima de 400K em ambos os compostos. As propriedades estruturais, eletrônicas e magnéticas dessas PDOs estão altamente conectadas e são fortemente dependentes do grau de hibridização dos orbitais d dos cátions B¿¿. Assim, se fazem importantes os estudos de novos compostos PDO a fim de se investigar as idéias correntes propostas em literatura e, nesse contexto, reportamos aqui os resultados da síntese e caracterização das séries inéditas Ca2-xLaxFeIrO6 e Sr2-xLaxFeIrO6, onde o Ir, assim como o Re e Mo, é metal de transição, no caso com caráter 5d, e pode assumir diferentes estados de valência. As medidas de magnetização indicaram que estes sistemas tendem a evoluir de antiferromagnéticos nas extremidades das séries, x = 0 e x = 2, para ferrimagnéticos em regiões intermediárias da série. Medidas realizadas no composto de maior magnetização da série de Sr, o Sr1.2La0.8FeIrO6, indicaram que este composto se ordena ferrimagneticamente em torno de 700 K, sendo esta a mais elevada TC já reportada para perovskitas duplas. Medidas de resistividade em função da temperatura indicaram que os compostos apresentam comportamento isolante e praticamente nenhum efeito magneto-resistivo. No composto antiferromagnético Sr2FeIrO6 foi estudada a resistividade sob efeito de pressão e, embora não tenha ocorrido nenhuma transição metal-isolante, ocorre uma diminuição sistemática da resistência do material e da inclinação da curva à medida que a pressão aumenta, indicando um comportamento do tipo isolante de Mott nesse composto. Neste trabalho são apresentados também resultados dos estudos realizados na perovskita TbMnO3. Realizamos neste óxido medidas de susceptibilidade magnética, calor específico, Ressonância Paramagnética Eletrônica (EPR) e absorção de microondas para várias temperaturas. A susceptibilidade magnética e o calor específico confirmaram para a amostra estudada as temperaturas de transição de fase magnética (TN = 41 K) e ferroelétrica (Tlock) já reportadas em literatura. Os espectros de EPR mostraram para todo o intervalo de temperatura uma única linha consistente com uma forma de linha Lorentziana e um valor de g independente da temperatura g = 1.96(3) consistente com Mn3+ em um meio isolante. A largura de linha sofreu um alargamento com a temperatura seguindo uma lei do tipo C/T. Esse alargamento impediu a observação dos espectros de ressonância em torno das regiões de temperaturas das transições de fase magnética e ferroelétrica. Devido à forte dependência da constante dielétrica com a freqüência, as medidas realizadas com a cavidade de campo elétrico não permitiram a observação de qualquer anomalia em torno das temperaturas de transições
Abstract: For many decades the transition metal oxides are subject of great scientific interest because of the wide variety of interesting physical properties and their potential technological applications. More recently, for example, oxides of transition metals with multiferroic properties have been considered as potential magneto-electronic devices. Many transition metal oxides form in the perovskite crystalline structure, with cubic or distorted symmetry. Many other oxides can crystallize in a variant of the simple perovskite, called the ordered double perovskite (ODP), which has the general formula A2B'B''O6, where the A ion occupies the vertices of the cube while the cations B 'and B'' alternate in the centers of the oxygen octahedra. Sr2FeReO6 and Sr2FeMoO6 are two compounds with the ODP structure which were extensively studied due to their interesting properties such as half-metal behavior, tunneling magnetoresistance at room temperature and ferrimagnetic order (TC above 400 K). The structural, electronic and magnetic properties of these ODPs are highly correlated and are strongly dependent on the strong d orbitals hybridization of the of the B'' cations. Therefore, studies of new ODP compounds are important in order to investigate the current ideas proposed in the literature and improve the understanding of their physical properties. We report here our results of synthesis and characterization of the unpublished series Ca2-xLaxFeIrO6 and Sr2-xLaxFeIrO6, where the Ir such as Re and Mo are transition metal, with d character that can assume different valence states. The magnetic measurements indicated that those systems tend to evolve from antiferromagnetics at the ends of the series, x = 0 and x = 2, to ferrimagnetic for intermediate regions of the series. Measurements performed in the compound of higher magnetization in the Sr serie, Sr1.2La0.8FeIrO6 indicated that this compound orders ferrimagnetic around 700 K, which is the highest TC ever reported for double perovskites. Resistivity measurements as a function of temperature indicated that these compounds also exhibit insulating behavior and virtually no magneto-resistive effect. In the antiferromagnetic compound Sr2FeIrO6, the effect of pressure on the resistivity was investigated, and although no metal-insulator transition was seen, there is a systematic decrease of the resistance and the slope of the curve as the pressure increases, indicating a Mott insulator-like behavior in this compound. This work also presents results on the TbMnO3 perovskite. We have performed magnetic susceptibility, specific heat, Electron Paramagnetic Resonance (EPR) and microwave absorption measurements at various temperatures. Magnetic susceptibility and specific heat data confirmed the ocurrence of a magnetic (TN = 41 K) and ferroelectric (Tlock) phase transition. The EPR spectra showed, for the entire temperature range measured, a single Lorentzian line shape and T independent g-value = 1.96 (3), consistent with the resonance of Mn3+ in an insulating environment. The width line broadens with the decreasing temperature following a C/T law. This broadening prevented the observation of the resonance spectra near the magnetic and ferroelectric phase transitions. Because of the strong frequency dependence of the dielectric constant, the measurements performed with the electric field cavity also did not allow observation of any anomaly around the ferroelectric transition
Doutorado
Física da Matéria Condensada
Doutor em Ciências
2

Tanabe, Eurico Yuji. "\"Óxidos do tipo Perovskitas para reações de decomposição direta de NO e redução de NO com CO\"." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/75/75131/tde-16042007-111408/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Uma tecnologia importante para reduzir a quantidade de poluentes atmosféricos lançados na atmosfera, é a utilização de catalisadores, que convertem os gases altamente poluentes como o NO, para outros gases inofensivos ao meio ambiente. Neste trabalho, os óxidos do tipo perovskitas La2CuO4, LaNiO3, LaMnO3, La1,4Sr0,6CuO4, La0,7Sr0,3NiO3 e La0,7Sr0,3MnO3 foram preparados através do método da co-precipitação, caracterizados por difração de raios-X, redução a temperatura programada, fisissorção de nitrogênio e análise química, e, posteriormente avaliados frente as reações de redução de NO com CO, e decomposição direta de NO. Ambas as reações foram testadas nas temperaturas de 400oC e 500oC e o tempo de reação foi de 7 à 10 horas. Através dos ensaios catalíticos verificou-se que o catalisador La2CuO4 apresentou a maior atividade para a reação de redução, e quando substituiu-se parcialmente o lantânio pelo estrôncio, houve uma melhora significativa para todos os catalisadores. As análises de DRX indicaram que, mesmo após os ensaios catalíticos, a estrutura cristalina dos catalisadores foi preservada.
A important technology to reduce the atmospheric pollution is the use of catalysts, to transform high pollutant as NO in other inoffensive gases to the environment. In this work, the perovskite oxides La2CuO4, LaNiO3, LaMnO3, La1,4Sr0,6CuO4, La0,7Sr0,3NiO3 e La0,7Sr0,3MnO3 were prepared through co-precipitation method and characterized by X-ray diffraction and temperature programmed reduction, nitrogen physsisorption and subsequent valued on the reduction of NO by CO and the direct decomposition of NO. These reaction were tested at 400oC and 500oC temperatures and times of reaction between 7 and 10 hours. Through the catalytic tests the La2CuO4 catalyst shown the best activity to the reduce reaction, and when the La is partially substituted by strontium all the catalyst showed a better significant for all the catalysts. The XRD analysis shown that the catalytic structure of the catalysts were preserved after the catalytic test yet.
3

Ahchawarattaworn, Jutharat. "Perovskite oxynitride dielectrics." Thesis, University of Newcastle Upon Tyne, 2011. http://hdl.handle.net/10443/1186.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The synthesis, crystal structures and dielectric properties of perovskite oxynitrides of the type LnTiO2N (Ln = La, Nd and mixtures) and ATaO2N (A = Ca, Sr, Ba and mixtures), have been investigated. The end-member oxynitrides and their associated LaxNd1-xTiO2N, CaxSr1-xTaO2N and BaxSr1-xTaO2N solid solutions were successfully prepared by ammonolysis of the appropriate precursor oxides at temperatures in the range 900-1200ºC. The complete range of LaxNd1-xTiO2N solid solution are orthorhombic perovskites, which show a small increase in unit cell parameters with increasing La content across the range. Compositions in the CaxSr1-xTaO2N series are tetragonal for x < 0.6 and orthorhombic for x > 0.6. BaxSr1-xTaO2N solid solutions are tetragonal for x < 0.5 and cubic for x > 0.5. It was impossible to form any perovskite solid solution in the BaTaO2N-CaTaO2N series. Attempts were made to densify these oxynitrides by hot-pressing and spark plasma sintering, but a characteristic of all these oxynitride structures is that they are stable up to relatively low temperatures (1250oC) with decomposition occurring before any sintering can be achieved. A reducing environment is necessary to prevent oxidation, but this must not be too reducing to promote conversion of the transition metal into a lower oxidation state. As a result, fully dense samples were not obtained and dielectric property measurements could not be made on these samples. As an alternative, pure single phase LaTiO2N, NdTiO2N and LaxNd1-xTiO2N solid solutions were prepared as » 3 μm thick surface layers on dense pellets of the corresponding La2Ti2O7, Nd2Ti2O7 and (LaxNd1-x)2Ti2O7) oxides by ammonolysis. The bulk dielectric properties of these VI coated samples were then measured by LCR bridge techniques. The presence of an oxynitride layer significantly increased the measured dielectric constant of all samples, compared with the pure oxides, but a significantly higher dielectric loss was also observed. This lossy behaviour is believed to be due to the presence of a more conductive region of reduced La2Ti2O7 (of typical composition 2 2 7 La TiIV TiIIIO -x x -z ) situated immediately below the oxynitride layer, produced during synthesis by the presence of hydrogen in the nitriding ammonia atmosphere. The dielectric constant of all these oxynitrides was also measured in particulate form by impedance analysis of slurries and the dielectric constant calculated by a method of mixtures. Compared with the parent oxides, the dielectric constants were noticeably larger, ranging from 100-1500. These values are in reasonable agreement with the limited amount of data available in the literature, and show that this group of materials merits further exploration, providing easier synthesis routes can be developed, which also result in low loss final materials being obtained.
4

Prasad, Bhagwati. "Perovskite spin filters." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Stenberg, Jonas. "Perovskite solar cells." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-137302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Perovskite solar cells (PSC) performance has risen rapidly the last few years with the current record having power conversion efficiency (PCE) of 22.1 %. This has attracted a lot of attention towards this alternative solar cell that can be manufactured with less energy and toxic material than traditional silicon solar cells. The purpose of this thesis is to reproduce high performance PSC from known recipe by Zhang et al. with potential of PCE reaching above 18 %. The thesis covers the theory regarding how a PSC operates, how they are measured and which parameters are important for a high performance PSC. The thesis includes a detailed manuscript on how to manufacture high performance PSC layer by layer and how to characterize the performance of the cells by IV-measurements. Furthermore, it includes scanning electron microscopy (SEM), by which the cells surface layers and cross-section could be evaluated. The result shows that it is possible to reproduce the PSC from literature and achieve a PCE of 18.8 %. However, the cells PCE decrease by 15 % during 2 hours of constant illumination, due to lack of stability. The manufactured PSC was used to power two catalysts that splits water into O2 and H2 and managed to reach a solar to hydrogen conversion efficiency (STHCE) of 13 %.
6

Lukose, Rasuole. "Liquid-delivery metal-organic chemical vapour deposition of perovskites and perovskite-like compounds." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2011. http://dx.doi.org/10.18452/16278.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Perowskite und Perowskit-artige Materialien sind von großem Interesse, da sie eine Vielzahl von strukturellen und physikalischen Eigenschaften haben, welche die Möglichkeit bieten, sie für unterschiedliche Anwendungen einzusetzen. Die Methode der Liquid-Delivery Metal Organic Chemical Vapour Deposition (LD-MOCVD) wurde gewählt, da sie eine gute Kontrolle über die Zusammensetzung ternärer Oxide und eine hohe Homogenität der Filme ermöglicht. Darüber hinaus können mit dieser Methode Filme hergestellt werden, die aus Elementen bestehen, für welche nur feste Precursor oder welche mit niedrigem Dampfdruck zur Verfügung stehen. Ziel dieser Arbeit war es, mit Hilfe der LD-MOCVD Filme aus SrRuO3, Bi4Ti3O12 und (Na,Bi)4Ti3O12 abzuscheiden und den Einfluss der Wachstumsbedingungen auf die Eigenschaften der Filme zu untersuchen. Zusätzlich wurde die Wirkung der Verspannung, die durch die Gitterfehlanpassung zwischen Substrat und Film entsteht, auf die physikalischen Eigenschaften der Schichten untersucht. SrRuO3 Filme wurden auf gestuften SrTiO3(001), NdGaO3(110) und DyScO3(110) Substraten gewachsen, deren Oberflächenterminierung durch oberflächensensitive Proton-induzierte Auger-Elektronen-Spektroskopie (AES) bestimmt wurde. Die Substrate wurden unter verschiedenen Bedingungen durch Änderung der Temperdauer und -atmosphäre präpariert. Die systematische Untersuchung der Beziehung zwischen Verspannung und Curie-Temperatur von dünnen SrRuO3(100) Filmen erfolgte unter Verwendung von Substraten mit unterschiedlichen Gitterkonstanten. Die beobachtete Curie-Temperatur sank mit erhöhter kompressiver Verspannung und nahm mit erhöhter tensiler Verspannung zu. Um stöchiometrische und epitaktische Bi4Ti3O12(001) Filme zu wachsen, war aufgrund der Flüchtigkeit des Bismuts ein Bi Überschuss in der Precursor-Lösung notwendig. Die Substitution von Bi durch Na in Bi4Ti3O12 wurde zum ersten Mal in LD-MOCVD-Filmen erreicht.
Perovskites and perovskite-like materials are actually of great interest since they offer a wide range of structural and physical properties giving the opportunity to employ these materials for different applications. Liquid-Delivery Metal Organic Chemical Vapour deposition (LD-MOCVD) was chosen due to the easy composition control for ternary oxides, high uniformity and good conformal step coverage. Additionally, it allows growing the films, containing elements, for which only solid or low vapour pressure precursors, having mainly thermal stability problems over long heating periods, are available. The purpose of this work was to grow SrRuO3, Bi4Ti3O12 and (Na, Bi)4Ti3O12 films by LD-MOCVD and to investigate the influence of the deposition conditions on the properties of the films. Additionally, the effect of the strain due to the lattice mismatch between substrates and films on the physical properties of the films was also investigated. SrRuO3 films were grown on stepped SrTiO3(001), NdGaO3(110) and DyScO3(110) substrates, which were prepared under different conditions by changing the annealing time and atmosphere. The termination of the substrates was measured by surface sensitive proton-induced Auger Electron Spectroscopy (p-AES) technique. Another systematic study of the relation between epitaxial strain and Curie temperature of thin SrRuO3(100) films was performed by using substrates with different lattice constants. The observed Curie temperature decreased with compressive and increased with tensile strain. Thin films of Bi4Ti3O12 as well as (Na, Bi)4Ti3O12 were successfully deposited. In order to grow stoichiometric and epitaxial Bi4Ti3O12(001) films, Bi excess in the precursor solution was necessary, due to the volatility of Bi. Substitution of Bi with Na in Bi4Ti3O12 was achieved for the first time for the films deposited by LD-MOCVD.
7

Liu, Tianyu. "Perovskite Solar Cells fabrication and Azobenzene Perovskite synthesis: a study in understanding organic-inorganic hybrid lead halide perovskite." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1576840261464488.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Liang, Xinxing. "Synthesis of perovskite nanocrystals and their applications in perovskite solar cells." Thesis, University of Bath, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.767584.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Perovskite solar cells are a very promising photovoltaic technology which was first reported in 2009 and developed very rapidly. The crystallisation within perovskite films is highly dependent on processing environments, such as temperature, humidity, atmosphere, even light, which makes the fabrication of perovskite solar cells rather lab-dependent and poorly reproducible. One strategy to overcome this problem is to develop a controlled synthesis of perovskite nanocrystals which can then be ordered into films in a separatestep. In this thesis, optimisation of planar perovskite solar cells is carried out by the engineering of perovskite film fabrication methods. Different deposition methods along with different process factors such as solvents, temperature and precursor recipes are compared. One step spin-coating method with the recipe of MAI:PbCl2=3:1 gives the best PCE of 12.1 ± 0.7 % in air with controlled humidity of < 35%, showing high reliability and reproducibility. Doping of TiO2 layers with Zn2+, Sn4+ and Nb5+ ions are carried out to investigate the impacts of doping ions in different valence states on the electron-transporting properties of TiO2 ETLs. The different doping ions shift the flat band potential differently. Zn2+ largely negatively shifts the flat band potential, whereas Nb5+ positively shifts and Sn4+ barely changes the flat band potential of TiO2. the Zn-doping of the TiO2 ETL decreases the performance of the cells. However, when a thin layer of Zn-doped TiO2 is deposited on top of the pristine TiO2 layer as interlayer, the cell efficiency is slightly improved. Following the cell optimisation, to achieve better control over the crystallisation process, a facile flow reactor is developed for the synthesis of MAPbX3 perovskite nanocrystals at low temperature, which are further used for perovskite solar cells. The nanocrystals show narrow size distribution, good emissive properties and high stability. The bandgap of the nanocrystals was easily tuned between 485-745 nm by changing the halide composition. The photoluminescence of the MAPbI3 NCs in the first supernatant can also be tuned by changing the process parameters such as temperature, residence time and ligand concentration. However the impacts are more complex in the second supernatant in toluene with the appearance of multiple peaks in the PL spectra. It could be resultedfrom the formation of smaller NCs due to the reprecipitation of the incompletely removed reactants when added into toluene, or the fragmentation of the NCs upon dispersion into toluene, but better understanding is still needed. In the last part of the thesis, the synthesised MAPbI3 nanocrystals are investigated in perovskite solar cell applications. They have been applied as interlayers at the perovskite HTM interface, where they improved the stability of the devices towards moisture. The nanocrystals and their bulk by-products are also used as active light-absorbing layers for perovskite solar cells, delivering the best PCEs of 0.51% and 1.2% respectively, and notably showing outstanding water resistance. Further improvements in the cell performance could potentially be achieved by the removal of the insulating long chain ligands using effective ligand exchange treatments.
9

Yildirim, Ceren. "Using a perovskite oxide as interfacial layer for halide perovskite optoelectronics." Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les cellules photovoltaïques et les diodes électroluminescentes pérovskites requièrent des couches d'injection/extraction de charges, qui sont cruciales pour plusieurs processus importants régissant les performances et la durée de vie. Bien que des études intensives aient été consacrées au développement de couches interfaciales innovantes de type p, des matériaux présentant des propriétés hautement ajustables et une stabilité photochimique élevée restent très recherchés. Cette thèse explore l’utilisation d’oxydes pérovskites comme couches d’interface pour des applications optoélectroniques en raison de leurs propriétés ajustables et de leur stabilité en conditions ambiantes. Des couches minces d’oxydes de pérovskites de type SrTi0.7Fe0.3O3-δ (STFO) sont utilisées comme couches d'extraction ou d'injection de charge pour les cellules solaires et les diodes électroluminescentes à base de pérovskites halogénées. En utilisant la technique de dépôt par laser pulsé (PLD), des couches minces STFO hautement cristallines ont été déposées sur des substrats en verre/FTO à des températures relativement modérées (<400 °C) par rapport aux techniques de dépôt traditionnelles. Des post-traitements thermiques, soit par traitement thermique rapide (RTP), soit par recuit thermique conventionnel (TA), ont été utilisés dans le but d’améliorer la plus grand cristalline des films polycristallins et pour ajuster leurs propriétés optiques et électroniques. Lorsqu'ils sont déposés sur la pérovskite d’oxyde, les couches d'halogénure de pérovskite de type FA0.85Cs0.15Pb(I0.85Br0.15)3 (adaptées à la conversion d'énergie photovoltaïque PV) présentent des tailles de grains plus grandes et un meilleur ordre cristallin par rapport à des films similaires déposés sur une couche interfaciale de type p de référence telle que le PEDOT:PSS commercial. De plus, la présence de l'oxyde a entraîné une nette réduction de la phase de pérovskite halogénée optiquement inactive, illustrant l’impact positif de la couche d’oxyde pérovskite sous-jacente. Les couche de STFO recuites (RTP et le TA) induisent par ailleurs une plus grande durée de vie de l’exciton dans la couche active par rapport au PEDOT :PSS. De façon similaire, la cristallisation d’une pérovskite halogénée quasi-2D de type (PEA)2(MA)PbBr4 (adaptée à la fabrication de LED) sur des couches de STFO a été réalisée avec succès, conduisant à des propriétés similaires que pour des couches références déposées sur du PEDOT:PSS. Dans ce cas, la pérovskite quasi-2D déposée sur STFO a montré une durée de vie de l’exciton relativement longue. Bien que l'intégration de couches minces de STFO dans les deux types de dispositifs ait donné lieu à des performances limitées, ce travail démontre le fort potentiel de la classe des oxydes de pérovskites pour la création de dispositifs tout-pérovskite efficaces et stables
Halide organic-inorganic photovoltaics and light-emitting diodes require suitable charge injection/extraction layers, which are crucial for several important processes governing performance and lifetime. While intensive research has been devoted to developing innovative p-type interfacial layers, materials with highly tunable properties and high photochemical stability remain in demand. This thesis explores oxide perovskites as interlayers for optoelectronic applications due to their stable physical properties under ambient conditions. SrTi0.7Fe0.3O3-δ (STFO) oxide perovskite thin film is utilized as charge extraction/injection layers for planar halide perovskite solar cells and light-emitting diodes. Using pulsed laser deposition (PLD), highly crystalline STFO thin layers on glass/FTO substrates have been successfully processed at relatively moderate temperatures (<400 °C) as compared to traditional deposition techniques. Additional thermal treatments, either by rapid thermal processing (RTP) or conventional thermal annealing, have been applied to the oxide thin films to further improve the larger crystal of the polycrystalline layers, and to tune their optical and electronic properties. When deposited on top of the oxide perovskite, FA0.85Cs0.15Pb(I0.85Br0.15)3 halide perovskite layer (suitable for photovoltaic PV energy conversion) show larger grain sizes and better crystalline order than compared to similar films deposited on top of reference p-type interlayer such as commercial PEDOT:PSS. Furthermore, the presence of the oxide resulted in a clear reduction of the fraction of optically inactive halide perovskite phase. This observation suggests that the perovskite interlayer positively impacts the growth mechanism of the halide perovskite active layer. Finally, annealed STFO layers induce longer exciton lifetime in the halide perovskite active layer, compared PEDOT:PSS. Similarly, the crystallization of the (PEA)2(MA)PbBr4 quasi-2D perovskite (suitable for light-emitting LED applications) on STFO layers was found to be of high quality, leading to comparable properties of layers deposited on top of classical PEDOT:PSS. Moreover, quasi-2D perovskite on STFO showed quite a long exciton lifetime. Although STFO thin films integrated into both halide perovskite PV and LED devices have conducted to limited performance, this work demonstrates the high potential of oxide perovskites towards efficient and stable all-perovskite devices
10

Montero, Rama María Del Pilar. "TOWARD NANOSTRUCTURED PEROVSKITE SOLAR CELLS BASED ON NANOPOROUS ANODIC ALUMINA TECHNOLOGY." Doctoral thesis, Universitat Rovira i Virgili, 2020. http://hdl.handle.net/10803/670596.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
En aquesta tesi es planteja fabricar una cel·la solar nano-estructurada de perovskita utilitzant alúmina nano-porosa anoditzada (NAA en les seves sigles en anglès) com a suport. Es va escollir la perovskita perquè les cel·les solars d'aquest material han assolit una eficiència molt similar a les cel·les existents de silici. A més a més, són barates i fàcils de preparar. El fet que la cel·la estigui nano-estructurada aportarà estabilitat davant la radiació, la temperatura i la humitat, sent aquest el principal problema d'aquests dispositius. Els nano-porus de la NAA tenen una forma cilíndrica molt ben definida on la grandària es pot controlar fàcilment sent tots els nano-porus iguals, el qual permetrà un major control sobre l'homogeneïtat del material infiltrat. Per tant l'objectiu de la tesi és aplicar la tecnologia de NAA a les cel·les solars de perovskita (CSP). Per això, primer va tenir lloc un procés de familiarització amb la fabricació i caracterització de NAA, així com dels CPSs d'alta eficiència, mitjançant mètodes estàndards coneguts. Un cop es va aconseguir la fabricació de NAA amb diferents mides de porus, la capa barrera d'alúmina que existeix entre l'alumini i el fons del porus va haver de ser eliminada, per poder aprofitar l'alumini (base de la NAA) com a contacte elèctric. Pel qual es va investigar i desenvolupar un nou mètode, ja que els mètodes existents no són adequats per eliminar la capa de barrera de gruixos superiors als 200 nm. Finalment es va estudiar la infiltració dels materials que formen una CSP en els nano-porus, mitjançant mètodes simples de deposició. Es va obtenir una cel·la solar nano-estructurada de perovskita utilitzant com a suport NAA, dels quals resultats d'eficiència són humils, pel fet que l'estructura plantejada en aquest treball és totalment innovadora. Fet que obre un ampli camí per futurs treballs.
En esta tesis se plantea fabricar una celda solar nano-estructurada de perovskita utilizando alúmina nano-porosa anodizada (NAA de sus siglas en inglés) como soporte. Se eligió la perovskita ya que las celdas solares de este material han alcanzado una eficiencia muy similar a las celdas existentes de silicio. Además, son baratas y fáciles de preparar. El hecho de que la celda este nano-estructurada aportará estabilidad frente a la radiación, temperatura y humedad, siendo este el principal problema de estos dispositivos. Los nano-poros de la NAA tienen una forma cilíndrica muy bien definida cuyo tamaño se puede controlar fácilmente siendo todos los nano-poros iguales, lo cual permitirá un mayor control sobre la homogeneidad del material infiltrado. Por lo que el objetivo de esta tesis es aplicar la tecnología de NAA a las celdas solares de perovskita (CSP). Para ello primero tuvo lugar el proceso de familiarización con la fabricación y caracterización de NAA, así como de CSPs de alta eficiencia, mediante métodos estándar conocidos. Una vez se consiguió la fabricación de NAA con diferentes tamaños de poro, la capa barrera de alúmina que existe entre el aluminio y el fondo del poro tuvo que ser eliminada, para poder aprovechar el aluminio (base de la NAA) como contacto eléctrico. Para lo cual se investigó y desarrolló un nuevo método, ya que los métodos existentes no son adecuados para eliminar capa de barrera de espesores superiores a los 200 nm. Finalmente se estudió la infiltración de los materiales que forman una CSP en los nano-poros, mediante métodos simples de deposición. Se obtuvo una celda solar nano-estructurada de perovskita utilizando como soporte NAA, cuyos resultados de eficiencia son humildes, debido a que la estructura planteada en este trabajo es totalmente novedosa. Lo cual abre un amplio camino para futuros trabajos.
In this thesis, the nanostructured perovskite solar cell manufacture using nanoporous anodic alumina (NAA) as a scaffold is proposed. The perovskite was chosen since the solar cells made with this material have achieved very similar efficiency to silicon cells. Also, they are cheap and easy to prepare. The fact that the cell will be nanostructured will provide stability against radiation, temperature and humidity, this being the main problem of these devices. The NAA nanopores have a very well defined cylindrical shape, whose size can be easily controlled, all nanopores being ident, which will allow greater control over the homogeneity of the infiltrated material. Therefore, this thesis aims to apply NAA technology to perovskite solar cells (PSCs). First, the familiarization process with the manufacture and characterization of NAA, as well as of high-efficiency PSCs, through known standard methods were carried out. Once the manufacture of NAA with different pore sizes was achieved, the alumina barrier layer that exists between the aluminium and the bottom of the nanopores had to be removed, to take advantage of the aluminium (base of the NAA) as an electrical contact. For which a new method was investigated and developed since existing methods are not suitable for removing barrier layer thicknesses greater than 200 nm. Finally, the infiltration of the materials that form a PSC within the nanopores was studied, utilizing simple deposition methods. A full working nanostructured perovskite solar cell was obtained using NAA as a scaffold, whose efficiency results are modest because the structure proposed in this work is novel. Which opens a wide path for future work.

Книги з теми "Perovskite":

1

G, Tejuca L., and Fierro, J. L. G., 1948-, eds. Perovskite oxides. New York: Marcel Dekker, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tay, Yong Kang Eugene, Huajun He, Xiangling Tian, Mingjie Li, and Tze Chien Sum. Halide Perovskite Lasers. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7973-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhou, Ye, and Yan Wang, eds. Perovskite Quantum Dots. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6637-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Arul, Narayanasamy Sabari, and Vellalapalayam Devaraj Nithya, eds. Revolution of Perovskite. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1267-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kei, Hirose, ed. Post-perovskite: The last mantle phase transition. Washington, DC: American Geophysical Union, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nie, Wanyi, and Krzysztof Iniewski, eds. Metal-Halide Perovskite Semiconductors. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-26892-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Park, Nam-Gyu, and Hiroshi Segawa. Multifunctional Organic-Inorganic Halide Perovskite. New York: Jenny Stanford Publishing, 2022. http://dx.doi.org/10.1201/9781003275930.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Park, Nam-Gyu, Michael Grätzel, and Tsutomu Miyasaka, eds. Organic-Inorganic Halide Perovskite Photovoltaics. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-35114-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wijn, H. P. J., ed. Halide Perovskite-Type Layer Structures. Berlin/Heidelberg: Springer-Verlag, 2001. http://dx.doi.org/10.1007/b79064.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Osako, Masahiro. Thermal diffusivity of MgSiO₃ perovskite. Misasa, Japan: Institute for Study of the Earth's Interior, Okayama University, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Perovskite":

1

Giorno, Lidietta, and Heiner Strathmann. "Perovskite Membranes." In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_2250-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jena, Ajay Kumar, Somayeh Gholipour, Yaser Abdi, and Michael Saliba. "Perovskite Photovoltaics." In Springer Handbook of Inorganic Photochemistry, 1267–303. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-63713-2_41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tiwari, Udit, and Sahab Dass. "Moisture Stable Soot Coated Methylammonium Lead Iodide Perovskite Photoelectrodes for Hydrogen Production in Water." In Springer Proceedings in Energy, 141–48. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractMetal halide perovskites have triggered a quantum leap in the photovoltaic technology marked by a humongous improvement in the device performance in a matter of just a few years. Despite their promising optoelectronic properties, their use in the photovoltaic sector remains restricted due to their inherent instability towards moisture. Here, we report a simple, cost-effective and highly efficient protection strategy that enables their use as photoelectrodes for photoelectrochemical hydrogen production while being immersed in water. A uniform coating of candle soot and silica is developed as an efficient hydrophobic coating that protects the perovskite from water while allowing the photogenerated electrons to reach the counter electrode. We achieve remarkable stability with photocurrent density above 1.5 mA cm−2 at 1 V versus saturated calomel electrode (SCE) for ~1 h under constant illumination. These results indicate an efficient route for the development of stable perovskite photoelectrodes for solar water splitting.
4

Middelkoop, Vesna. "Oxygen Transport Ceramic Membranes: Perovskite and Non-perovskite." In Encyclopedia of Membranes, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_1775-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ishihara, Tatsumi. "Inorganic Perovskite Oxides." In Springer Handbook of Electronic and Photonic Materials, 1. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48933-9_59.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Shabdan, Erkin, Blake Hanford, Baurzhan Ilyassov, Kadyrzhan Dikhanbayev, and Nurxat Nuraje. "Perovskite Solar Cell." In Multifunctional Nanocomposites for Energy and Environmental Applications, 91–111. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527342501.ch5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ganose, Alex. "Review: Perovskite Photovoltaics." In Springer Theses, 53–63. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55708-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ganose, Alex. "Pseudohalide Perovskite Absorbers." In Springer Theses, 65–85. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55708-9_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zdyb, Agata. "Perovskite Solar Cells." In Third Generation Solar Cells, 69–101. London: Routledge, 2022. http://dx.doi.org/10.1201/9781003196785-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Arya, Sandeep, and Prerna Mahajan. "Perovskite Solar Cells." In Solar Cells, 131–64. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-7333-0_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Perovskite":

1

Volkov, Valentyn S. "Anisotropic Photonics with Single-Crystal Halide Perovskites." In Novel Optical Materials and Applications. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/noma.2023.noth3c.7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In spite of recent advances in the field, the achievement of continuous tunability of optical anisotropy remains an outstanding challenge. Here, we present a solution to the problem through the chemical alteration of halogen atoms in single-crystal halide perovskites. Our results reveal that this anisotropy could be in-plane and out-of-plane depending on perovskite shape - rectangular and square. As a practical demonstration, we have created perovskite anisotropic nanowaveguides and shown a significant impact of anisotropy on high-order guiding modes. These findings pave the way for halide perovskites as a next-generation platform for tunable anisotropic photonics.
2

Liu, Sai, Yuwei Du, Huanfeng He, Aiqiang Pan, and Chi Yan Tso. "Durability-Enhanced Thermochromic Perovskite Smart Window for Energy-Efficient Buildings." In ASME 2023 17th International Conference on Energy Sustainability collocated with the ASME 2023 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/es2023-106197.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Thermochromic perovskite smart windows that have recently emerged can dynamically and passively change the solar transmittance as the ambient temperature changes, giving them the potential to contribute to energy saving in buildings. However, thermochromic perovskites can be easily damaged by water and moisture in the ambient air. To solve this problem, in this study, a durability-enhanced thermochromic perovskite smart window is proposed. By integrating an inorganic buffer layer and a hydrophobic nano-silica coating, the new thermochromic perovskite window demonstrates superhydrophobicity with a contact angle of 160° to repel water. And it can maintain a high solar modulation ability (Δτsol &gt; 20%) after a 45-day durability test in an ambient environment with ∼60% relative humidity, representing ∼20 times the lifespan of an unprotected thermochromic perovskite window. This new window also demonstrates an excellent optical performance with a high luminous transmittance of ∼83% in a transparent state, a high solar modulation ability (Δτsol) of ∼24%, and a low haze of ∼30%. Overall, the proposed novel window structure provides an easy and effective strategy to improve the lifespan of thermochromic perovskite, further paving the way for practical applications in energy-efficient smart windows.
3

Parida, Bhaskar, Abdul Kareem Kalathil Soopy, Hiba Shahulhameed, and Adel Najar. "Zn-Porphyrin Blended Anti-Solvent Treatment for Grain Boundary Passivation of Perovskite Solar Cells." In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/fio.2022.jtu4a.39.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We report the passivation of FA0.97MA0.03PbI3 perovskites grains by Zn-porphyrin blended anti-solvent treatment. The efficiency was improved to 16.75% because Zn-porphyrin passivated the grain-boundary defects and improved hole transport across the perovskite film.
4

Miyasaka, Tsutomu. "Development of halide perovskite photovoltaic devices towards high voltage performance." In Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.cthw4_01.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Lead halide perovskite semiconductors shows a unique defect tolerance nature that enables high efficiency in photovoltaic power conversion. For enhancing efficiency, photovoltage is the important focus of improvement in terms of energy loss on bandgap energy. Our strategy to enhance voltage output towards theoretical limit levels by compositional engineering of heterojunction interfaces is presented for organic-inorganic hybrid and all-inorganic perovskites.
5

Shrivastava, Megha, Abhinav Kala, Dmitry Dirin, Maryna I. Bodnarchuk, Venu Gopal Achanta, Maksym V. Kovalenko, and K. V. Adarsh. "Tailoring Recombination Dynamics in APbBr3 Single Crystals." In CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_si.2022.sth5i.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Herein, phonon population governed retardation of carrier-recombination and thermal expansion assisted unusual blueshift of photoluminescence is demonstrated in perovskite single crystals using temperature-dependent studies. Our results promote potential candidature of perovskites in photovoltaics.
6

Lagerbom, J., A. P. Nikkilä, M. Kylmälahti, P. Vuoristo, U. Kanerva, and T. Varis. "Phase Stability and Structure of Conductive Perovskite Ceramic Coatings by Thermal Spraying." In ITSC2008, edited by B. R. Marple, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima, and G. Montavon. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2008. http://dx.doi.org/10.31399/asm.cp.itsc2008p1091.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Perovskites are considered as potential materials in solid oxide fuel cells (SOFC) for different reasons at different parts of the fuel cells. Perovskites such as La0.8Sr0.2MnO3 (LSM) and other compositions are electrically conductive which is necessary for SOFC applications. One possible application is protection coating for interconnect plates (bipolar plate) to avoid chromium oxide evaporation from the surface of ferritic stainless steel. Different commercial and experimental perovskite powders were sprayed by plasma and HVOF spraying under different spray conditions. Spraying of pervoskites was found to be challenging and required careful parameter optimization in both spray methods. Microstructure and phase structure of the coatings were investigated. A very fine crack structure, possibly caused by low mechanical strength and low ductility of the compounds, was easily formed in coatings prepared by plasma and HVOF spraying. Spraying method, parameters and spraying atmospheres were found to affect the stability of the perovskite compounds due to low chemical stability at high spray temperatures. Oxygen deficiency or oxygen surplus was concluded to cause distortion of the compounds crystal structure, causing thus shifting of XRD-peaks due to change of lattice parameters. Electric conductivity was affected by the crystal structure.
7

P, Geetha, R. Sudarmani, C. Venkataraman, and S. Shubha. "Modeling and Verification of 1D Array Methyl Ammonium Lead Halide Perovskite Solar Cells for Electric Vehicles." In SAENIS TTTMS Thermal Management Systems Conference-2023. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-28-0026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
<div class="section abstract"><div class="htmlview paragraph">Low-dimensional materials are essential in optoelectronic, electrical, and contemporary photonics areas because of their specific properties with decreased dimensions. Low-dimensional materials are those with dimensions in the nanoscale range that are between 1 and 100 nm. Halide perovskites of low dimension can be produced inexpensively using solution-processable procedures, unlike usual semiconductor nanomaterials. Since halide perovskite in thin layers may be produced utilizing a variety of solution-based techniques like simple spin coating. It is possible to produce it with a variety of compositions using low-cost, simple, and large-scale procedures. Quantum dots, perovskite nanoplatelets, nanosheets, perovskite nanorods or nanowires, and other low-dimensional perovskites are all examples of such small-dimensional devices that have been created in a range of morphologies (two-dimensional). In this work, a 1D array of perovskite solar cells (methyl ammonium lead halide) is modeled, and a performance study is done using the Finite Element method. It is observed that the proposed 1D array of methyl ammonium lead halide perovskite solar cells gains in recombination rate from 10<sup>-2</sup> to 10<sup>8</sup>, compared to 10<sup>-11</sup> to 10<sup>-6</sup> for the Si array. In addition, other core parameters, like the open circuit voltage V<sub>oc</sub>, the short-circuit current density J<sub>sc</sub>, and peak power P<sub>max</sub>, are included. In this paper, 1-D nano technology is proposed for electric vehicles as coating material on the roofs or doors. Because of their surface to volume ratio, the throughput will serve the vehicle for its purpose.</div></div>
8

Jäger, Klaus, Sebastian Berwig, Jona Kurpiers, Fengjiu Yang, Philipp Tockhorn, Steve Albrecht, and Christiane Becker. "Optical Simulations of Perovskite/Perovskite Tandem Solar Cells." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/iprsn.2023.jm4d.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Perovskite/perovskite solar cells are a promising variety of multi-junction solar cells. Here, we present optical simulations of planar and nanotextured perovskite/perovskite solar cells with the finite element method.
9

Christians, Jeffrey A., Ashley R. Marshall, Qian Zhao, Paul Ndione, Erin M. Sanehira, and Joseph M. Luther. "Perovskite Quantum Dots. A New Absorber for Perovskite-Perovskite Tandem Solar Cells." In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). IEEE, 2018. http://dx.doi.org/10.1109/pvsc.2018.8547642.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cai, Zhuangli, Zuolin Liu, Bin Yang, Min Yang, and Shangchao Lin. "Diffusion-Mediated Anharmonic Phonon Transport and Thermal Conductivity Reduction in Defective Hybrid Perovskites." In ASME 2021 Heat Transfer Summer Conference collocated with the ASME 2021 15th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/ht2021-62601.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Hybrid metal halide perovskite is a promising material for efficient photovoltaic cells and potential thermoelectric energy conversion. This paper investigates phonon thermal transport in iodine-vacancy-defect methylammonium lead iodide (MAPbI3) perovskite using molecular dynamics simulations. The results show that the iodine vacancy defects suppress the thermal conductivity of defective MAPbI3. This effect is enhanced with increasing the defect concentration. The reduction of thermal conductivity of MAPbI3 with iodine vacancy defects compared with the pristine counterpart is mainly attributed to the enhanced phonon anharmonicity and shorter phonon relaxation time due to the phonon-defect scattering. Although iodine diffusion is observed in MAPbI3 with iodine vacancy defects, defect migration has a limited impact on mass-transfer induced convective phonon transport, while it is a source of phonon anharmonicity. This study may provide guidance for theoretical research and industrial application of as-synthesized metal halide perovskites with intrinsic defects.

Звіти організацій з теми "Perovskite":

1

Brosha, E. L., B. W. Chung, and F. H. Garzon. Electrochemical studies of perovskite mixed conductors. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/10103797.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nowicki, Suzanne Florence, Charles Olson Leak, Jeremy Tyler Tisdale, Duc Ta Vo, and Michael Duncan Yoho. Performance Characterization of Halide Perovskite Detectors. Office of Scientific and Technical Information (OSTI), February 2020. http://dx.doi.org/10.2172/1599027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mitzi, David, and Yanfa Yan. High Performance Perovskite-Based Solar Cells. Office of Scientific and Technical Information (OSTI), January 2020. http://dx.doi.org/10.2172/1582433.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Huang, Jinsong. Developing Efficient Perovskite/Silicon Tandem Devices. Office of Scientific and Technical Information (OSTI), December 2019. http://dx.doi.org/10.2172/1583171.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

McGehee, Michael. Perovskite on Silicon Tandem Solar Cells. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1830219.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

McGehee, Michael, and Tonio Buonassisi. Perovskite Solar Cells for High-Efficiency Tandems. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1420976.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chern, Ming Y., F. J. DiSalvo, J. B. Parise, and Joyce A. Goldstone. The Distortion of Anti-Perovskite Nitride AsNCa3. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada236719.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chandramouli, Deepthi, and Mary Clarke. Perovskite Sorbent Oxygen Separation Modeling with MFiX. Office of Scientific and Technical Information (OSTI), February 2022. http://dx.doi.org/10.2172/1843379.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rigdon, Katharine, and Anthony McDaniel. Solar thermochemical hydrogen production with complex perovskite oxides. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1762991.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nowick, A. Protons and lattice defects in perovskite-related oxides. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/7172698.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії