Добірка наукової літератури з теми "Penetration into a pool"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Penetration into a pool".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Penetration into a pool"

1

Tam, A. S., and D. E. Hardt. "Weld Pool Impedance for Pool Geometry Measurement: Stationary and Nonstationary Pools." Journal of Dynamic Systems, Measurement, and Control 111, no. 4 (December 1, 1989): 545–53. http://dx.doi.org/10.1115/1.3153090.

Повний текст джерела
Анотація:
The most elusive quantity in describing weld pool geometry is the depth, since it cannot be directly observed; yet it is the most important quantity to be regulated during welding. This paper addresses the problem of depth feedback measurement for full penetration welds, where the objective is to completely melt the cross section. It has been demonstrated that the existence and size of a full penetration weld can be detected by measuring the mechanical impedance of the resulting weld pool. Previous work in modeling this phenomenon has been limited to stationary welds, and experiments have either used impractical measurement methods or have not provided conclusive results. In this paper, a model of pool motion is developed that applies to both the stationary and moving weld case, and the pool motion is detected directly from changes in the arc voltage. A description of pool motion is derived from an elliptical membrane model, and the total system transfer function, including arc and pool dynamics is derived. A series of experiments demonstrates that the pool motion can indeed be detected for the moving pool case. However, the exact determination of pool oscillation frequencies requires knowledge of the pool perimeter geometry, since the elliptical system has many closely spaced eigenvalues arising from both symmetric and antisymmetric mode shapes.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhang, Y. M., L. Li, and R. Kovacevic. "Dynamic Estimation of Full Penetration Using Geometry of Adjacent Weld Pools." Journal of Manufacturing Science and Engineering 119, no. 4A (November 1, 1997): 631–43. http://dx.doi.org/10.1115/1.2831197.

Повний текст джерела
Анотація:
Control of weld penetration is currently one of the most important and crucial research issues in the area of welding. The weld pool can provide accurate and instantaneous information about the weld penetration, however, the establishment and confirmation of the correlation between weld pool and weld penetration require numerous accurate measurements and suitable geometrical modeling of weld pool. A normalized model is proposed to characterize the weld pool two-dimensionally. More than 6,000 weld pools are measured from experiments using a developed real-time weld pool sensing system. A data analysis shows that the weld penetration is correlated with the weld pool which is specified by the three characteristic parameters proposed in the study. However, the correlation is nonlinear. To approximate the complicated nonlinearity, neural networks are used. Comparative modeling trails show that the weld penetration can be more accurately calculated if the adjacent weld pools are also used. This implies that the correlation between the weld penetration and weld pool is dynamic. Hence, an on-line nonlinear dynamic estimation system is developed to estimate the weld penetration.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Carlson, N. M., and J. A. Johnson. "Ultrasonic sensing of weld pool penetration." NDT & E International 25, no. 1 (January 1992): 47. http://dx.doi.org/10.1016/0963-8695(92)90129-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chen, Tao, Songbai Xue, Peizhuo Zhai, Bo Wang, and Weimin Long. "Study on Penetration Sensing Method Based on Pool Oscillation and Arc Voltage during Pulsed GMAW." Applied Sciences 10, no. 8 (April 15, 2020): 2735. http://dx.doi.org/10.3390/app10082735.

Повний текст джерела
Анотація:
The internal relations among the oscillation characteristics of the weld pool, the voltage signal curve and the penetration status of the weld joint in pulsed gas metal arc welding were investigated by using high-speed camera and image analysis system to extract characteristics of weld pool oscillation. The results show that the amplitude of weld pool oscillation decreased with decreasing weld penetration. An abrupt change occurred in the frequency components and amplitude of weld pool oscillation, accompanying the transition from partial to full penetration. The voltage signal curve lost the oscillation frequency characteristic of the pool, due to the curvature of the weld pool surface. While similar to the oscillation amplitude, the fluctuation of the voltage signal caused by the weld pool oscillation reflected the penetration of the weld pool. The abrupt transition in the fluctuation amplitude of the voltage signal in the base duration from partial penetration to full penetration may be used to sense the penetration of the weld pool in real time.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Epstein, M., and M. A. Grolmes. "Natural Convection Characteristics of Pool Penetration Into a Melting Miscible Substrate." Journal of Heat Transfer 108, no. 1 (February 1, 1986): 190–97. http://dx.doi.org/10.1115/1.3246886.

Повний текст джерела
Анотація:
Experiments were performed to gain an understanding of the convective heat transfer process occurring in a warm liquid pool as it penetrates into an underlying meltable solid of less dense material, for the case where the molten phase of the solid and pool liquid are mutually miscible. Previous experimental work on downward melting penetration made use of warm aqueous salt solution pools overlying solid polyethylene glycol (PEG) or ice, or pools of heated organic liquids with benzene as the frozen substrate. Owing to the complexity of the melting trends observed in these studies, particularly with PEG substrates, a sufficiently definitive theory of the phenomenon has not yet emerged. As part of the present study, an attempt was made to reproduce the previous experimental results for salt-solution-pool penetration into PEG. An unexpected strong effect of initial solid PEG temperature on melting rate was uncovered for this polymer material. It was found that the unconventional melting trends reported previously at high pool-to-substrate density ratios could be eliminated if careful control of the initial PEG temperature is maintained. These new experimental data indicate that the melting of PEG by an overlying pool of heavier salt solution has much in common with classical, turbulent, thermal convection above a horizontal surface. Additional experiments were conducted which seem to support this conclusion for other pool–substrate material pairs as well.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chen, Jinsong, Jian Chen, Zhili Feng, and Yuming Zhang. "Model Predictive Control of GTAW Weld Pool Penetration." IEEE Robotics and Automation Letters 4, no. 3 (July 2019): 2762–68. http://dx.doi.org/10.1109/lra.2019.2918681.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pietrzak, K. A., and S. M. Packer. "Vision-Based Weld Pool Width Control." Journal of Engineering for Industry 116, no. 1 (February 1, 1994): 86–92. http://dx.doi.org/10.1115/1.2901813.

Повний текст джерела
Анотація:
Methods for controlling weld penetration for arc welding processes from top-side measurements have long been sought. One indirect variable that has been reported to correlate with penetration is weld pool geometry. A system which uses weld pool geometry sensing for controlling weld penetration is described in this paper. The system uses a miniature camera mounted in a modified coaxial viewing torch to view the weld pool. A robust machine vision algorithm has been developed for this system to measure weld pool width. The algorithm was designed to locate the edges of the weld pool despite the presence of other edges caused by the heat affected zone, scratches, marks, and weld pool impurities. The algorithm uses a matched edge filter and a majority voting scheme to measure the width of the pool. A control system was developed to regulate weld pool width in the presence of disturbances caused by such items as incorrect parameter settings, small variations in material composition, and material thickness changes. Experiments were conducted to test the control system by simulating some of these disturbances. The experiments demonstrated that for certain classes of materials, this technique works quite well. However, for other materials such as stainless steel 304, surface impurities in the weld pool visually obscure the weld pool and its edges to such a degree that the system fails to lock onto the edges of the pool.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cao, Z. N., Y. M. Zhang, and R. Kovacevic. "Numerical Dynamic Analysis of Moving GTA Weld Pool." Journal of Manufacturing Science and Engineering 120, no. 1 (February 1, 1998): 173–78. http://dx.doi.org/10.1115/1.2830096.

Повний текст джерела
Анотація:
A three dimensional model with a moving heat source is developed to describe heat transfer and fluid flow in transient weld pools. Full penetration and free top and bottom surfaces are incorporated in the model in order to simulate the welding process more practically. The influence of plate thickness and welding current on the dynamics of weld pools is analyzed using calculated data. It is shown that when the workpiece is nearly penetrated, the depth of weld pool increases quickly. Also, the elevation of the top surface decreases quickly once the full penetration status is established.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

JIAO, WENHUA, QIYUE WANG, YONGCHAO CHENG, RUI YU, and YUMING ZHANG. "Prediction of Weld Penetration Using Dynamic Weld Pool Arc Images." Welding Journal 99, no. 11 (November 1, 2020): 295s—302s. http://dx.doi.org/10.29391/2020.99.027.

Повний текст джерела
Анотація:
This work aims to study an improved method to predict weld penetration that is not directly observable during manufacturing but is critical for the integrity of the weld produced. Previous methods used signals acquired at a time, typically a single image or multiple images/signals from the process, to derive the penetration at that given time. Al-though deep learning appears to extract data well, analyses of weld pool physics, previous studies, and skilled weld operation all suggest that the dynamic welding phenomena give a more solid mechanism to assure the adequacy of the needed information. Therefore, this paper proposes to fuse the present weld pool arc image with two previous images, acquired 1⁄6 and 2⁄6 s earlier. The fused single image thus reflects the dynamic welding phenomena. Due to the extraordinary complexity, the weld penetration is correlated to the fused image through a convolutional neural network (CNN). Welding experiments have been conducted in a variety of welding conditions to synchronously collect the needed data pairs to train the CNN. Results show that this method improved the prediction accuracy from 92.7 to 94.2%. Due to the critical role of weld penetration and the negligible impact on system/implementation, this method represents major progress in the important field of weld penetration monitoring and is expected to provide more significant improvements during welding using pulsed current, where the process becomes highly dynamic.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kovacevic, R., and Y. M. Zhang. "Machine Vision Recognition of Weld Pool in Gas Tungsten Arc Welding." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 209, no. 2 (February 1995): 141–52. http://dx.doi.org/10.1243/pime_proc_1995_209_066_02.

Повний текст джерела
Анотація:
The weld pool and its surrounding area can provide a human welder with sufficient visual information to control welding quality. Seam tracking error and pool geometry can be recognized by a skilled human welder and then utilized to adjust the welding parameters. However, for machine vision, accurate real-time recognition of weld pool geometry is a difficult task due to the high intensity arc light, even though seam tracking errors can be detected. A novel vision system is, therefore, used to acquire quality images against the arc. A real-time recognition algorithm is proposed to analyse the image and recognize the pool geometry based on the pattern recognition technique. Despite surface impurity and other influences, the pool geometry can always be recognized with sufficient accuracy in 150 ms under different welding conditions. To explore the potential application of machine vision in weld penetration control, experiments are conducted to show the correlation between pool geometry and weld penetration state. Thus, pool recognition also provides a possible technique for front-face sensing of the weld penetration.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Penetration into a pool"

1

Chen, Yu-Ting. "REAL-TIME IMAGE PATTERN SENSOR FOR WELD POOL PENETRATION THROUGH REFLECTION IN GTAW." UKnowledge, 2018. https://uknowledge.uky.edu/ece_etds/130.

Повний текст джерела
Анотація:
In gas tungsten arc welding (GTAW), weld pool surface contains crucial information for welding development. In this research, simulate skilled welders to control the welding process and determine the penetration stages based on the weld pool reaction. This study focuses on solving the uncertainty of the liquid weld pool in joint bases. The weld pool penetration process is highly depending on how the weld pool surface shape. To observe the weld pool, reflect the weld pool surface by the laser and image on the shield glass. The experiments show that the penetration can’t be determine by the reflecting grayness due to the variability of base metal. To control the joint bases diversity, fed a tip of the wire after the arc is established. Crate the new pattern of the weld pool penetration. Experiments verified the feasibility of this method.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Janssen, Arthur. "Modeling the market penetration of passenger cars with new drive-train technologies." [Zürich], 2005. http://e-collection.ethbib.ethz.ch/ecol-pool/diss/abstracts/p15855.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Woodward, Neil J. "Pool oscillations and cast variations : penetration control for orbital tig welding of austenitic stainless steel tubing." Thesis, Cranfield University, 1997. http://dspace.lib.cranfield.ac.uk/handle/1826/4512.

Повний текст джерела
Анотація:
Pool oscillations in tungsten inert gas welding pools have been used in a closed-loop control system for orbital welding of ultra high purity tubing, determining a target level of penetration by altering the welding current in real-time. The technique is ideally suited to this application since it is does not contravene the cleanliness requirements for the inner bore and can be implemented outside the small orbital heads that are commonly used. The results presented in this thesis show how clear pool oscillation signals in extremely small molten pools can be monitored by optimising the welding conditions and signal processing of the arc voltage signal. As an indicator of the likely variation in cast behaviour present particularly in austenitic stainless steels, a 'time-to-penetrate' characterisation was made of the materials, using the time of the transition from the Mode 1 to the Mode 3 oscillation behaviour as the measured variable. By applying the test across a range of welding currents, significant insight was obtained into the cast and associated penetration behaviour. Late transitions indicated casts that exhibited significantly different responses to the more usually applied welding procedures, especially at the lower levels of welding current (highlighting their potentially more problematic penetration behaviour). It was shown that the established theoretical models were difficult to apply with certainty to moving weld pools, and consequently a fuzzy logic model was used in the control strategy. The closed-loop system comprised a user-interface PC, a control rack and commercial welding power source - control signals were applied every 2 to 3 Hz. Mode 3 pool oscillations were found to offer a more than satisfactory sensitivity to the inner bead width created for the various casts of 1.65 mm wall thickness materials studied.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yoo, Choong Don. "Effects of weld pool conditions on pool oscillation /." The Ohio State University, 1990. http://rave.ohiolink.edu/etdc/view?acc_num=osu148768624382255.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nilsson, Linette. "Swimming Pool." Thesis, Konstfack, Textil, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:konstfack:diva-5827.

Повний текст джерела
Анотація:
My project started with two words: Swimming Pool. They came to me through a song, Banshee Beat by Animal Collective (2005). To me, their music is mystical, abstract, unpredictable and also metaphorical. So I started to think about if a swimming pool could be something more than just an open container filled with water. After some thinking I came to the conclusion that it could be a metaphor for something calm, quiet and dreamy. However, I’m not sure but my aim is not to get to a specific answer through this project.  I’ll turn the metaphor into a textile work that portrays what you see when you’re standing at the edge of the swimming pool; a distorted picture of a grid, the bottom of the pool. I’ll be working with dyeing, patchwork and quilting. The textile craft is important in this project because of how relaxed and calm I get by doing things with my hands.  The questions I’m asking myself are how I can express the metaphor through my work? What if my interpretation is too wide? Is it possible for me to create a tactile and calm feeling without the physical touch?
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gao, Hongjiang. "Hypothesis testing based on pool screening with unequal pool sizes." Thesis, Birmingham, Ala. : University of Alabama at Birmingham, 2010. https://www.mhsl.uab.edu/dt/2010p/gao.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Stemple, Carrie M. "Perceptions of calf pool participants toward West Virginia calf pool organizations." Morgantown, W. Va. : [West Virginia University Libraries], 2007. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5128.

Повний текст джерела
Анотація:
Thesis (M.S.)--West Virginia University, 2007.
Title from document title page. Document formatted into pages; contains vi, 102 p. : col. ill. Vita. Includes abstract. Includes bibliographical references (p. 46-48).
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Delgado, T. Cristina, M. Ivis Vanessa Delgado, G. José Antonio Montalvo, and José Miguel Quiróz. "Chivis pub, pool lounge." Tesis, Universidad de Chile, 2005. http://www.repositorio.uchile.cl/handle/2250/114213.

Повний текст джерела
Анотація:
Tesis para optar al grado de Magíster en Administración(MBA)
No disponible a texto completo
En la actualidad el concepto de vida nocturna esta teniendo cada vez más auge en la vida de los Santiaguinos, estos buscan diversas formas de distracción ya sea en Pubs, Restaurantes u otros. Este crecimiento se ve reflejado en el sostenido aumento de las ventas de esta industria. Por ejemplo, en el primer trimestre del 2004 con relación a igual periodo del año anterior, hubo un crecimiento de un 1.3%. (Diario El Mercurio 04.10.04 ) Conjugando esta situación, con los cambios en los gustos de los consumidores, que indican que, más de un 60% de las personas, van a divertirse a Pubs y que salen en promedio dos veces a la semana, se fundamenta nuestra idea de abrir “CHIVIS”, un Pub, que ofrecerá gratos ambientes, para disfrutar y divertirse en un mismo lugar. Ambientes para degustar una comida agradable, para disfrutar de juegos como mesas de billar profesionales con asientos y muebles confortables para que los que no estén jugando puedan acompañar y disfrutar a su vez. Será la parada perfecta, para después de la oficina, almorzar, comer algo o tomar un trago, tal vez una pequeña reunión social, de negocios o para disfrutar simplemente de juegos y diversión. Todo esto es reforzado por nuestro objetivo principal, una atención personalizada, una orientación hacia el cliente “Un servicio de excelencia”. Un gran número de personas, busca un grato ambiente al momento de elegir donde ira a divertirse, igualmente otro importante numero de personas, una excelente atención al cliente, de la misma forma hay quienes prefieren un lugar con diversas posibilidades de entretención, Chivis ofrecerá esto y más. Nos enfocaremos en ejecutivos y profesionales del segmento ABC1 y C2, principalmente de las Comunas de Las Condes y Providencia los cuales cuentan con los ingresos necesarios para poder optar por opciones de entretención. Llegaremos a ellos por medio de volantes entregados en sus oficinas y en las áreas colindantes de Chivis, así como anuncios en las emisoras Universo, Tiempo y Duna. El modelo de negocio se sustenta en obtener beneficios económicos que vendrán de la venta de bebidas y comidas, las cuales estarán soportadas por el atractivo del local. Nuestra estrategia es mantener un flujo regular de nuevos clientes, los que después de probar y disfrutar de nuestro estilo Chivis, se convertirán en clientes a largo plazo, posicionando la marca de nuestro Pub. Con una inversión de M$140.885.330, de los cuales el 67% del total, equivalente a M$93.923.553, serán aportados por los socios fundadores, y el 33% restante, correspondiente a M$46.961.777, proveniente del aporte adicional de un inversionista externo. Este proyecto presenta un VAN de M$ 60.560.163, otorgándole al inversionista externo una rentabilidad sobre su inversión al primer año del 17%, y del 157% para el término de los 5 primeros años. Estamos seguros de poseer el enlace perfecto entre los atributos y el estilo “Chivis”, con un equipo que posee experiencia en este rubro y que cuenta con los conocimientos de marketing, finanzas y gestión de servicios, que nos permitirá lograr ventajas competitivas para posicionar nuestra marca y convertirla en la primera opción para los consumidores.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sapountzakis, Dimitrios. "Weld penetration control system." Thesis, University of Liverpool, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428243.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sheiretov, Yanko Konstantinov. "Deep penetration magnetoquasistatic sensors." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/16772.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2001.
Includes bibliographical references (p. 193-198).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
This research effort extends the capabilities of existing model-based spatially periodic quasistatic-field sensors. The research developed three significant improvements in the field of nondestructive evaluation. The impact of each is detailed below: 1. The design of a distributed current drive magneto resistive magnetometer that matches the model response sufficiently to perform air calibration and absolute property measurement. Replacing the secondary winding with a magnetoresistive sensor allows the magnetometer to be operated at frequencies much lower than ordinarily possible, including static (DC) operation, which enables deep penetration defect imaging. Low frequencies are needed for deep probing of metals, where the depth of penetration is otherwise limited by the skin depth due to the shielding effect of induced eddy currents. The capability to perform such imaging without dependence on calibration standards has both substantial cost, ease of use, and technological benefits. The absolute property measurement capability is important because it provides a robust comparison for manufacturing quality control and monitoring of aging processes. Air calibration also alleviates the dependence on calibration standards that can be difficult to maintain. 2. The development and validation of cylindrical geometry models for inductive and capacitive sensors. The development of cylindrical geometry models enable the design of families of circularly symmetric magnetometers and dielectrometers with the "model-based" methodology, which requires close agreement between actual sensor response and simulated response. These kinds of sensors are needed in applications where the components being tested have circular symmetry, e.g. cracks near fasteners, or if it is important to measure the spatial average of an anisotropic property. 3. The development of accurate and efficient two-dimensional inverse interpolation and grid look-up techniques to determine electromagnetic and geometric properties. The ability to perform accurate and efficient grid interpolation is important for all sensors that follow the model-based principle, but it is particularly important for the complex shaped grids used with the magnetometers and dielectrometers in this thesis. A prototype sensor that incorporates all new features, i.e. a circularly symmetric magnetometer with a distributed current drive that uses a magnetoresistive secondary element, was designed, built, and tested. The primary winding is designed to have no net dipole moment, which improves repeatability by reducing the influence of distant objects. It can also support operation at two distinct effective spatial wavelengths. A circuit is designed that places the magnetoresistive sensor in a feedback configuration with a secondary winding to provide the necessary biasing and to ensure a linear transfer characteristic. Efficient FFT-based methods are developed to model magnetometers with a distributed current drive for both Cartesian and cylindrical geometry sensors. Results from measurements with a prototype circular dielectrometer that agree with the model-based analysis are also presented. In addition to the main contributions described so far, this work also includes other related enhancements to the time and space periodic-field sensor models, such as incorporating motion in the models to account for moving media effects. This development is important in low frequency scanning applications. Some improvements of the existing semi-analytical collocation point models for the standard Cartesian magnetometers and dielectrometers are also presented.
by Yanko Sheiretov.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Penetration into a pool"

1

Gong, Shuili, Shengyong Pang, Hong Wang, and Linjie Zhang. Weld Pool Dynamics in Deep Penetration Laser Welding. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0788-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Giblin, Shawn. Evaluation of light penetration on navigation pools 8 and 13 of the upper Mississippi River. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Penetration testing. Clifton Park, NY: Course Technology, Cengage Learning, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dragicevic, Nina, and Howard I. Maibach, eds. Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53273-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dragicevic, Nina, and Howard I. Maibach, eds. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45013-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dragicevic, Nina, and Howard I. Maibach, eds. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47039-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dragicevic, Nina, and Howard I. Maibach, eds. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-47862-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sahgal, Ajay. Pool. London: Picador, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pool. San Francisco, CA: Chronicle Books LLC, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pool. 3rd ed. London: A. & C. Black, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Penetration into a pool"

1

Gong, Shuili, Shengyong Pang, Hong Wang, and Linjie Zhang. "Simulation of Transient Keyhole and Weld Pool." In Weld Pool Dynamics in Deep Penetration Laser Welding, 107–40. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0788-2_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gong, Shuili, Shengyong Pang, Hong Wang, and Linjie Zhang. "Model of Quasi-Steady Weld Pool Dynamics and Numerical Simulation." In Weld Pool Dynamics in Deep Penetration Laser Welding, 19–64. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0788-2_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gong, Shuili, Shengyong Pang, Hong Wang, and Linjie Zhang. "Dynamic Behaviors of Metal Vapor/Plasma Plume Inside Transient Keyhole." In Weld Pool Dynamics in Deep Penetration Laser Welding, 141–63. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0788-2_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gong, Shuili, Shengyong Pang, Hong Wang, and Linjie Zhang. "Behaviors of Keyhole and Weld Pool Under the Effect of Side-Blown Gas." In Weld Pool Dynamics in Deep Penetration Laser Welding, 165–82. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0788-2_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gong, Shuili, Shengyong Pang, Hong Wang, and Linjie Zhang. "Dynamical Behaviors of Keyhole and Weld Pool in Vacuum Laser Welding." In Weld Pool Dynamics in Deep Penetration Laser Welding, 253–73. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0788-2_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gong, Shuili, Shengyong Pang, Hong Wang, and Linjie Zhang. "Keyhole and Weld Pool Dynamics in Laser Welding with Filler Wires." In Weld Pool Dynamics in Deep Penetration Laser Welding, 203–51. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0788-2_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gong, Shuili, Shengyong Pang, Hong Wang, and Linjie Zhang. "Laser Welding Basics." In Weld Pool Dynamics in Deep Penetration Laser Welding, 1–18. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0788-2_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gong, Shuili, Shengyong Pang, Hong Wang, and Linjie Zhang. "Keyhole and Weld Pool Dynamics in Dual-Beam Laser Welding." In Weld Pool Dynamics in Deep Penetration Laser Welding, 183–201. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0788-2_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gong, Shuili, Shengyong Pang, Hong Wang, and Linjie Zhang. "Coupling Model and Numerical Computation Method of Keyhole and Weld Pool." In Weld Pool Dynamics in Deep Penetration Laser Welding, 65–105. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0788-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Guu, A. C., and S. I. Rokhlin. "Weld Penetration Control with Radiographic Feedback on Weld Pool Depression." In Review of Progress in Quantitative Nondestructive Evaluation, 1973–80. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5772-8_253.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Penetration into a pool"

1

Kimura, Fumihito, Hiroyuki Yoshida, Akiko Kaneko, and Yutaka Abe. "Penetration Behavior of Liquid Jet Falling Into a Shallow Pool." In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81993.

Повний текст джерела
Анотація:
Mitigation measures against severe accidents (SAs) are important from the viewpoint of safety of nuclear reactors. In some scenarios of the SAs, the core materials melt and fall into a water pool in the lower plenum as a jet. The molten material jet is broken up, and heat transfer between molten material and coolant is occurred. This process is called a fuel-coolant interaction (FCI). The aim of the present study is to clarify the liquid jet behavior falling into a shallow pool. Our focus is on the atomization conditions of a liquid jet injected into the pool with insufficient depth. In order to understand the jet behavior in a shallow pool, we performed observation of visualization with several methods and mapped observed flow regimes of jet against dimensionless numbers. As a results of observation, we succeeded visualization of internal flow.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chen, Jinsong, Jian Chen, Zhili Feng, and YuMing Zhang. "Dynamic evolution of the weld pool reflection during weld penetration development." In 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2016. http://dx.doi.org/10.1109/aim.2016.7576825.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhou, Jun, Mohammad S. Davoud, and Hai-Lung Tsai. "Investigation of Transport Phenomena in Three-Dimensional Gas Metal Arc Welding of Thick Metals." In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32686.

Повний текст джерела
Анотація:
Arc welding is generally used to join thick metals in many engineering applications. However, poor penetration often occurs due to arc heat diffusion into the base metal. Hence, arc welding of thick metals normally requires grooving and/or preheating of the base metal and sometimes requires multiple passes for very thick metals or metals with high conductivity, such as aluminum alloys. In gas metal arc welding of thick metals with grooves and preheating, complicated melt flow and heat transfer are caused by the combined effect of droplet impingement, gravity, electromagnetic force, surface tension, and plasma arc pressure. Understanding these complicated transport phenomena involved in the welding process is critical in improving the penetration depth and weld quality. In this study, mathematical models and associated numerical techniques have been developed to study the effects of grooves and preheating on melt flow, diffusion of species, and weld penetration in gas metal arc welding of thick metals. Complex melt flow, transient weld pool shape and distributions of temperature and species in the weld pool are calculated. The continuum formation is adopted to handle liquid region, mushy zone and solid region. VOF technique is used to handle transient deformed shape of weld pool surface. The preliminary results show both grooves and preheating have important effects on the melt flow in weld pool and the weld penetration. Computer animations showing the evolutions of temperature; melt flow; and the interaction between droplets and weld pool will be presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wu, Shaojie, Hongming Gao, Wei Zhang, Shaojie Wu, and Yuming Zhang. "Real-time estimation of weld penetration using weld pool surface based calibration." In IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2016. http://dx.doi.org/10.1109/iecon.2016.7793485.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fang, Junfei, Liqun Li, Yanbin Chen, and L. WU. "Wavelet analysis of plasma optical signals at pool penetration in laser welding." In Photonics Asia 2004, edited by Guoguang Mu, Francis T. S. Yu, and Suganda Jutamulia. SPIE, 2005. http://dx.doi.org/10.1117/12.575353.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Deka, Hiranya, Gautam Biswas, and Amaresh Dalal. "Formation and Penetration of Vortex Ring on Drop Coalescence." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66786.

Повний текст джерела
Анотація:
Numerical simulations are performed using coupled level-set and volume of fluid (CLSVOF) method to capture the formation and propagation of a vortex ring when a drop coalesces at the interface of a pool of same liquid and a lighter liquid resting above it. A Vortex ring is generated near the interface on coalescence of a drop. Subsequently the vortex ring propagates into the liquid pool. The propagation of a vortex ring and its dependence on the shape as well as impact velocity of the drop are investigated in this work.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fabbro, Rémy, Sonia Slimani, Frédéric Coste, and Francis Briand. "Characteristic melt pool hydrodynamic behaviors for CW Nd-YAG deep penetration laser welding." In PICALO 2008: 3rd Pacific International Conference on Laser Materials Processing, Micro, Nano and Ultrafast Fabrication. Laser Institute of America, 2008. http://dx.doi.org/10.2351/1.5057001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yamamoto, Shinji, Taira Momii, Toru Iwao, and Motoshige Yumoto. "Penetration depth in welding pool affected by current increment ratio in pulsed arc." In 2014 IEEE 41st International Conference on Plasma Sciences (ICOPS) held with 2014 IEEE International Conference on High-Power Particle Beams (BEAMS). IEEE, 2014. http://dx.doi.org/10.1109/plasma.2014.7012514.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Shi, Yu, Gang Zhang, Chunkai Li, Yufen Gu, and Ding Fan. "Weld pool oscillation frequency in pulsed gas tungsten arc welding with varying weld penetration." In 2015 IEEE International Conference on Automation Science and Engineering (CASE). IEEE, 2015. http://dx.doi.org/10.1109/coase.2015.7294111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fabbro, Rémy, El-Hachemi Amara, Saïd Boudjemai, and Djamila Doumaz. "Dynamic Approach Of The Keyhole And Melt Pool Behavior For Deep Penetration Nd-Yag Laser Welding." In LASER AND PLASMA APPLICATIONS IN MATERIALS SCIENCE: First International Conference on Laser Plasma Applications in Materials Science—LAPAMS’08. AIP, 2008. http://dx.doi.org/10.1063/1.2999933.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Penetration into a pool"

1

Young, C. W. Penetration equations. Office of Scientific and Technical Information (OSTI), October 1997. http://dx.doi.org/10.2172/562498.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Glode, Vincent, Christian Opp, and Ruslan Sverchkov. To Pool or Not to Pool? Security Design in OTC Markets. Cambridge, MA: National Bureau of Economic Research, June 2020. http://dx.doi.org/10.3386/w27361.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wiemer, G. Cone penetration testing. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2016. http://dx.doi.org/10.4095/297874.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Segletes, Steven B. Homogenized Penetration Calculations. Fort Belvoir, VA: Defense Technical Information Center, May 1996. http://dx.doi.org/10.21236/ada307838.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Research Institute (IFPRI), International Food Policy. Africa's agricultural research pool. Washington, DC: International Food Policy Research Institute, 2014. http://dx.doi.org/10.2499/9780896298460_04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Abraham, David D., Mark A. Cowan, Jon S. Hendrickson, William M. Katzenmeyer, Kevin J. Landwhr, and Thad C. Pratt. Effects of Pool Drawdown and Wing Dams (Pool 8), and Closure Damns (Pool 13), on Navigation Channel Sedimentation Processes, Upper Mississippi River. Fort Belvoir, VA: Defense Technical Information Center, April 2006. http://dx.doi.org/10.21236/ada447295.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mandell, D. A. Prediction of alumina penetration. Office of Scientific and Technical Information (OSTI), February 1993. http://dx.doi.org/10.2172/6447668.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wright, Thomas W., and Konrad Frank. Approaches to Penetration Problems. Fort Belvoir, VA: Defense Technical Information Center, December 1988. http://dx.doi.org/10.21236/ada201104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Forrestal, M. J., J. D. Cargile, and R. D. Y. Tzou. Penetration of concrete targets. Office of Scientific and Technical Information (OSTI), August 1993. http://dx.doi.org/10.2172/10180160.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Knight, Earl E., Esteban Rougier, and Aleksander Zubelewicz. Pathway Controlled Penetration (PcP). Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1050008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії