Добірка наукової літератури з теми "PCB printed circuit board"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "PCB printed circuit board".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "PCB printed circuit board"

1

Petkov, Nikolay, and Malinka Ivanova. "Printed circuit board and printed circuit board assembly methods for testing and visual inspection: a review." Bulletin of Electrical Engineering and Informatics 13, no. 4 (August 1, 2024): 2566–85. http://dx.doi.org/10.11591/eei.v13i4.7601.

Повний текст джерела
Анотація:
Testing and visual inspection of printed circuit boards (PCBs) and printed circuit board assemblies (PCBAs) are important procedures in the manufacturing process of electronic modules and devices related to locating and identifying possible defects and failures. Earlier defects detection leads to decreasing expenses, time and used resources to produce high quality electronics. In this paper an exploration and analysis about the current research regarding methods for PCB and PCBA testing, techniques for defects detection and vusial inspection is performed. The impact of machine and deep learning for testing and visual inspection procedures is also investigated. The used methodology comprises bibliometric approach and content analysis of papers, indexed in scientific database Scopus, considering the queries: “PCB and testing” and “PCB and testing”, “printed circuit board assembly and testing” and “PCBA and testing”, “PCB defect detection” and “PCBA defect detection”, “PCB and visual inspection”, and “PCBA and visual inspection”. The findings are presented in the form of a framework, which summarizes the contemporary landscape of methods for PCBs and PCBAs testing and visual inspection.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hsia, Kuo-Hsien, and Jr-Hung Guo. "Estimation of the PCB Production Process Using a Neural Network." Proceedings of Engineering and Technology Innovation 15 (April 27, 2020): 01–07. http://dx.doi.org/10.46604/peti.2020.4265.

Повний текст джерела
Анотація:
Printed Circuit Boards (PCB) are an integral part of all electronic products, and the production process for printed circuit boards is quite complex. As the life cycle of electronic products becomes shorter and shorter, and the precision and signal bandwidth of electronic products become higher and higher, the manufacturing process of printed circuit boards is further complicated. Therefore, how to pre-evaluate the production difficulty before starting the production will effectively increase the efficiency and quality of printed circuit board production. Gerber file is the most commonly used data format for the printed circuit board industry. This file contains most of the parameters required for the manufacture of printed circuit boards. Therefore, this study uses a neural network to evaluate new PCB products before they are produced through the production parameters that are more influential in the PCB manufacturing process. This makes it possible to evaluate the difficulty and the required production process before the new PCB product is produced. This will be very beneficial for the PCB production schedule, quality control, and cost.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Khan, Noor Mohmmed, Shubhangi Patil, Tushar Diggewadi, and Anand Gudnavar. "Cinch and Sterling Analog Circuits for Laboratory." International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 6, no. 01 (June 25, 2017): 51–58. http://dx.doi.org/10.15662/ijareeie.2017.0601007.

Повний текст джерела
Анотація:
As we know that there is ever increasing demand for compact circuits and less complex wirings over the board, a technological boon evolved for such demand is Printed Circuit Board (PCB). A PCB will mechanically supports and electrically connects electronic components using conductive tracks, pads. These boards will have minimal chances for short circuits, components on the board are fixed; another advantage is creation of multiple boards using single design. Taking this technology forward to our everyday life, we implemented analog communication laboratory circuit, Schmitt trigger.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Noor Yulita Dwi Setyaningsih, Moh Rizal, and Budi Cahyo Wibowo. "CNC Plotter Printed Circuit Board." Jurnal Media Elektrik 21, no. 2 (May 8, 2024): 116–22. http://dx.doi.org/10.59562/metrik.v21i2.2145.

Повний текст джерела
Анотація:
Prited Circuit Board is one part of the field of electronics that has many roles and benefits. This automatic PCB path manufacturing will provide many benefits to users that were previously still done manually. In this research, the PCB carving process will be operated using G-Code and GRBL controller to control the machine. The use of 3 stepper motors will provide a good carving composition in terms of x, y and Z axis movements, as well as the use of spindles for drill bit control that functions to carve PCB layouts. From the results, the PCB path manufacturing process is faster and has the accuracy of the specified design
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lambture, Rahul. "Printed Circuit Board (PCB) Fault Detection." International Journal for Research in Applied Science and Engineering Technology 12, no. 6 (June 30, 2024): 542–48. http://dx.doi.org/10.22214/ijraset.2024.63142.

Повний текст джерела
Анотація:
Abstract: Nowadays many industries heavily depend on devices, those, with printed circuit boards (PCBs) to function properly. However issues like connections, damaged components or short circuits can cause malfunctions that result in downtime and financial losses. It is crucial to identify and resolve thesePCB faults to maintain the operation of electronic systems. On average businesses experience a 23% decrease in productivity due to PCB faults. One of the contributors to this problem is the lack of detection and resolution. To tackle this issue we propose an approach using machine learning techniques for PCB fault detection. Our solution harnesses the power of Web Machine Learning to implement a real time model for detecting PCB faults. By utilizing TensorFlow.js – a JavaScript library for training and deploying machine learning models in web browsers – we can provide instant feedback on the health of PCBs
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wang, Qianyue. "A new frontier in electronics manufacturing: Optimized deep learning techniques for PCB image reconstruction." Applied and Computational Engineering 51, no. 1 (March 25, 2024): 267–73. http://dx.doi.org/10.54254/2755-2721/51/20241591.

Повний текст джерела
Анотація:
In the rapidly evolving electronics manufacturing sector, maintaining quality control and conducting failure analysis of Printed Circuit Boards (PCBs) are critical yet challenging tasks. This study presents a groundbreaking self-supervised learning framework to address existing gaps in the reconstruction of encoded or blurred Printed Circuit Board images. By leveraging a customized DeepLabV3+ architecture with depth-wise separable convolutions, our model is engineered to autonomously learn intrinsic Printed Circuit Board features, eliminating the need for manual data labeling. This not only alleviates computational burden but also ensures robust performance. Augmented by feature quantization and channel reduction techniques, our model stands out as both lightweight and resilient, making it highly adaptable for Printed Circuit board imaging. To validate the framework, a tailored dataset comprising raw and encoded Printed Circuit board images from diverse sources was assembled and further refined to match real-world industrial standards. Our model demonstrates unparalleled efficacy in Printed Circuit board image reconstruction, establishing a new benchmark for the field.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Myers, Sharon A., Troy D. Cognata, and Hugh Gotts. "FTIR analysis of printed-circuit board residue." Proceedings, annual meeting, Electron Microscopy Society of America 54 (August 11, 1996): 264–65. http://dx.doi.org/10.1017/s0424820100163782.

Повний текст джерела
Анотація:
Logic boards were failing at Enhanced Mac Minus One (EMMO) test or Integrated Circuit Test (ICT) after printed circuit board (PCB) rework. The failure to boot was originally traced to a suspected bad microcontroller chip. Replacing this chip, or an oscillator tied to the microcontroller circuit, did not consistently solve the boot problem. With further testing, it was found the microcontroller circuit was very sensitive to resistance and was essentially shorted.A resistor in the microcontroller circuit was identified on the flip side of the PCB. Several areas on the board, including the resistor R161, were seen to have a slight white haze/ low gloss appearance on the surface of the PCB. To test if the residue was electrically conductive, five boards were selected whose sole failure was R161. The resistance of the individual resistors was measured with a digital multimeter (DMM). The resistor was then cleaned with isopropyl alcohol and a cotton swab. Each board was retested at ICT and the individual resistors measured again with a DMM. Cleaning the area surrounding the resistor with isopropyl alcohol, corrected the failure four of the times.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Craven, Jeffery D., Ariel R. Oldag, and Robert N. Dean. "A Technique for Detecting Moisture Absorption in Printed Circuit Boards." Journal of Microelectronics and Electronic Packaging 17, no. 1 (January 1, 2020): 28–33. http://dx.doi.org/10.4071/imaps.1014123.

Повний текст джерела
Анотація:
Abstract Most circuit boards operate in environments that have the potential to be exposed to moisture, either in vapor or liquid form. Because low-cost circuit boards can readily absorb moisture, this can lead to performance issues, reliability issues, and even catastrophic failure. However, it is difficult to detect if moisture absorption has occurred before the circuit board suffers a complete failure. To alleviate this issue, a fringing field capacitor was implemented in printed circuit board (PCB) technology and used to detect the absorption of moisture in the circuit board through the accompanying increase in capacitance. Prototype sensors were fabricated and immersed for 42 d, demonstrating an increase in capacitance of between 14% and 29%. This sensor technology can easily be added to circuit board designs because they use the standard materials and fabrication processes used in commercial PCB construction.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Umbetov, S. V., and S. P. Pronin. "COMPREHENSIVE METHOD FOR MONITORING PCB CORROSION PROCESS." Kontrol'. Diagnostika, no. 309 (March 2024): 50–57. http://dx.doi.org/10.14489/td.2024.03.pp.050-057.

Повний текст джерела
Анотація:
Experimental studies of corrosion penetration into printed circuit boards of laboratory samples are presented. Conditions similar to those ignited in contact with sea water were recreated and a series of experiments were carried out with each printed circuit board of the device. The results of laboratory studies of the relationship between corrosion of conductive tracks and their resistance according to the ratio of color components in a digital image of the corroded surface of a printed circuit board track are presented. The histogram of the distribution of pixels by color for photographs clearly shows that green will usually always predominate, since it is the main color of the PCB mask, but the corrosion itself is characterized by red. Measuring the resistance of the tracks during the experiment allows us to determine the effectiveness of protecting the mask on the printed circuit board from corrosion and assess the quality of the metallization process and application of the mask. In this case, we can say that there is a linear relationship between the variables, which corresponds to experimental data. A theoretical analysis of the factors influencing the change in the brightness of RGB components in the image of a corroded surface and the resistance of the conductive path has been carried out..
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Schmidt, H., M. Käß, R. Lichtinger, and M. Hülsebrock. "Model updating for the simulation of surface strains on printed circuit boards considering parameter uncertainty." Journal of Physics: Conference Series 2647, no. 21 (June 1, 2024): 212006. http://dx.doi.org/10.1088/1742-6596/2647/21/212006.

Повний текст джерела
Анотація:
Abstract The efficient and reliable design of power electronic components plays an important role in the development process of electrically driven vehicles. One key aspect is the reliability of solder joints on printed circuit boards (PCB) that greatly depends on the surface strain at the solder joint locations. It is therefore unavoidable to use precise simulations of surface strains to reliably estimate the solder joint lifetime. This work presents a procedure of model updating of a printed circuit board model that considers the variability of board behavior due to uncertainties in the material composition or the manufacturing process. Hierarchical Bayesian model updating is applied to incorporate this variability. The printed circuit board is seen as a multi-level model that is updated in two steps. Experimental data from system and component level are used to sequentially update the printed circuit board and the board mounting. The experimental data combine modal information and measured frequency response functions. The proposed procedure is applied to a test PCB and the updated model is validated with experimental surface strain data.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "PCB printed circuit board"

1

Chan, Ching-Yuen. "Cell controller for printed circuit board assembly rework." Thesis, University of Salford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386432.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, Lei. "Printed Circuit Board Design for Frequency Disturbance Recorder." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/30917.

Повний текст джерела
Анотація:

The FDR (Frequency Disturbance Recorder) is a data acquisition device for the power system. The device is portable and can be used with any residential wall outlet for frequency data collection. Furthermore, the FDR transmits calculated frequency data to the web for access by authorized users via Ethernet connection. As a result, Virginia Tech implemented Frequency Monitoring Network (FNET) with these FDR devices. FNET is a collection of identical FDRs placed in different measurement sites to allow for data integration and comparison. Frequency is an important factor for power system control and stabilization. With funding and support provided by ABB, TVA and NSF the FDRs are placed strategically all over the United States for frequency analysis, power system protection and monitoring.

The purpose of this study is to refine the current FDR hardware design and establish a new design that will physically fit all the components on one Printed Circuit Board (PCB). At the same time, the software that is to be implemented on the new board is to be kept similar if not the same as that of the current design. The current FDR uses the Axiom CME555 development board and it is interfaced to the external devices through its communication ports. Even through the CME555 board is able to meet the demands of the basic FDR operations, there are still several problems associated with this design. This paper will address some of those hardware problems, as well as propose a new board design that is specifically aimed for operations of FDR.


Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sandron, Marco. "Mils - Stampante per la creazione di PCB (printed circuit board) con polimero." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19757/.

Повний текст джерела
Анотація:
Nella mia carriera universitaria mi sono imbattuto in progetti che necessitavano di un circuito elettronico che in alcuni casi costituiva una parte fondamentale e che veniva valutata. Per la realizzazione di questi circuiti è stata utilizzata l’elettronica open source, di conseguenza è stato necessario collegare tra di loro varie schede e anche alcuni componenti. Questi collegamenti non potevano essere eseguiti solo con semplici cavi elettrici ma necessitavano si supporti fisici anche per posizionare in modo ordinato i componenti e sono state utilizzate perciò basette millefori. I collegamenti eseguiti con cavi elettrici occupano spazio e rendono difficoltose le riparazioni in caso di guasto o mal funzionamento inoltre la qualità finale del circuito creato con le basette millefori sono una problematica nel realizzare circuiti per una piccola serie. Ho voluto quindi trovare una soluzione per questo, pensando a qualcosa di economico, rapido e facile da utilizzare, con una certa qualità del prodotto finale. Nella fase di ricerca ho notato che questa problematica è presente anche all’interno dei FabLab, dove la prototipazione, la personalizzazione e la piccola serie sono questioni fondamentali. Qui le tecnologie non sono poche (pantografo CNC, la stampante 3D e taglio laser) e quindi ho cercato di capire se la soluzione per risolvere il problema potesse essere già presente o derivare da quelle presenti, ponendomi in un’ottica di riciclo e riutilizzo a fine vita del circuito e dei sui componenti. La soluzione finale ne riprende la tecnologia base, le forme e i componenti fisici ed elettronici e utilizza una tipologia di materiale per la costruzione dei collegamenti tra i vari componenti elettronici, che è presente e utilizzato ampiamente all’interno dei FabLab, in varie tipologie e con varie caratteristiche. Questa può condurre corrente solo se opportunamente trattato, perché naturalmente ha l’effetto opposto cioè quello di isolare, si tratta del filamento di polimero.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

maamoun, Adam. "A SURROGATE MEASURE OF CUSTOMER SATISFACTION IN THE MANUFACTURE OF PRINTED WIRING BOARDS." Doctoral diss., University of Central Florida, 2008. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2428.

Повний текст джерела
Анотація:
The objective of this research is to determine and develop a model that is capable of accurately measuring customer satisfaction for different industries and in particularly for the Printed Wiring Boards (PWB) Manufacturers. The new model will incorporate data not being collected or utilized by the survey method of determining customer satisfaction. The method used is a weighted average of satisfaction among several researched categories with percentages that accurately represent the relative importance of multiple facets of the PWB manufacturers customer satisfaction. A very common term in quality assurance is that "What is not measured accurately can not be evaluated or managed correctly," thus customer satisfaction is a very important aspect of any business, industry, or government. A satisfied customer will do more business and recommend it to other potential customers. Thus the business will grow and more revenues result. On the other hand, an unsatisfied customer will abandon the business and encourage more customers not to get involved with the same business so the business may decline and lose its market share and profitability. The categories that contribute to PWB customer satisfaction will be determined by conducting surveys among the leaders and best in the business of the PWB industry in addition to discovery of related articles that define the categories of the customer satisfaction for the PWB manufacturers. Once the categories are determined, the research concentrates on the weighting of the categories that most contribute to the PWB customer's satisfaction and a measure of satisfaction is derived. The model is easily applied to any other kind of PWB business or service industry. The model is based on empirical methods that will give an accurate measurement for the PWB customer's satisfaction. This in turn allows organizations the opportunity for improving customer satisfaction and increasing market share. The algorithm is based on characteristics deemed important by customers. Thus the customer satisfaction index can be computed and monitored on a regular basis without costly surveys. The major difference between this new model and the standard methods of determining customer satisfaction using the surveys is that this model will utilize data available with the proposals, sales, shipping, receiving, quality, engineering, manufacturing, and purchasing departments. The developed method to measure customer satisfaction utilizing internal data can be more cost effective, more accurate, can provide individual customer satisfaction scores, can measure whether or not these individual scores are statistically lower than the majority, and can provide satisfaction measures in real time none of which can be supplied by the survey method.
Ph.D.
Department of Industrial Engineering and Management Systems
Engineering and Computer Science
Industrial Engineering PhD
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rajagopal, Abhilash. "Printed circuit board (PCB) loss characterization up-to 20 GHz and modeling, analysis and validation." Diss., Rolla, Mo. : University of Missouri-Rolla, 2007. http://scholarsmine.umr.edu/thesis/pdf/Rajagopal_09007dcc803bf920.pdf.

Повний текст джерела
Анотація:
Thesis (M.S.)--University of Missouri--Rolla, 2007.
Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed November 26, 2007) Includes bibliographical references (p. 112-113).
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Subbarayan, Guhan. "A systematic approach for selection of best PB-free printed circuit board (PCB) surface finish." Diss., Online access via UMI:, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ahmed, Ahmed Sabry Eltaher. "High-performance cooling of power semiconductor devices embedded in a printed circuit board." Electronic Thesis or Diss., Lyon, INSA, 2024. http://www.theses.fr/2024ISAL0100.

Повний текст джерела
Анотація:
L'intégration de dispositifs semi-conducteurs de puissance dans un circuit imprimé (PCB) est une solution prometteuse pour réduire les éléments parasites des circuits, simplifier le packaging des dispositifs et réduire les coûts. Cependant, la réduction continue de la taille des puces semi-conductrices, combinée à la faible conductivité thermique des couches diélectriques des PCB nécessitent des solutions de gestion thermique plus efficaces. Les solutions de gestion thermique et de refroidissement doivent offrir une faible résistance thermique entre la jonction de la puce et son environnement, et être capables de gérer une densité de puissance élevée au niveau de la puce sans dépasser la limite supérieure de la température de jonction de la puce. La plupart des dispositifs en silicium sont limités à 175°C. L'objectif de cette thèse est d'atteindre une densité de puissance de 1000 W/cm² sans dépasser la limite de température de jonction de 175°C. Cet objectif est contraint par d'autres considérations telles que la faible consommation d'énergie, la taille et le poids, la haute fiabilité, le faible coût et un entretien minimal. Enfin, les solutions de refroidissement étudiées ici doivent être compatibles avec les processus de fabrication des PCB et la technologie d'intégration, car nous visons à les appliquer aux puces intégrées dans les PCB. Dans ce projet de recherche, deux solutions de gestion thermique sont étudiées. Tout d'abord, un dissipateur de chaleur en graphite avec une haute conductivité thermique (1300 W/(m.K) dans le plan, et 15 W/(m.K) hors plan) est intégré dans le PCB. Deuxièmement, une solution d'extraction de chaleur basée sur la technique de refroidissement par jet d'eau impactant est mise en œuvre pour collecter la chaleur à la surface du PCB. Pour la solution de dissipation de chaleur, les valeurs des résistances thermiques jonction-environnement et jonction-boîtier (RthJA et RthJC, respectivement), des variantes de PCB avec des diodes et des puces MOSFET intégrées, sont réduites jusqu'à 38 % pour RthJA et 30 % pour RthJC, d'après les mesures. Pour la solution d'extraction de chaleur, le refroidisseur à jet d'eau (JIC) présenté réduit expérimentalement RthJA de 33 % par rapport à une plaque froide conventionnelle. Le coefficient de transfert de chaleur effectif (HTC) du JIC est calculé par simulations et s'élève à environ 43 kW/(m².K) avec une chute de pression de 9,7 kPa. Cette performance permet d'atteindre une densité de puissance de 865 W/cm² sans dépasser la limite de température de jonction de 175°C. Augmenter la conductivité thermique de la couche isolante par un facteur de 10 permettra d'atteindre 993 W/cm² (très proche de l'objectif de 1000 W/cm²)
The integration of power semiconductor devices within a printed circuit board (PCB) stack is a promising solution to reduce circuit parasitics, simplifying device packaging, and lowering costs. However, the continuous reduction in the chip size of the semiconductors, combined with the low thermal conductivity of the dielectric layers of PCBs, present more thermal challenges, and require more efficient thermal management solutions. The thermal management and cooling solutions must offer low thermal resistance between the chip junction and its environment and be capable of handling a high-power loss density at the chip level without exceeding the upper limit of the chip junction temperature. Most silicon devices are limited to 175°C to account for the temperature limits of packaging materials. The ultimate goal of this thesis is to achieve a power-loss density of 1000 W/cm² without exceeding the junction temperature limit of 175°C. This goal is constrained by other considerations such as low power consumption, compact size and weight, high reliability, low cost, and minimal maintenance. Finally, the cooling solutions studied here must be compatible with PCB manufacturing processes and embedding technology, as we aim to apply them to chips integrated into PCBs. In this research project, two thermal management solutions are studied. First, a graphite heat spreader with high thermal conductivity (1300 W/(m.K) in-plane, and 15 W/(m.K) cross-plane) is integrated into the PCB stack. Second, a heat extraction solution based on water jet impingement cooling technique is implemented to collect heat at the PCB surface. For the heat spreading solution, the junction-to-ambient and junction-to-case thermal resistances values (RthJA and RthJC, respectively) of the PCB variants with embedded diodes and MOSFET chips, are reduced by up to 38 % in RthJA and 30 % in RthJC. For the heat extraction solution, the presented water jet cooler (JIC) experimentally reduces RthJA by 33% compared to a conventional cold plate. The effective heat transfer coefficient (HTC) of the JIC is calculated through simulations and found to be about 43 kW/(m².K) with a pressure drop of 9.7 kPa. This performance allows achieving a power loss density of 865 W/cm² without exceeding the junction temperature limit of 175°C. Increasing the thermal conductivity of the isolation layer by 10 times will allow to reach 993 W/cm² (very close to the target of 1000 W/cm²)
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Caillaud, Rémy. "Integration of a 3.3 kW, AC/DC bidirectional converter using printed circuit board embedding technology." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI001/document.

Повний текст джерела
Анотація:
Les énergies fossiles (Pétrole, Charbon, …) représentent 80 % des énergies consommés. Malheureusement pour l’environnement, elles sont les plus polluantes. Le remplacement actuel des énergies fossiles permet au marché de l’électronique de puissance de grandir d’année en année. L’électronique de puissance permet d’adapter l’énergie électrique à son utilisation finale. Dans la pratique, l’adaptation de l’énergie électrique utilise des convertisseurs. En plus de respecter le volume, l’efficacité et la fiabilité imposés par le cahier des charges pour chaque application, l’électronique de puissance doit aussi permettre de réduire sensiblement les coûts. Le convertisseur doit assurer le fonctionnement électrique du circuit, le support mécanique des composants et la gestion thermique. Le package utilisé par les nouveaux composants à grand gap limite leurs performances. L’intégration des convertisseurs doit développer des méthodes d’interconnexion permettant d’éliminer ce package. L’objectif de la recherche sur l’intégration des convertisseurs est de repousser les limites imposées par un cahier des charges standard tout en assurant ces 3 fonctions principales. Parmi les nombreuses techniques d’intégration, le circuit imprimé (PCB) est mature industriellement, permet la fabrication collective et un assemblage automatisé. L’intégration utilisant le PCB a développé la technique d’enfouissement de puce avec laquelle la puce est directement enfouie dans le PCB sans son package. Cette thèse va étudier la méthode d’enfouissement pour les autres composants nécessaires à la réalisation d’un convertisseur (Condensateurs, Composants Magnétiques). Une optimisation du convertisseur qui doit être réalisé permet de prendre en compte les avantages de cette nouvelle technologie. Un prototype de convertisseur intégré a été réalisé avec des composants utilisant cette technologie
With the endangering of the environment due to the use of fossil fuels, the power electronics market is growing through the years. The number of applications is increasing in numerous field as, for example, transport (electric car, "more electric" aircraft) or energy (photovoltaic, smart grid). Beyond meeting the volume, efficiency and reliability specifications for each application, power electronics should also reduce substantially costs. Today, the managing of the electric energy uses power electronic converters. The conception of a converter is a multiphysic problem. The converter has to ensure electrical functionality, mechanical support and proper thermal management.The new wide-band gap components are limited in performance by their package. The integration of a converter should use new interconnection methods to avoid the use of packaged components. The trend is to integrate the maximum of components into a single system. This integration can offer benefits such as size and weight reduction, cost saving and reliability improvement by managing the complexity and the high density of interconnection. Among many integration technologies available, Printed Circuit Board (PCB) is well known in the industry, allowing mass production with automated manufacturing and assembly. The PCB integration was developed with the “Die Embedding” technology in which a bare die in embedded directly in the PCB to not use package. This thesis studied the embedding technology on others components necessary to the realization of a converter (Capacitors, Magnetics, …). An optimization of the converter is done taking into account the advantages of this new technology. A prototype of an AC/DC bidirectional converter fully integrated using this technology was realized
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, Jingbing. "On flexibly integrating machine vision inspection systems in PCB manufacture." Thesis, Loughborough University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314613.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Machuca, Julían, and Thomas Tuvesson. "PCB design of Power Distributor Unit (PDU)." Thesis, Uppsala universitet, Institutionen för elektroteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-415474.

Повний текст джерела
Анотація:
The project idea was created from the demand of a renewal for a Power Distributor Unit also known as a PDU. The current product had successively turned in to a cable mess because of short term solutions. This made the product non user friendly, inconvenient and non-agile to handle troubleshooting. To develop this project, a PCB design was created by simplifying and improving circuit diagrams until satisfied. Once the final circuit diagram was obtained, a PCB layout design was created. The result of the project, due to limited time, was only theoretical. The finished product was not tested as there was no time allowing this.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "PCB printed circuit board"

1

Beaulieu, Dan. Printed circuit board basics: An introduction to the PCB industry. 4th ed. Atlanta, GA: UP Media Group, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Theresa, Kiko, ed. Printed circuit board basics: An introduction to the PCB industry. 2nd ed. San Francisco: Miller Freeman, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Laura, Scholten, ed. PCB preproduction tooling: Preproduction automation and intelligent tooling for printed circuit board manufacturing. San Francisco: Miller Freeman Books, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hossain, Akram. Computer-aided electronic circuit board design and fabrication: Using OrCAD/SDT and OrCAD/PCB software tools. Englewood Cliffs, N.J: Prentice Hall, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Stanton, Martin Gray. Printed circuit board manual: How to design, make and assemble top quality PCBs using inexpensive equipment. Birmingham: Frank Stanton, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Noble, P. J. W. Printed circuit board assembly. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-6234-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

W, Jawitz Martin, ed. Printed circuit board materials handbook. New York: McGraw-Hill, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Castrovilla, Joseph A. The printed circuit board industry. Stamford, Conn., U.S.A: Business Communications Co., 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

inc, International Resource Development, ed. Printed circuit board market opportunities. Norwalk, Conn., U.S.A. (6 Prowitt St., Norwalk 06855): International Resource Development Inc., 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Montrose, Mark I. EMC and the Printed Circuit Board. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1998. http://dx.doi.org/10.1002/047172310x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "PCB printed circuit board"

1

Archambeault, Bruce R. "Printed Circuit Board Layout." In PCB Design for Real-World EMI Control, 187–97. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3640-3_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pau, L. F. "Printed Circuit Board (PCB) Inspection." In Computer Vision for Electronics Manufacturing, 141–60. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0507-1_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tran, Thanh T. "Printed Circuit Board (PCB) Layout." In High-Speed DSP and Analog System Design, 187–94. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6309-3_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tran, Thanh T. "Printed Circuit Board (PCB) Layout." In High-Speed System and Analog Input/Output Design, 193–202. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04954-5_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ning, Chao, Carol Sze Ki Lin, David Chi Wai Hui, and Gordon McKay. "Waste Printed Circuit Board (PCB) Recycling Techniques." In Topics in Current Chemistry Collections, 21–56. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-90653-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dumpert, Dwight T. "Infrared Techniques for Printed Circuit Board (PCB) Evaluation." In Infrared Methodology and Technology, 253–64. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003420200-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kaya, Muammer. "Printed Circuit Boards (PCBs)." In Electronic Waste and Printed Circuit Board Recycling Technologies, 33–57. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26593-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Goosey, Martin. "Polymers in Printed Circuit Board (PCB) and Related Advanced Interconnect Applications." In Plastics for Electronics, 293–332. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2700-6_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Arumugam, M., G. Arun, R. Mekala, and K. Anusuya. "Detection of Printed Circuit Board (PCB) Defects Using Deep Learning Approach." In Lecture Notes in Networks and Systems, 319–33. Singapore: Springer Nature Singapore, 2024. https://doi.org/10.1007/978-981-97-7710-5_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Archambeault, Bruce R. "Introduction to EMI/EMC Design for Printed Circuit Boards." In PCB Design for Real-World EMI Control, 1–7. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3640-3_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "PCB printed circuit board"

1

Ju, Huafang, Jimmy Hsu, Meng Wang, Ryan Chang, Xiang Li, Mengen Zan, Shaozheng Hou, et al. "Enhancing Printed Circuit Board (PCB) Electrical Characteristics under Immersion Cooling Condition." In 2024 19th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 61–64. IEEE, 2024. https://doi.org/10.1109/impact63555.2024.10818954.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zeng, Qi, Chongren Zhao, Pengfei He, and Hongchao Gao. "LSDM-PCB: A Lightweight Small Defect Detection Model for Printed Circuit Board." In 2024 IEEE International Conference on Image Processing (ICIP), 673–79. IEEE, 2024. http://dx.doi.org/10.1109/icip51287.2024.10647590.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Craig, Patrick, Jonathan Pearson, Shajib Ghosh, Nitin Varshney, Sanjeev J. Koppal, and Navid Asadizanjani. "Optical Automated Interconnect Inspection of Printed Circuit Boards." In ISTFA 2024, 22–27. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.istfa2024p0022.

Повний текст джерела
Анотація:
Abstract In critical fields such as automotive, medicine, and defense, ensuring the reliability of microelectronics has been paramount given the extensive nature of their globalized supply chain. Automated visual inspection (AVI) of printed circuit boards (PCBs) offers a solution through computer vision and deep learning to automate defect detection, component verification, and quality assurance. In this paper, our research follows this precedent by introducing a novel dataset and annotations to train artificial intelligence (AI) models for extracting PCB connectivity components. Utilizing high-resolution images, and state-of-the-art instance segmentation models, this study aims to examine the difficulties in this implementation and lay the groundwork for more robust automated visual inspection.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Park, Junyong, Chaofeng Li, Eddie Mok, Joe Dickson, Joan Tourné, and Donghyun Bill Kim. "Vertical Interconnect Technology in Silicon, Package, and Printed Circuit Board (PCB) with Coaxial Structure." In 2024 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI), 39–44. IEEE, 2024. http://dx.doi.org/10.1109/emcsipi49824.2024.10705593.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Slee, Daren T. "Printed Circuit Board Propagating Faults." In ISTFA 2004. ASM International, 2004. http://dx.doi.org/10.31399/asm.cp.istfa2004p0436.

Повний текст джерела
Анотація:
Abstract This paper is a review of propagating faults in printed circuit boards (PCBs) from the perspective of using the resulting burn and melted copper patterns to identify likely locations of fault initiation. Visual examination and x-ray imaging are the main techniques for examining PCB propagating faults. Once the likely fault initiation location has been identified, fault tree analysis can be used to determine the root cause for fault initiation. The paper discusses the mechanisms by which PCB propagating faults occur. The method of determining the likely area of initiation of the fault using visual examination of the PCB burn pattern, x-ray imaging, and the layout artwork for the PCB is discussed. The paper then goes on to discuss possible root-causes for the initiation of PCB propagating faults and some of their considerations.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Huang, Chien-Yi, Chen-Liang Ku, Hao-Chun Hsieh, Tzu-Min Chien, and Hui-Hua Huang. "Reliability Assessment for Printed Circuit Board in Lead-Free Process." In ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. ASMEDC, 2009. http://dx.doi.org/10.1115/interpack2009-89253.

Повний текст джерела
Анотація:
This study aimed to explore Printed Circuit Board (PCB) failure mechanism and recommend appropriate material and handling process for the boards used in lead-free assembly process. In this study, the most stringent conditions in Printed Circuit Board Assembly (PCBA) process was used for various base-materials of PCB, such as Tg, and curing agent. In addition, thermal shock testing at 0∼100°C for 900 cycles was employed to simulate PCB performance during field service. Cross-section analysis was implemented to identify failure modes. Finally, the PCB moisture absorption property was evaluated by exposing the boards in a temperature/humidity chamber at 28°C and 60% RH, that was the worst condition in PCBA production environment. Results indicated that Tg had significant influence to the PCB quality, high Tg materials performs better. During multiple reflow process verification, cross section analysis of high Tg material indicated that Dicy material appear delamination even no electrical failure occurred. As for thermal shock test, high Tg material (either with Dicy or Phenolic curing agent) survived after 900 shock cycles. Also, moisture uptake in assembly environment, even at the worst scenario of 28°C and 60% RH for 120 hours, had not caused any PCB delamination.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Iyengar, Anirudh, Nareen Vobilisetti, and Swaroop Ghosh. "Authentication of Printed Circuit Boards." In ISTFA 2016. ASM International, 2016. http://dx.doi.org/10.31399/asm.cp.istfa2016p0605.

Повний текст джерела
Анотація:
Abstract Printed Circuit Boards (PCBs) are easy target for reverse engineering and counterfeiting attacks due to the distributed supply chain. The integrated circuits (ICs) authentication techniques such as Physically Unclonable Function (PUF) are not easily extendible to PCBs. In this paper, we analyze various sources of variations in PCB and qualitatively study the quality metrics that can be used to quantify the PCB PUFs. We propose several flavors of PCB PUFs by exploiting the manufacture process variations. We also propose a multi-stage arbiter PUF with exponential challenge response pairs. Our preliminary simulations revealed an average 50.4% inter-PCB hamming distance.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bachoo, Richard, Shurland Balliram, and Jacqueline Bridge. "EXPERIMENTAL AND NUMERICAL VIBRATION ANALYSIS OF PRINTED CIRCUIT BOARDS." In International Conference on Emerging Trends in Engineering & Technology (IConETech-2020). Faculty of Engineering, The University of the West Indies, St. Augustine, 2020. http://dx.doi.org/10.47412/umtw9840.

Повний текст джерела
Анотація:
Printed circuit boards (PCBs) are important modules which are incorporated in a wide range of industrial equipment and machinery for the purpose of control or signal manipulation applications. PCBs situated in dynamic environments may be prone to failure from excessive amounts of cyclical stresses arising from harmonic or random vibration sources. The ability to numerically model and predict the dynamic behaviour of PCBs and associated components is therefore a valuable tool for analysts concerned with PCB reliability. In this paper, experimental vibration analysis and the finite element method (FEM) are used to investigate the changes in resonant behaviour of a PCB as the mass, location and stiffness of electronic components vary. Circuit boards that are either sparsely or densely populated with ubiquitous soldered electronic components such as resistors, transistors, capacitors and integrated circuits are considered. The analysis indicates that for boards with a small number of components the natural frequency decreases compared to that of the bare PCB whilst a board with a larger number of soldered components has a corresponding increase. It is also shown that the overall effect of the solder is to reduce the natural frequency of the PCB and to a lesser extent the damping ratio. The study identifies the potential of tailoring the vibration response of a PCB by the appropriate selection and location of its connected components.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wang, Mu-Chun, Zhen-Ying Hsieh, Ting-Yu Yang, Chia-Hao Tu, and Shuang-Yuan Chen. "Improvement of Printed Circuit Board Assembly Process in 2.4GHz RF Circuit Products." In 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2008. http://dx.doi.org/10.1115/micronano2008-70093.

Повний текст джерела
Анотація:
The semiconductor process technology and the circuit design concept are continuously improved at the recent era. The product cost is gradually decreased, too. The commercial electronic products generally cover ICs, external components and printed circuit board (PCB). After the circuit layout blueprints are completed, engineers will transfer them into PCB as a prototype. The next step is to integrate some contributed electronic components to form a functional product. This second step is called as PCB assembly (PCBA). However, the bigger copper area on PCB will provide a good thermal dissipation. This effect will degrade the solderability and increase the contact resistance while the electronic components are integrated on PCB. The product performance, therefore, is deteriorated. Contriving some special empty boundary shapes neighboring the connected pins of integrated electronic components to soften the thermal dissipation ability of copper layer on printed circuit substrate is a good method. We design some useful patterns to conquer this issue and increase the PCB assembly yield from 70% to 95%. The other efforts are to study the flow rate of isolated ink in PCBA production line and suitably control the solder temperature. Because some electronic components are composed by plastic materials, higher temperature will damage the external shapes of them and the PCB has the bending possibility. These two beneficial efforts also contribute the assembly yield well in 2.4GHz radio-frequency (RF) products.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lee, El-Hang, S. G. Lee, B. H. O, S. G. Park, and K. H. Kim. "Fabrication of a hybrid electrical-optical printed circuit board (EO-PCB) by lamination of an optical printed circuit board (O-PCB) and an electrical printed circuit board (E-PCB)." In Integrated Optoelectronic Devices 2006, edited by Allen M. Earman and Ray T. Chen. SPIE, 2006. http://dx.doi.org/10.1117/12.650521.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "PCB printed circuit board"

1

Booth, Janice C., Tracy Hudson, Brian A. English, Michael R. Whitley, and Michael S. Kranz. Integrated Printed Circuit Board (PCB) Active Cooling With Piezoelectric Actuator. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada567661.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bacon, L. D., and R. P. Toth. LineCAP (Line/Circuit Analysis Program): Cross-coupling on PC (printed circuit) board traces including discontinuities and circuit elements. Office of Scientific and Technical Information (OSTI), June 1989. http://dx.doi.org/10.2172/6038898.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Anderson, J. T. Document Template for Printed Circuit Board Layout. Office of Scientific and Technical Information (OSTI), January 1998. http://dx.doi.org/10.2172/1032099.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Holder, Darryl. Prototype and Short-Run Printed Circuit Board Creation. Fort Belvoir, VA: Defense Technical Information Center, March 1993. http://dx.doi.org/10.21236/ada263245.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Edwards, H. W., M. F. Kostrzewa, and G. P. Looby. Pollution prevention assessment for a printed circuit board plant. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/125058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nestleroth. L52298 Augmenting MFL Tools With Sensors that Assess Coating Condition. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 2009. http://dx.doi.org/10.55274/r0010396.

Повний текст джерела
Анотація:
External coatings are routinely used to protect transmission pipelines from corrosion; however, coatings may degrade or disbond over time enabling corrosion to occur. Transmission pipeline operators often use magnetic flux leakage (MFL) in-line inspection tools to detect metal loss corrosion defects. Rather than finding the cause of a problem, failure of the coating within a corrosive environment, MFL corrosion surveys only find the result of the problem, corrosion defects that may permanently alter the pressure carrying capacity of the pipeline. Stress corrosion cracking (SCC) can be detected using in-line inspection (ILI) technology, but the availability of tools is limited and the cost of inspection is high compared to MFL inspection. SCC almost always occurs at coating faults; direct coating assessment could indicate future problems that could degrade the serviceability of the pipeline. In this project, a new sensor was developed to assess external coating that could work with currently available ILI tools for minimal additional cost to perform the inspection. The sensors, electromagnetic acoustic transducers (EMATs), generate ultrasonic waves that are guided by the pipe material around the circumference of the pipe. The coating material and adherence can influence the propagation of the ultrasonic waves; changes in ultrasonic signal features were attributed to coating faults. This development used modeling and experiments to establish a more optimal configuration for coating assessment. A multiple feature approach was used. A commonly used feature, signal amplitude, provided good sensitivity to coating condition but was influenced by inspection variables. One unique feature identified in this development is arrival time of the ultrasonic wave. For the wave type and frequency selected, the wave velocity was different for bare and coated pipe. Therefore, disbonded or missing coating can be detected by monitoring arrival time of the ultrasonic wave, a feature that is amplitude independent. Another feature for assessing coating, absorption of selective frequencies, was also demonstrated. Coating assessment capability was experimentally demonstrated using a prototype EMAT ILI tool. All three detection features were shown to perform well in an ILI environment as demonstrated at Battelle"s Pipeline Simulation Facility and BJ Inspection Services pull rigs. Improvement to the prototype occurred between each test; the most significant improvement was the design and construction of a novel set of thick-trace transmitting and receiving Printed Circuit Board (PCB) EMAT coils. Implementation variables such as moisture and soil loading were shown to have a minimal influence on results.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Neilsen, Michael K., Kevin N. Austin, Douglas Brian Adolf, Scott W. Spangler, Matthew Aaron Neidigk, and Robert S. Chambers. Packaging strategies for printed circuit board components. Volume I, materials & thermal stresses. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1022184.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Oxley, J. E., and R. J. Smialek. Electrolytic regeneration of acid cupric chloride printed circuit board etchant. Final report, August 1, 1995--October 31, 1996. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/510548.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

HEWITT AND ASSOCIATES INC ALBUQUERQUE NM. EM Visualization of Printed Circuit Board Assemblies. A Phase 1 SBIR on behalf of USAF; SA-ALC/LDAE. Fort Belvoir, VA: Defense Technical Information Center, June 1994. http://dx.doi.org/10.21236/ada293355.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Oxley, J. E., and R. J. Smialek. Electrolytic regeneration of acid cupric chloride printed circuit board etchant. Quarterly report No. 4, April 30, 1996--July 30, 1996. Office of Scientific and Technical Information (OSTI), August 1996. http://dx.doi.org/10.2172/378168.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії