Добірка наукової літератури з теми "Pavements Cracking Testing"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Pavements Cracking Testing".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Pavements Cracking Testing"
Fried, Andrew, Haritha Malladi, and Cassie Castorena. "Impact of Crack Sealant on Pavement Skid Resistance." Transportation Research Record: Journal of the Transportation Research Board 2673, no. 7 (June 2, 2019): 362–70. http://dx.doi.org/10.1177/0361198119849590.
Повний текст джерелаJiang, Ze Zhong, Tao Xie, Yan Jun Qiu, and Bo Lan. "Crack Propagation Behavior of Asphalt Concrete; Part II: A Study into Influence of Loading Rates." Key Engineering Materials 385-387 (July 2008): 301–4. http://dx.doi.org/10.4028/www.scientific.net/kem.385-387.301.
Повний текст джерелаIslam, M. R., S. A. Kalevela, J. A. Rivera, and T. B. Rashid. "Dynamic Modulus and Field Performance of Cold-in-Place Recycled Asphalt Pavement." Journal of Engineering Sciences 6, no. 2 (2019): b1—b7. http://dx.doi.org/10.21272/10.21272/jes.2019.6(2).b1.
Повний текст джерелаPerez, S. A., J. M. Balay, P. Tamagny, and Ch Petit. "Accelerated pavement testing and modeling of reflective cracking in pavements." Engineering Failure Analysis 14, no. 8 (December 2007): 1526–37. http://dx.doi.org/10.1016/j.engfailanal.2006.12.010.
Повний текст джерелаBonaquist, Ramon F., and Walaa S. Mogawer. "Analysis of Pavement Rutting Data from FHWA Pavement Testing Facility Superpave Validation Study." Transportation Research Record: Journal of the Transportation Research Board 1590, no. 1 (January 1997): 80–88. http://dx.doi.org/10.3141/1590-10.
Повний текст джерелаNoorvand, Hossein, Kamil Kaloush, Jose Medina, and Shane Underwood. "Rejuvenation Mechanism of Asphalt Mixtures Modified with Crumb Rubber." CivilEng 2, no. 2 (May 12, 2021): 370–84. http://dx.doi.org/10.3390/civileng2020020.
Повний текст джерелаCHEN, Can, Shibin LIN, Ronald Christopher WILLIAMS, and Jeramy Curtis ASHLOCK. "NON-DESTRUCTIVE MODULUS TESTING AND PERFORMANCE EVALUATION FOR ASPHALT PAVEMENT REFLECTIVE CRACKING MITIGATION TREATMENTS." Baltic Journal of Road and Bridge Engineering 13, no. 1 (March 27, 2018): 46–53. http://dx.doi.org/10.3846/bjrbe.2018.392.
Повний текст джерелаKhazanovich, Lev, Raul Velasquez, and Edouard G. Nesvijski. "Evaluation of Top-Down Cracks in Asphalt Pavements by Using a Self-Calibrating Ultrasonic Technique." Transportation Research Record: Journal of the Transportation Research Board 1940, no. 1 (January 2005): 63–68. http://dx.doi.org/10.1177/0361198105194000108.
Повний текст джерелаXie, Tao, Ze Zhong Jiang, Yan Jun Qiu, and Bo Lan. "Crack Propagation Behavior of Asphalt Concrete; Part I: A Study into Influence of Different Materials." Key Engineering Materials 385-387 (July 2008): 297–300. http://dx.doi.org/10.4028/www.scientific.net/kem.385-387.297.
Повний текст джерелаLivneh, Moshe. "Determination of residual life in flexible pavements." Canadian Journal of Civil Engineering 23, no. 5 (October 1, 1996): 1012–24. http://dx.doi.org/10.1139/l96-908.
Повний текст джерелаДисертації з теми "Pavements Cracking Testing"
Loria-Salazar, Luis Guillermo. "Reflective cracking of flexible pavements literature review, analysis models,and testing methods /." abstract and full text PDF (free order & download UNR users only), 2008. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1453593.
Повний текст джерелаElseifi, Mostafa. "Performance Quantification of Interlayer Systems in Flexible Pavements Using Finite Element Analysis, Instrument Response, and Non Destructive Testing." Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/26489.
Повний текст джерелаPh. D.
Twagirimana, Emmanuel. "Evaluation of adhesion properties in bitumen-aggregate systems for winter surfacing seals using the bitumen bond strength test." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95953.
Повний текст джерелаENGLISH ABSTRACT: Flexible pavement designers have a choice of two wearing course: either asphalt concrete or surfacing seals. The latter have been widely used by several countries as their preferred wearing course over other methods, especially countries with a limited number of average inhabitants per square kilometre. Moreover, the surfacing seals were identified as an efficient cost effective road preventive maintenance technique. Surfacing seals in New Zealand, South Africa and Australia cover about 65%, 80% and 90% of their surfaced road networks respectively. The preference of surfacing seals is due to their competitive initial cost and ease of construction. In South Africa, the life expectancy of surfacing seals varies between 8 and 12 years with an average of 10 years. This has not been the case in a number of surfacing seals constructed in winter, especially when the night recorded temperature is below 10oC. The dominant failure mechanism is ravelling (chip loss) soon after construction due to traffic loading. This chip loss is linked to the poor adhesion bond development rate in the bitumen-aggregate system during winter adverse conditions. In order to address the issue of premature chip loss the need for the development of a robust adhesion test method was identified. For that purpose, recently, researchers in the bitumen industry developed the Bitumen Bond Strength test method. This method was used in this study. This study intends to contribute to the understanding of binder-aggregate adhesion bond development for winter surfacing seals using the BBS test. Binder type, precoat type and conditioning, aggregate type and curing time are amongst the factors influencing winter seals adhesion bond performance. An experimental matrix involving three types of binder, two types of aggregate, four different precoating fluids, two precoat conditionings and two binder-curing times were then developed and investigated. Winter weather parameters affecting adhesion properties were also taken into consideration during the course of the investigation. Throughout the test, the procedure described in AASHTO TP 91-11 was followed. However, in order to enhance the control of the binder application temperature, a new method for hot applied binder sample preparation was developed as part of this study. The findings show that there is a significant difference between adhesion properties of the hot applied binders (70/100 and S-E1) and the emulsion (SC-E1). In most of the cases, the hot applied binders performed better than the emulsion. The failure mode observed was found to be linked to the condition of the precoating. The influence of the precoat type and conditioning, and effect of binder curing time were significantly highlighted. The use of a dry precoat benefited the adhesion bond strength up to around 50% relatively to the corresponding non-precoated combination. However, a decrement in the bond strength due to precoating of up to 28.7% was also observed. A statistical analysis using ANOVA did not illustrate any statistical significant effect of the aggregate type. The interaction effects analysis using ANOVA revealed the aggregate type interacting with precoat type to be the most influential interaction at level two. The precoat conditioning implication to the adhesion development rate, which influences the time for opening to traffic after construction, was illustrated. Insightful aspects on the compatibility between the binder type and precoat type and conditioning during the aggregate precoating practices and on the time for opening to traffic are highlighted. Finally, the repeatability analysis proved the BBS test to be a repeatable testing method with caution. Recommendations for further studies that could support the conclusions drawn in this study were provided.
AFRIKAANSE OPSOMMING: Buigbare plaveiselontwerpers het 'n keuse van twee deklae: óf Asfalt of oppervlak seëls. Laasgenoemde word algemeen gebruik deur verskeie lande as hul voorkeur deklaag, veral die lande met beperkte aantal gemiddelde inwoners per vierkante kilometer. Verder, is die seëls geïdentifiseer as 'n doeltreffende koste-effektiewe deklaag tegniek. Oppervlakseëls in Nieu-Seeland, Suid-Afrika en Australië dek ongeveer 65%, 80% en 90% van hul padnetwerke onderskeidelik. Die seëls se voorkeur is te danke aan hul mededingende aanvanklike koste en eenvoudige vorm van die konstruksie. In Suid-Afrika wissel die seël se lewensverwagting tussen 8 en 12 jaar met 'n gemiddeld van 10 jaar. Dit is egter nie die geval van 'n aantal seëls wat in die winter gebou word nie, veral wanneer die aangetekende nagtemperatuur onder 10o C daal nie. Die dominante swigtingsmeganisme is stroping (klipverlies) kort na konstruksie. Hierdie klipverlies is gekoppel aan die power kleef-ontwikkeling van bitumen gedurende die winter. Ten einde die probleem van voortydige klipverlies aan te spreek het die behoefte vir die ontwikkeling van 'n robuuste toetsmetode ontstaan. Om hierdie rede het navorsers onlangs in die bitumenbedryf die “BBS toetsmetode” ontwikkel en is dié toetsmetode in hierdie studie gebruik. Hierdie studie beoog om by te dra tot die begrip van bindmiddel-klip kleefontwikkeling vir die winter seëls dmv die BBS toets. Die faktore, insluitend maar nie beperk tot bindmiddeltipe, voorafdekking (“PRECOAT”) -tipe en kondisionering, aggregaattipe en kuurtyd beïnvloed winter seëls se kleefeienskappe. 'n Eksperimentele matriks met drie tipes bindmiddels, twee tipes aggregate, vier verskillende voorafdekking-vloeistowwe, twee voorafdekking kondisionering en twee bindmiddel kuurtye is toe ontwikkel en ondersoek. Winter weer parameters wat kleefeienskappe beïnvloed is ook in ag geneem tydens die verloop van die ondersoek. Regdeur die studie is die prosedure AASHTO TP 91-11 gevolg, maar ten einde die beheer van die bindmiddel spuittemperatuur te verbeter, is ‘n nuwe metode vir warmspuit-bindmonsters voorbereiding ontwikkel as deel van hierdie studie. Die bevindinge toon dat daar 'n beduidende verskil tussen die kleefeienskappe van die warm aangewende bindmiddels (70/100 en S-E1) en die emulsie (SC-E1) is. In die meeste van die gevalle het die warmspuit-bindmiddels beter as emulsie gevaar. Daar is gevind dat die swigtingsmeganisme verbind word met die toestand van die voorafdekking. Die invloed van voorafdekkingtipe, kondisionering, en die effek van bindmiddelkuurtyd is duidelik uitgelig. Die gebruik van droë voorafdekking het die kleefkrag tot sowat 50% verhoog relatief tot die ooreenstemmende onbedekte klipkombinasie. Daar is egter ook ‘n verlaging van die kleefkrag weens voorafdekking gevind van tot so hoog soos 28,7 persent. Die statistiese ontleding met behulp van ANOVA het geen statisties beduidende effek van die verksillende aggregaattipe te vore gebring nie. Die interaksie-effek analise, met behulp van ANOVA, het wel die interaksie met voorafdekkingtipe met aggregaat die mees invloedryke bevestig. Die voorafdekking kondisioneering het ver rykende kleefkrag implikasies bloot gelê, wat die tyd vir die opening van die verkeer na konstruksie beïnvloed. Insigwekkende aspekte oor die versoenbaarheid tussen die bindmiddeltipe, voorafdekkingtipe, kondisionering, voorafdekkingpraktyk en tyd tot opening vir verkeer word uitgelig. Ten slotte, die herhaalbaarheidsanalise het die BBS toets as 'n herhaalbare toetsmetode met omsigtigheid bewys. Daar is aanbevelings tot verdere studies, wat uit die gevolgtrekking gekom het, gemaak.
Nwando, Tiyon Achille. "Flexibility and performance properties of bitumen stabilised materials." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86594.
Повний текст джерелаENGLISH ABSTRACT: This research investigates the flexibility and the performance properties of bitumen stabilised materials under the influence of mix variables. The laboratory testing consisted of two main phases. During the first phase (mix design), the strength and the flexibility of the mixes were assessed through ITS (Indirect Tensile Strength), UCS (Unconfined Compressive Strength), displacement at break, strain at break and fracture energy. The second phase consisted of a series of triaxial tests done to assess the performance properties (shear strength: cohesion and angle of internal friction; and stiffness: resilient modulus) of the mixes. The mineral aggregates used in this study were milled from different locations of the R35, near Bethal. This was a blend of granular material (dolerite, from various locations of the existing base and subbase layer of the R35) and Reclaimed Asphalt (RA) milled from the existing surfacing. During the mix design phase, two types of bituminous binders were used (bitumen emulsion and foamed bitumen) at bitumen content ranges of 2%, 2.4% and 2.8% each. Two types of active filler were used separately and in combination at a proportion of 1% and 2%. Finally, specimens were tested in wet and dry conditions for each mix combination. During the triaxial testing phase, only the optimum bitumen content of 2.4% was used, both for bitumen emulsion and foamed bitumen, with only cement as active filler in a proportion 1% and 2%. The specimens were tested at different ranges of densities and saturation levels. The flexibility of the mix was assessed through the fracture energy, the strain and the displacement at break parameters. An analysis of variance (ANOVA) was conducted on the data to assess the significance of experimental variables on this property. This property was found to be very sensitive to bitumen and cement content added to the mix. When assessing the combined effect and the significance of the variables on the flexibility of the mixes, it was found that fracture energy is mostly influenced by the cement content, followed by the bitumen content, then the type of treatment and finally the testing condition. However, the level of significance was not in the same order for the other two parameters (displacement and strain at break). It was also found that the combined effect of some independent variables (cement content + testing condition, type of treatment + cement content + bitumen content) had a significant effect on the fracture energy and the strain at break respectively. From the ITS and UCS tests, an increase in strength was noticed with the increase of cement content. On the other hand, the increase in bitumen content led to a decrease in strength of the material. The statistical analysis on the ITS and UCS values show that the independent variable with the most significant effect on the ITS is the cement content, followed by the testing conditions, then the bitumen content and finally the type of treatment. The combined effect of cement content + bitumen content was found to be significant both for ITS and UCS. In the second phase triaxial tests were performed in order to evaluate the performance properties of the mixes. It was found that the increase of the active filler content significantly improves the shear strength of the material. It was also found that at a fixed cement content, specimens tested at low density and/or high level of saturation show low shear strength. The Mr-θ model was used to model the resilient modulus of the mixes and the model coefficients used to evaluate the effect of experimental variables on the resilient modulus. It was found that the resilient modulus of the mixes increases as the bulk stress increases. This confirms the stress dependent behaviour of bitumen stabilised materials. The analysis show that increasing the percentage of active fillers content results in a significant increase in the resilient modulus values. An increase in relative density also resulted in an increase in the resilient modulus of the mixes, while the opposite effect was observed with the increased of the saturation level. Besides the engineering properties and the mechanical test parameters, other parameters such as the Tensile Strength Ratio (TSR) was calculated in order to evaluate the moisture sensitivity of the mixes. Weakening due to moisture was found to be more predominant in the mixes with less active filler. In addition, bitumen emulsion mixes were found to have a better resistance to moisture weakening effects compared to foamed bitumen. In addition, a comparison between the rapid curing and the accelerated curing was done. Higher ITS and UCS results were obtained for specimens cured using long term curing compared to specimens cured using the accelerated curing method. In conclusion, flexibility is an important property of bitumen road construction material (bitumen stabilised material include) however, it is not an easy property to measure. Although, displacement/strain at break and fracture energy from ITS and UCS were able to give us some indications on the main factors governing the flexibility of bitumen stabilised materials (the bitumen and active filler content), more accurate and adequate tests are required to evaluate the parameter.
AFRIKAANSE OPSOMMING: Die buigsaamheid en gedragseienskappe van bitumen gestabiliseerde materiale was getoets om sodoende die invloed van verskeie mengselveranderlikes te evalueer. Die ondersoek het uit twee fases bestaan. Tydens die eerste fase (mengfase) is die sterkte en buigsaamheid deur middel van indirekte treksterkte toetse (ITS), onbegrensde druksterkte toetse (UCS), verplasing – en vervorming by breekpunt sowel as breek-energie toetse gedoen en ondersoek. Die tweede fase het bestaan uit ʼn reeks drie-assige triaksiaal toetse. Triaksiaaltoetse is uitgevoer om die gedragseienskappe soos die skuifsterkte, kohesie, hoek van interne wrywing, styfheid en weerstand modulus te ondersoek. Die gemaalde mineraal-aggregaat wat in hierdie ondersoek gebruik is, was verkry op verskeie areas van die R35, geleë naby Bethal. Die materiaal is ʼn mengsel van granulêre materiaal (van die bestaande kroonlaag en stutlaag van die pad) en herwonne asfalt (RA). Tydens die mengontwerp fase is twee tipes bitumen gebruik naamlik bitumenemulsie en skuimbitumen in hoeveelhede van 2%, 2.4% en 2.8%. Twee tipes aktiewe vulstof (hoeveelhede van onderskeidelik 1% en 2%) was saam met elk van die verskeie bitumen-hoeveelhede gebruik. Proefstukke van elk van hierdie mengsel kombinasies is onder beide nat en droë kondisies getoets. Tydens die tweede fase, is slegs die optimum binder inhoud (2.4%) gebruik vir beide emulsie- en skuimbitumen, gekombineer met 1% en 2% aktiewe vulstof. Proefstukke was getoets by ʼn reeks van verskillende digthede en versadigingvlakke. Die buigsaamheid was ondersoek deur middel van breek-energie, vervorming en die verplasing by breekpunt. ʼn Analise van variasie (ANOVA) is uitgevoer op die toetsdata om sodoende die te evalueer of die veranderlikes beduidend is ten opsigte van buigsaamheid. Daar is gevind dat die buigsaamheideienskap sensitief is vir beide bitumen en sement inhoud. Met assessering van die gekombineerde effek en betekenis van die veranderlikes op die buigsaamheid van die mengsels, is daar gevind dat die hoogste beduidende veranderlike t.o.v breek-energie die sement inhoud is, gevolg deur die bitumeninhoud, tipe behandeling en laastens die toetskondisie. Die orde van belangrikheid verskil vir die ander twee parameters (verplasing en vervorming by breekpunt). Daar is ook gevind dat die gekombineerde effek van sommige veranderlikes (sement inhoud en toets kondisie, tipe behandeling en sement inhoud tesame met bitumen inhoud) ook beduidend was t.o.v breek-energie en vervorming by breekpunt. Vanuit die ITS en UCS toetse was daar ʼn toename in sterkte waargeneem soos die sementinhoud toeneem. Aan die anderkant, het ʼn toename in bitumeninhoud ‘n afname in sterkte veroorsaak. Die statistiese analise van ITS en UCS resultate, toon dat die grootste beduidende onafhanklike t.o.v ITS waardes ook die sement inhoud was, gevolg deur toets kondisies die grootste effek, bitumen inhoud en die tipe behandeling. Die gekombineerde effek van sementinhoud en bitumeninhoud, was betekenisvol vir beide ITS en UCS. Drie-assige triaksiaaltoetse was uitgevoer om die gedragseienskappe van die mengsels te evalueer. Daar is gevind dat die toename in sement inhoud, die skuif sterkte van die materiaal grootliks verbeter. By ʼn konstante sementinhoud, wys toetsresultate van proefstukke wat getoets is by lae digthede en hoë vlakke van versadiging, lae skuif sterkte. Die Mr – θ model was gebruik om die veerkragsmodulus van die mengsels te moduleer en die modelkoëffisiënte is gebruik om die effek van eksperimentele veranderlikes op die weerstand modulus te evalueer. Met toename in die omhullende spanning is ‘n toename in die veerkragsmodulus waargeneem, wat bevestig dat die gedrag van bitumen gestabiliseerde materiale spannings afhanklik is. ʼn Toename in die sement en relatiewe digtheid het ʼn merkwaardige toename in die veerkragsmodulus tot gevolg gehad, terwyl die teenoorgestelde waargeneem is met toename in versadigingsvlakke. Buiten die ingenieurseienskap en meganiese toetsfaktore, is ander faktore (soos die trekspanning verhouding) bereken om die vogsensitiwiteit van die mengsels te evalueer. Mengsels met laer sement inhoud het groter verswakking ervaar met blootstelling aan water. Bitumenemulsie proefstukke toon beter weerstand teen water as skuimbitumen. Vergelyking tussen versnelde en korttermyn nabehandelingsprosedure van proefstukke, toon hoër ITS en UCS waardes vir die versnelde nabehandelingsprosedure prosedure. Buigsaamheid is ‘n belangrike eienskap van bitumen in padkonstruksie materiale (insluitend bitumen gestabiliseerde materiale), maar word moeilik gemeet. Alhoewel verplasing/vervorming by breekpunt en breek energie, bepaal vanaf ITS en UCS, ‘n indikasie toon van die hooffaktore (binder en sement) wat buigsaamheid van bitumen gestabiliseerde materiaal beïnvloed, word meer akkurate toetse benodig om die eienskap te ondersoek.
El-Gharib, Georges. "Evaluation of the Empirical Deck Design for Vehicular Bridges." UNF Digital Commons, 2014. http://digitalcommons.unf.edu/etd/489.
Повний текст джерелаZeinali, Siavashani Alireza. "DEVELOPMENT OF INDIRECT RING TENSION TEST FOR FRACTURE CHARACTERIZATION OF ASPHALT MIXTURES." UKnowledge, 2014. http://uknowledge.uky.edu/ce_etds/22.
Повний текст джерелаSimpson, Amy Louise. "Measurement of rutting in asphalt pavements." Thesis, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3055245.
Повний текст джерелаKekana, Sello Levy. "Evaluation of laboratory test used to assess rut potential in the hot mix asphalt and the effects of compaction methods." 2014. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1001324.
Повний текст джерелаEvaluates various laboratory test methods to assess rutting potential in the hot-mix asphalt (HMA) and the effects of compaction methods. To achieve this objective, rutting potential of HMA samples prepared and compacted in the laboratory, and in the field was evaluated using different laboratory test methods under a range of temperatures and loads.
Книги з теми "Pavements Cracking Testing"
Zanzotto, Ludo. Laboratory testing of crack sealing materials for flexible pavements. Ottawa: Transportation Association of Canada = Association des transports du Canada, 1996.
Знайти повний текст джерелаJennings, P. W. The Expanded Montana asphalt quality study using high pressure liquid chromatography. Bozeman, Mont: Montana State University, Dept. of Chemistry, 1985.
Знайти повний текст джерелаBahia, Hussain U. Investigation of modified asphalt performance using SHRP binder specification. Madison, WI: Wisconsin Dept. of Transportation, Division of Transportation Infrastructure Development, Bureau of Highway Construction, Pavements Section, 1997.
Знайти повний текст джерелаStuart, Kevin D. Validation of the superpave asphalt binder fatigue cracking parameter using an accelerated loading facility. McLean, VA: Office of Infrastructure Research and Development, Federal Highway Administration, 2002.
Знайти повний текст джерелаSposito, Brett. Geosynthetics for reflective crack control: Construction report. Salem, OR: Oregon Dept. of Transportation, Research Unit, 1999.
Знайти повний текст джерелаBush, Amanda Joy. Geosynthetic materials in reflective crack prevention: Final report. Salem, OR: Oregon Dept. of Transportation, Research Unit, 2007.
Знайти повний текст джерелаL, Al-Qadi Imad, Scarpas Tom, and Loizos Andreas, eds. Pavement cracking: Mechanisms, modeling, detection, testing and case histories : proceedings of the 6th RILEM International Conference on Cracking in Pavements : Chicago, USA, 16-18 June 2008. Boca Raton: CRC Press, 2008.
Знайти повний текст джерелаChen, Hong-Jer. Interlayers beneath overlays on flexible pavements. Albany, NY: Engineering Research and Development Bureau, New York State Dept. of Transportation, 1992.
Знайти повний текст джерелаKerr, Arnold D. The assessment of concrete pavement blowups: A user manual. McLean, Va: U.S. Dept. of Transportation, Federal Highway Administration, 1993.
Знайти повний текст джерелаLoh, Ssu-Wei. Contribution of performance-graded asphalt to low temperature cracking resistance of pavements: Final report. West Lafayette, IN: Purdue University, Joint Transportation Research Program, 1999.
Знайти повний текст джерелаЧастини книг з теми "Pavements Cracking Testing"
Ogundipe, O. M., N. H. Thom, Andrew C. Collop, and J. Richardson. "Performance of ‘SAMI’S in Simulative Testing." In 7th RILEM International Conference on Cracking in Pavements, 93–102. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4566-7_10.
Повний текст джерелаDu, Rongyao. "Reflective Cracking in Composite Pavements—A Case Study." In Testing and Characterization of Asphalt Materials and Pavement Structures, 151–62. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95789-0_14.
Повний текст джерелаCastaneda, Daniel I., and David A. Lange. "New Field Testing Procedure to Measure Surface Stresses in Plain Concrete Pavements and Structures." In 7th RILEM International Conference on Cracking in Pavements, 191–200. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4566-7_19.
Повний текст джерелаPauli, A. T., M. J. Farrar, and P. M. Harnsberger. "Material Property Testing of Asphalt Binders Related to Thermal Cracking in a Comparative Site Pavement Performance Study." In 7th RILEM International Conference on Cracking in Pavements, 233–43. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4566-7_23.
Повний текст джерелаDave, Eshan V., Benjamin Helmer, Chelsea Hanson, Jared Munch, and Luke Johanneck. "Implementation of Laboratory Testing to Predict Low Temperature Cracking Performance of Asphalt Pavements." In RILEM Bookseries, 993–1003. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-7342-3_79.
Повний текст джерелаGedafa, Daba S., Mustaque Hossain, Stefan A. Romanoschi, and Mbakisya A. Onyango. "Effects of Binder and Mix Properties on the Mechanistic Responses of Fatigue Cracking APT Sections." In The Roles of Accelerated Pavement Testing in Pavement Sustainability, 393–405. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42797-3_25.
Повний текст джерелаSolaimanian, Mansour, Ghassan Chehab, and Marcelo Medeiros. "Evaluating Resistance of Hot Mix Asphalt Overlays to Reflective Cracking Using Geocomposites and Accelerated Loading." In The Roles of Accelerated Pavement Testing in Pavement Sustainability, 407–18. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42797-3_26.
Повний текст джерелаGibson, N., J. Youtcheff, and X. Qi. "Fatigue cracking characteristics of accelerated testing pavements with modified binders." In Pavement Cracking. CRC Press, 2008. http://dx.doi.org/10.1201/9780203882191.ch4.
Повний текст джерела"Laboratory testing and numerical modelling of overlay systems on cement concrete slabs." In Reflective Cracking in Pavements, 225–34. CRC Press, 2004. http://dx.doi.org/10.1201/9781482271799-34.
Повний текст джерелаde Freitas, A., Y. Kim, Felipe, and D. Allen. "A micromechanics-based computational model and testing protocols to characterize damage-dependent mechanical responses of asphalt mixtures in flexible pavements." In Pavement Cracking. CRC Press, 2008. http://dx.doi.org/10.1201/9780203882191.ch29.
Повний текст джерелаТези доповідей конференцій з теми "Pavements Cracking Testing"
Lenngren, Carl, and Maria Hernandez. "Relating Field Energy Attenuation in Portland Cement Concrete Pavements to Fracture Mechanics." In 12th International Conference on Concrete Pavements. International Society for Concrete Pavements, 2021. http://dx.doi.org/10.33593/0xmxe2jw.
Повний текст джерелаFeng, Zhen, Pu Zhang, Murthy N. Guddati, and Y. Richard Kim. "The Development and Evaluation of a Virtual Testing Procedure for the Prediction of the Cracking Performance of Hot Mix Asphalt." In Pavements and Materials: Characterization and Modeling Symposium at EMI Conference 2010. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41129(385)13.
Повний текст джерелаZhong, Yuguo, and Will Hansen. "Evaluation of Internal Curing and Hydrophobic Surface Treatment on the Durability of Concrete." In 12th International Conference on Concrete Pavements. International Society for Concrete Pavements, 2021. http://dx.doi.org/10.33593/txkqro30.
Повний текст джерелаLucido, Samuel P., and Willard Wilson. "Continued Performance and Economic Issues for the Polk County Minnesota Bituminous County Road Constructed With Municipal Solid Waste Combustor Ash." In 11th North American Waste-to-Energy Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/nawtec11-1691.
Повний текст джерелаTran, Quang, and Jeffery Roesler. "Paste Curing Effectiveness with Contactless Sensing and 2D Wavefield Analysis." In 12th International Conference on Concrete Pavements. International Society for Concrete Pavements, 2021. http://dx.doi.org/10.33593/mmj09v6u.
Повний текст джерелаKhan, Zafrul, Hasan M. Faisal, and Rafiqul Tarefder. "Fracture Toughness Measurement of Asphalt Concrete by Nanoindentation." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71840.
Повний текст джерелаЗвіти організацій з теми "Pavements Cracking Testing"
Wei, Fulu, Ce Wang, Xiangxi Tian, Shuo Li, and Jie Shan. Investigation of Durability and Performance of High Friction Surface Treatment. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317281.
Повний текст джерелаSaadeh, Shadi, and Pritam Katawał. Performance Testing of Hot Mix Asphalt Modified with Recycled Waste Plastic. Mineta Transportation Institute, July 2021. http://dx.doi.org/10.31979/mti.2021.2045.
Повний текст джерелаAli, Ayman, Ahmed Saidi, Yusef Mehta, Christopher DeCarlo, Mohamed Elshear, Benjamin Cox, and Wade Lein. Development and validation of a balanced mix design approach for CIR mixtures using full-scale testing. Engineer Research and Development Center (U.S.), October 2022. http://dx.doi.org/10.21079/11681/45704.
Повний текст джерелаRahbar-Rastegar, Reyhaneh, Gerald Huber, Miguel A. Montoya, Christopher Campbell, and John E. Haddock. Demonstration Project for Asphalt Performance Engineered Mixture Design Testing. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317382.
Повний текст джерелаSinghvi, Punit, Javier García Mainieri, Hasan Ozer, and Brajendra Sharma. Rheology-Chemical Based Procedure to Evaluate Additives/Modifiers Used in Asphalt Binders for Performance Enhancements: Phase 2. Illinois Center for Transportation, June 2021. http://dx.doi.org/10.36501/0197-9191/21-020.
Повний текст джерела