Добірка наукової літератури з теми "Organismes marins – Effets de la pollution"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Organismes marins – Effets de la pollution".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Organismes marins – Effets de la pollution"

1

Reish, Donald J., Philip S. Oshida, Alan J. Mearns, Thomas C. Ginn, and Michael Buchman. "Effects of Pollution on Marine Organisms." Water Environment Research 72, no. 6 (October 1, 2001): 1754–812. http://dx.doi.org/10.2175/106143000x144277.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Reish, Donald J., Philip S. Oshida, Alan J. Mearns, Thomas C. Ginn, and Michael Buckman. "Effects of Pollution on Marine Organisms." Water Environment Research 74, no. 6 (October 1, 2002): 1507–84. http://dx.doi.org/10.2175/106143002x140747.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Relish, Donald J., Philip S. Oshida, Alan J. Mearns, ThomasC, and Michael Buckman. "Effects of Pollution on Marine Organisms." Water Environment Research 75, no. 6 (October 1, 2003): 1800–1862. http://dx.doi.org/10.2175/106143003x145372.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Reish, Donald J., Philip S. Oshida, Alan J. Mearns, Thomas C. Ginn, and Michael Buchman. "Effects of Pollution on Marine Organisms." Water Environment Research 76, no. 6 (September 2004): 2443–90. http://dx.doi.org/10.2175/106143004x145876.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mearns, Alan J., Donald J. Reish, Philip S. Oshida, Michael Buchman, Thomas Ginn, and Robert Donnelly. "Effects of Pollution on Marine Organisms." Water Environment Research 79, no. 10 (September 2007): 2102–60. http://dx.doi.org/10.2175/106143007x218683.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mearns, Alan J., Donald J. Reish, Philip S. Oshida, Michael Buchman, Thomas Ginn, and Robert Donnelly. "Effects of Pollution on Marine Organisms." Water Environment Research 80, no. 10 (October 2008): 1918–79. http://dx.doi.org/10.2175/106143008x328860.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mearns, Alan J., Donald J. Reish, Philip S. Oshida, Michael Buchman, Thomas Ginn, and Robert Donnelly. "Effects of Pollution on Marine Organisms." Water Environment Research 81, no. 10 (September 10, 2009): 2070–125. http://dx.doi.org/10.2175/106143009x12445568400737.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mearns, Alan J., Donald J. Reish, Philip S. Oshida, and Thomas Ginn. "Effects of Pollution on Marine Organisms." Water Environment Research 82, no. 10 (January 1, 2010): 2001–46. http://dx.doi.org/10.2175/106143010x12756668802175.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mearns, Alan J., Donald J. Reish, Philip S. Oshida, Thomas Ginn, and Mary Ann Rempel-Hester. "Effects of Pollution on Marine Organisms." Water Environment Research 83, no. 10 (January 1, 2011): 1789–852. http://dx.doi.org/10.2175/106143011x13075599870171.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mearns, Alan J., Donald J. Reish, Philip S. Oshida, Thomas Ginn, Mary Ann Rempel-Hester, and Courtney Arthur. "Effects of Pollution on Marine Organisms." Water Environment Research 84, no. 10 (October 1, 2012): 1737–823. http://dx.doi.org/10.2175/106143012x13407275695751.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Organismes marins – Effets de la pollution"

1

Leistenschneider, David. "Physical and chemical toxicity of microplastics on marine organisms." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS283.

Повний текст джерела
Анотація:
L'objectif de cette thèse de doctorat est de mieux comprendre l'impact chimique et physique du plastique sur les organismes marins. La toxicité chimique du plastique provient soit de la lixiviation des produits chimiques des plastiques, soit de l'adsorption de polluants à la surfaces des plastiques. Étant donné que les expériences de lixiviation dans la littérature ont été réalisées avec des temps de lixiviation courts, des lixiviations jusqu'à 8 mois ont été réalisées. La toxicité et la composition en éléments inorganique des lixiviats ont été analysées. L'adsorption des polluants à la surface des plastiques a été principalement étudiée en laboratoire et s'est concentrée sur l'environnement marin. Par conséquent, une expérience in situ, le long de neuf fleuves européens, a été réalisée afin d'observer l'ampleur de l'adsorption des polluants inorganiques et organiques ainsi que leur toxicité. Les articles évaluant l'impact physique du plastique utilisent souvent des concentrations qui ne reflètent pas celles trouvées dans l'environnement. Par conséquent, une expérience chronique avec des concentrations et formes de microplastiques représentatives de l'environnement a été réalisée afin de mieux comprendre leur toxicité dans l'environnement
The objective of this PhD thesis is to better decipher the chemical and physical impact of plastic on marine organisms. Plastic chemical toxicity either originates from the leaching of plastics chemicals or through the adsorption of pollutants at plastic surfaces. Since leaching experiments in the literature were performed with short leaching time, leaching until 8 months was performed. The subsequent toxicity and inorganic composition of the leachates were analyzed. Pollutants adsorption on plastic surfaces was mainly studied in laboratories and focused on the marine environment. Therefore, an in situ experiment, along nine European rivers, was realized in order to observe the depth of inorganic and organic pollutants adsorption and their subsequent toxicity. Articles assessing the physical impact of plastic often use concentrations decorrelated from the environment. Therefore, a chronic experiment with environmentally relevant concentrations and shape of microplastics was performed in order to better decipher their current toxicity in the environment
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Arpin-Pont, Lauren. "Les produits pharmaceutiques et de soin personnel en milieu marin : prédiction des concentrations environnementales et étude des effets sur le métabolisme endogène d’organismes exposés." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS172/document.

Повний текст джерела
Анотація:
La question de la contamination du milieu marin par les produits pharmaceutiques et de soin personnel (PPCP) se pose depuis une vingtaine d’années seulement. La principale source de contamination de ces substances se révèle être les stations d’épuration (STP) rejetant directement ou non leurs effluents traités en mer, les traitements employés dans ces stations n’étant pas toujours efficaces pour éliminer ces substances. Le premier objectif de la thèse a été d’évaluer l’état des lieux de la contamination du milieu marin par les PPCP, par une étude approfondie de la littérature, et ce dans les différents compartiments du milieu marin, l’eau de mer, les sédiments et les organismes. La contamination du milieu marin est évaluée principalement par des mesures ponctuelles in situ des concentrations des molécules. Cependant, pour obtenir une vision globale de la répartition de ces contaminants, la multiplication des campagnes d’échantillonnage rend cette méthodologie coûteuse en temps et en matériel. Des approches basées sur la modélisation des concentrations environnementales dans le milieu, par la détermination de concentrations environnementales prévisibles (PEC), peuvent être utilisées en complément ou à la place des mesures in situ. Les PEC constituent la première étape de l’évaluation du risque environnemental (ERE) et permettent d’évaluer l’exposition des organismes non cibles à ces substances. Cependant, pour être précise, cette estimation des concentrations doit être affinée en tenant compte des caractéristiques propres au site étudié. Le deuxième objectif de la thèse a été de proposer une méthodologie de calcul des PEC affinée de molécules pharmaceutiques et de leurs métabolites en zone côtière à l’aide d’un modèle hydrodynamique adapté. Deux molécules modèles ont été choisies, la carbamazépine et la venlafaxine. Afin d’évaluer le risque posé par les molécules pharmaceutiques, il est nécessaire de connaître les effets de ces substances sur les organismes. Actuellement, peu de données sont disponibles sur les organismes marins, contrairement aux organismes d’eau douce. De plus, l’ERE est bien souvent basée sur les résultats de tests standardisés, étudiant les effets à l’échelle de l’individu à des concentrations plus élevées que dans l’environnement. D’autres tests, effectués à des niveaux d’organisation biologique plus bas, sont plus sensibles à des faibles concentrations d’exposition, et sont donc plus pertinents en milieu marin. Le dernier objectif de la thèse a été d’étudier les effets du diclofénac sur la production des prostaglandines, cibles du mécanisme d’action connu de cette molécule, chez des moules méditerranéennes exposées
The last twenty years, the issue of PPCP contamination of the marine environment caused a growing concern among scientific community. PPCP enter the environment mainly through wastewater treatment plants (WTP), not able to remove completely these substances. The first objective of the thesis was to assess the current state of knowledge on the PPCP occurrence in the different compartments of the marine environment (seawater, sediments and organisms) through a literature review. The contamination of the marine environment is generally assessed by “one-time” measures in situ. However, such monitoring campaigns are time-consuming and costly. Some approaches based on the determination of the predicted environmental concentrations (PEC) could be applied alternatively or complementarily to in situ measures. The PEC calculation is the first step of environmental risk assessment (ERA), to assess the exposure of non target organisms to these substances. However, this estimation needs to be refined to be accurate, by integrating site-specific information. The second aim of the thesis was to propose refined PEC calculation methodologies of pharmaceuticals and their metabolites in a coastal zone using an adapted hydrodynamic model. Two model compounds were chosen, carbamazepine and venlafaxine. In order to assess the environmental risk of pharmaceuticals, it is needful to assess their effects on organisms. Nowadays, few ecotoxicological data are available on marine organisms, contrary to freshwater organisms. Regulatory concept of ERA is often based on a set of short term standard tests carried out at high concentrations. Other tests, implemented at lower organizational levels, are more sensitive to low exposure levels and are more relevant for the marine risk assessment. The last objective was to study the effects of diclofenac on PG production, based on its mode of action, on marine mussels exposed
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ghosn, Micheline. "Chemical contamination in different marine organisms along the Lebanese coast : Environmental implications and health risks." Thesis, Littoral, 2019. http://www.theses.fr/2019DUNK0552.

Повний текст джерела
Анотація:
La consommation mondiale des produits de la mer est en perpétuelle croissance et les produits de la pêche sont devenus parmi les produits les plus marchandés à travers le monde. Cependant, la qualité de ces derniers soulève une problématique au niveau de la santé humaine avec l’augmentation des pressions anthropiques menaçant les écosystèmes côtiers et les organismes marins. Par la suite, malgré les qualités nutritionnelles des produits de la pêche, leur consommation peut être une voie d’exposition de l’homme à différents types de contaminants chimiques dont les éléments traces métalliques (ETMs). Dans ce contexte, l’évaluation du niveau de contamination dans ces produits et les risques qu’ils peuvent engendrer s’avère être une nécessité surtout en l’absence de normes locales et de programmes de surveillance. Les objectifs de cette étude sont de deux ordres : i) l’évaluation la qualité environnementale du littoral Libanais à travers les organismes marins et, ii) l’estimation du niveau des risques sanitaires liés à la consommation d’une sélection des produits de la pêche. Le premier objectif, était d’évaluer les niveaux de contaminants métalliques (20 éléments traces) chez six espèces marines de différents niveaux du réseau trophique (algues, moules, crevettes et poissons) représentatif des eaux côtières libanaises. Les résultats ont révélé que les espèces accumulent les métaux différemment soulignant ainsi l’importance d’une approche multi-espèce pour mieux refléter le niveau de contamination du milieu. Des variations inter-sites ont été également trouvées surtout durant la période pluvieuse de l’année indiquant l’effet des apports des rivières vers la zone côtière. Les niveaux des ETMs obtenus dans les muscles et les tissus comestibles dans le cadre de notre étude étaient du même ordre de grandeur que ceux mesurés dans d’autres régions du bassin Levantin. Cependant, les foies ont montré des concentrations supérieures comparées à d’autres études, suggérant ainsi que la côte libanaise est soumise à des pressions environnementales importantes. Le deuxième objectif, concerne l’évaluation des risques sanitaires liés à la consommation de différents produits de la pêche échantillonnés le long du littoral Libanais. Pour cela, cinq espèces consommées localement (1 bivalve, 1 crustacé et 3 espèces de poisson) et échantillonnés le long du littoral Libanais au niveau de trois sites soumis à différents niveaux de pressions anthropiques ont été sélectionnés. Tous les échantillons ont été analysés pour leur contenu en éléments traces. Des métaux comme le mercure (Hg) se retrouvent sous plusieurs formes chimiques, sa forme la plus toxique étant le méthylmercure (MeHg). La voie principale de l’exposition humaine au MeHg est la consommation de produits de la pêche. Pour cela, une méthode de spéciation du Hg dans les produits de la pêche a été optimisée et validée par profil d’exactitude. Les résultats ont montré que les niveaux des ETMs et du MeHg dans les espèces concernées, étaient largement inférieurs aux limites maximales admissibles fixées par la Commission Européenne et que leur consommation ne présente pas de risques pour la santé humaine
Global food fish consumption has been in continuous increase and fishery products have become some of the most traded items in the world. However, the quality of these products is becoming an issue of concern to human health with the increase of anthropogenic activities threatening marine coastal ecosystems. Therefore, despite the well-known health benefits of fishery products, their consumption may be a route of human exposure to different kinds of chemical contaminants including trace elements. In this context, evaluating the contamination levels in these products and the risks they may engender to human health proves to be a necessity in the absence of local guidelines and monitoring programs. Thus, the thesis has 2 main objectives: i) the evaluation of environmental quality through marine organisms and, ii) the assessment of health risks related to the consumption of a selection of fishery products.The first objective was to study the levels of metallic contaminants (20 trace elements) in six marine species from different trophic levels of a food web (algae, mussel, shrimp and fish), representative of Lebanese coastal waters. The results showed that species accumulated metals differently underlining the importance of a multi-specific approach to reflect the contamination level of a certain site. Inter-site variations have been found mainly during the rainy period of the year while they were less prominent during the dry season, highlighting the effect of land-based sources and riverine effluents on the marine coastal area. Levels of trace elements in the muscles and edible tissues in species from our study, were similar to the ones reported in the Eastern Mediterranean (Levantine Basin) whereas livers showed higher levels compared to other studies suggesting that the Lebanese coast is exposed to strong environmental pressure. The second objective was to evaluate the health risks related to the consumption of different fishery products sampled along the Lebanese coast. In this prospect, five commonly consumed local species belonging to different compartments of the food chain, (1 bivalve, 1 crustacean and 3 fish species) sampled from three sites with different levels of anthropogenic pressures were selected. The samples were all analyzed for their content of trace elements. Metals such as mercury (Hg) are found in several chemical forms, the most toxic form being methylmercury (MeHg). The main route of human exposure to MeHg is the consumption of fishery products. That’s why, a method for the speciation of mercury in fishery products by HPLC-ICP-MS was optimized and validated based on an accuracy profile. The results showed that the levels of trace elements and MeHg in the selected species were all below the allowed maximum levels set by the European commission and so their consumption is not likely to cause any adverse effects to human health
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Arpin-Pont, Lauren. "Les produits pharmaceutiques et de soin personnel en milieu marin : prédiction des concentrations environnementales et étude des effets sur le métabolisme endogène d’organismes exposés." Electronic Thesis or Diss., Montpellier, 2015. http://www.theses.fr/2015MONTS172.

Повний текст джерела
Анотація:
La question de la contamination du milieu marin par les produits pharmaceutiques et de soin personnel (PPCP) se pose depuis une vingtaine d’années seulement. La principale source de contamination de ces substances se révèle être les stations d’épuration (STP) rejetant directement ou non leurs effluents traités en mer, les traitements employés dans ces stations n’étant pas toujours efficaces pour éliminer ces substances. Le premier objectif de la thèse a été d’évaluer l’état des lieux de la contamination du milieu marin par les PPCP, par une étude approfondie de la littérature, et ce dans les différents compartiments du milieu marin, l’eau de mer, les sédiments et les organismes. La contamination du milieu marin est évaluée principalement par des mesures ponctuelles in situ des concentrations des molécules. Cependant, pour obtenir une vision globale de la répartition de ces contaminants, la multiplication des campagnes d’échantillonnage rend cette méthodologie coûteuse en temps et en matériel. Des approches basées sur la modélisation des concentrations environnementales dans le milieu, par la détermination de concentrations environnementales prévisibles (PEC), peuvent être utilisées en complément ou à la place des mesures in situ. Les PEC constituent la première étape de l’évaluation du risque environnemental (ERE) et permettent d’évaluer l’exposition des organismes non cibles à ces substances. Cependant, pour être précise, cette estimation des concentrations doit être affinée en tenant compte des caractéristiques propres au site étudié. Le deuxième objectif de la thèse a été de proposer une méthodologie de calcul des PEC affinée de molécules pharmaceutiques et de leurs métabolites en zone côtière à l’aide d’un modèle hydrodynamique adapté. Deux molécules modèles ont été choisies, la carbamazépine et la venlafaxine. Afin d’évaluer le risque posé par les molécules pharmaceutiques, il est nécessaire de connaître les effets de ces substances sur les organismes. Actuellement, peu de données sont disponibles sur les organismes marins, contrairement aux organismes d’eau douce. De plus, l’ERE est bien souvent basée sur les résultats de tests standardisés, étudiant les effets à l’échelle de l’individu à des concentrations plus élevées que dans l’environnement. D’autres tests, effectués à des niveaux d’organisation biologique plus bas, sont plus sensibles à des faibles concentrations d’exposition, et sont donc plus pertinents en milieu marin. Le dernier objectif de la thèse a été d’étudier les effets du diclofénac sur la production des prostaglandines, cibles du mécanisme d’action connu de cette molécule, chez des moules méditerranéennes exposées
The last twenty years, the issue of PPCP contamination of the marine environment caused a growing concern among scientific community. PPCP enter the environment mainly through wastewater treatment plants (WTP), not able to remove completely these substances. The first objective of the thesis was to assess the current state of knowledge on the PPCP occurrence in the different compartments of the marine environment (seawater, sediments and organisms) through a literature review. The contamination of the marine environment is generally assessed by “one-time” measures in situ. However, such monitoring campaigns are time-consuming and costly. Some approaches based on the determination of the predicted environmental concentrations (PEC) could be applied alternatively or complementarily to in situ measures. The PEC calculation is the first step of environmental risk assessment (ERA), to assess the exposure of non target organisms to these substances. However, this estimation needs to be refined to be accurate, by integrating site-specific information. The second aim of the thesis was to propose refined PEC calculation methodologies of pharmaceuticals and their metabolites in a coastal zone using an adapted hydrodynamic model. Two model compounds were chosen, carbamazepine and venlafaxine. In order to assess the environmental risk of pharmaceuticals, it is needful to assess their effects on organisms. Nowadays, few ecotoxicological data are available on marine organisms, contrary to freshwater organisms. Regulatory concept of ERA is often based on a set of short term standard tests carried out at high concentrations. Other tests, implemented at lower organizational levels, are more sensitive to low exposure levels and are more relevant for the marine risk assessment. The last objective was to study the effects of diclofenac on PG production, based on its mode of action, on marine mussels exposed
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bocquené, Gilles. "L'acetylcholinesterase, marqueur de neurotoxicite. Application a la surveillance des effets biologiques des polluants chez les organismes marins." Paris, EPHE, 1996. http://www.theses.fr/1996EPHE3008.

Повний текст джерела
Анотація:
Les cholinesterases et particulierement l'acetylcholinesterase (ache) constituent la cible privilegiee de nombreuses molecules neurotoxiques notamment des insecticides organophosphores (op) et carbamates. La sensibilite des cholinesterases a ces inhibiteurs est aussi complexe que le polymorphisme de ces enzymes. Apres une synthese des connaissances sur le polymorphisme des cholinesterases, les activites cholinesterasiques sont caracterisees chez plusieurs especes marines. Chez l'huitre deux acetylcholinesterases sont separees et decrites. La forme ache membranaire montre une tres forte sensibilite aux organophosphores et carbamates tandis que sa congenere ache soluble se revele insensible. L'interet de n'utiliser que la forme membranaire comme biomarqueur des effets des contaminants neurotoxiques est demontre. Le caractere synergique de l'effet d'associations d'organophosphores et de carbamates est mis en evidence avec les effets les plus synergiques observes dans les cas de combinaisons d'un organophosphate et d'un carbamate. Des variations significatives dans les niveaux d'activite ache sont mesurees dans diverses zones contaminees et notamment chez la limande en mer du nord ou les poissons chirurgiens en martinique
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mathieu, Anne. "Variations des activités de biotransformation chez les poissons marins : application à la surveillance biologique de l'environnement." Aix-Marseille 3, 1990. http://www.theses.fr/1990AIX30046.

Повний текст джерела
Анотація:
Dans le cadre de la biosurveillance de l'environnement, l'utilisation, chez les poissons marins, des activites enzymatiques de biotransformation, comme indicateurs de pollution, necessite la connaissance prealable de l'induction de ces activites et de leurs variations naturelles. Experimentalement, l'effet d'un hydrocarbure, le benzo(a)pyrene (bap), a ete etudie chez le loup (dicentrarchus labrax). Le temps de 1/2 du bap varie entre 2 a 13 jours selon les organes avec une metabolisation importante dans le foie. Le maximum d'induction des enzymes de biotransformation se situe des 14-24 heures. Comparativement, l'induction des activites de biotransformation de serran (serranus scriba) est aussi rapide mais le niveau d'induction est plus faible. In situ, les activites de biotransformation ont ete mesurees en fonction du cycle saisonnier, au niveau hepatique et intestinale, chez deux poissons de meme localisation geographique, le rouget (mullus barbatus), espece gonochorique et le serran (serranus scriba), espece hermaphrodite simultanee. Les variations saisonnieres sont plus importantes chez le rouget que chez le serran. Des variations liees au sexe s'ajoutent aux variations saisonnieres de rouget pendant la maturation sexuelle. Le suivi sur deux annees de l'activite erod chez les serrans (serranus scriba) et (serranus cabrilla), provenant de differents sites de la mediterranee occidentale, a permis d'etablir une relation entre cette activite et la presence d'hydrocarbures dans le sediment
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bado-Nilles, Anne. "Effets de pollutions par hydrocarbures sur les capacités de défense d'organismes marins." La Rochelle, 2008. http://www.theses.fr/2008LAROS254.

Повний текст джерела
Анотація:
Les effets des HAPs, parmi les plus toxiques de la liste de l’Agence de Protection Environnementale Américaine, sont testés in vitro et in vivo sur deux espèces commerciales des Pertuis Charentais (Charente-Maritime, France) : le bar commun, Dicentrarchus labrax, et l’huître creuse, Crassostrea gigas. Cette étude, réalisée dans le cadre du projet européen EROCIPS, recherche de nouveaux descripteurs immunologiques d’une pollution occasionnelle par hydrocarbures. Lors d’expérimentations in vitro, le choix de polluants de type hydrocarbure et de descripteurs d’intérêt de l’immunité non spécifique chez les deux espèces étudiées est réalisé. Puis, des expositions in vivo à la fraction soluble du fioul lourd issus de l’Erika et de son fluxant, le light cycle oil, sont entreprises. Elles ont permis la validation de l’outil expérimental avec notamment la mesure des HAPs bioaccumulés et métabolisés et la détermination d’outils de diagnostic de type immunologique pertinents : l’activité phénoloxydase chez les Mollusques et l’activité hémolytique du complément voie alterne chez les poissons. Ces deux cascades enzymatiques sont proposées pour la première fois dans le cadre d’une évaluation d’une pollution occasionnelle par hydrocarbures pour des conditions réelles de terrain
The effects of PAHs, considered among the most toxic by the United States Environmental Protection Agency, were tested in vitro and in vivo on two commercial species of the Pertuis-Charentais (Charente-Maritime, France): sea bass, Dicentrarchus labrax, and the Pacific oyster, Crassostrea gigas. This study was carried out as part of the European project EROCIPS with the aim of finding new immunological biomarkers caused by occasional pollution by hydrocarbons. During in vitro experimentation, pollutants and immunological biomarkers were choosen. Thereafter, the in vitro exposures to the soluble fraction of Erika’s heavy fuel oil and its fluxant, light cycle oil, began. These exposures enable the validation of the experimental system used, with, in particular, the measurement of bioaccumulated PAHs and metabolites and of choice of the immune biomarkers. The phenoloxidase activity of molluscs and the haemolytic activity of the alternative complement pathway of fish were proposed, for the first time, as suitable biomarkers for the evaluation of pollutant risks in field conditions
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Galli, Matteo. "Development, harmonizing and application of innovative methodologies for the study of the presence and effects of marine litter on organisms in Mediterranean marine protected areas within the Plastic Busters MPAs project." Doctoral thesis, Università di Siena, 2022. http://hdl.handle.net/11365/1203386.

Повний текст джерела
Анотація:
The irreversibility and global ubiquity of marine litter pollution and plastic, in particular, make this material a potential planetary boundary threat. Although the growing attention from the scientific community and the increasing number of peer-reviewed papers, the occurrence and distribution of plastic litter in the Mediterranean Marine Protected Areas (MPAs) and its impacts and effects on marine wildlife remain still poorly investigated. Within the Plastic Busters MPAs project, this PhD thesis provided a comprehensive assessment of marine litter pollution in the sea surface waters and beaches of the Pelagos Sanctuary and the Tuscan Archipelago National Park and the potential physical and chemical impacts related to plastic ingestion on several Mediterannean bioindicators. The experimental designs planned ad-hoc for the selected study areas (Chapter 3), harmonised and implemented the current methods for sampling marine litter in the different environments and defined a new simultaneous multilevel approach reflecting the strong pressure that marine litter, and in particular plastics, exert on organisms inhabiting the protected areas. A total of 273 monitoring transects of floating macrolitter, 141 manta trawl and 14 beaches were sampled and monitored evaluating the occurrence, abundances and composition of marine litter according to the characterization protocols implementing the Marine Strategy Framework Directive (MSFD) (Chapter 4). Particular attention was applied to investigate the potential influences of environmental and anthropic variables affecting the litter distribution and to identify potential hotspot accumulation areas representing a major hazard for marine organisms. Several species were collected, starting from invertebrates to cetaceans, to evaluate the frequency of ingestion and confirm/validate their potential role as marine litter bioindicators (Chapter 5). For the first time, an exhaustive analysis of phthalate acid esters (PAEs) presence was assessed on different organisms and biological tissues through the GC-MS analysis (Chapter 5). Strong litter inputs were identified to originate from the mainland and accumulate in coastal waters within about 10-15 nautical miles. Harbours and riverine outfalls may contribute significantly to plastic pollution representing the main sources of inputs as well as areas with warmer waters and weak oceanographic features could facilitate the accumulation of litter. The high concentrations of plastics floating on the sea surface (399 items/km2 for macrolitter and 259,490 items/km2 for MPs) and stranded on beaches (up to 1,033 ± 915 items/100m) indicate a potentially threatening trend of particle accumulation that may pose a serious risk to organisms living in the Pelagos Sanctuary. The twofold monitoring approach, simultaneously investigating plastic and MP ingestion in several species and concentrations of plasticizers has allowed gaining information on the direct link between synthetic particle ingestion and its additive substances release. Microplastic ingestion was assessed for the first time in the Mediterranean Sea in Velella velella organisms (0.71 items/ind), filter-feeding organisms such as the Mobula mobular (23 items/ind.) and Balaenoptera physalus (35 items/ind.), as well as in poorly investigated species i.e. seabirds, lanternfishes and odontocete cetaceans. Phthalate acid ester loads (mainly DIBP, DBP and DEHP compound) and their pattern of accumulation were evaluated in several species and different biological tissues respectively, according to their feeding behaviour, long life span and spatial distribution. Finally, the spatial risk assessment (Chapter 6) indicated the Gulf of La Spezia and the National Park of the Tuscan Archipelago as the most affected by the accumulation of plastic waste and at higher risk of exposure to organisms as well as the Genova canyon and the seamount area. The results obtained here provide further indications for dealing with plastic pollution in MPAs and could facilitate future recommendations for the management and use of the marine and coastal environment of these protected areas.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yu, Pui-shan, and 余珮珊. "The potential for using biomonitoring in the Hong Kong marine environment." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1996. http://hub.hku.hk/bib/B31253611.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Renaud, Florent. "Accumulation, distribution, transformation et élimination par certains organismes marins côtiers d'un agent tensioactif anionique : le sulfonate d'alkylbenzene linéaire (LAS)." La Rochelle, 2008. http://www.theses.fr/2008LAROS228.

Повний текст джерела
Анотація:
La famille des LAS (Alkylbenzène Sulfonate Linéaires) représente le groupe des tensioactifs synthétiques le plus utilisé à l’heure actuelle pour la fabrication des détergents utilisés dans les produits ménagers. Produits à plus d’un million de tonnes dans le monde, leur utilisation spécifique fait qu’ils sont rejetés avec les eaux usées dans les écosystèmes aquatiques depuis plus de 40 ans. Le devenir des LAS en milieu marin est très peu connu et le risque pour les organismes est considéré comme faible. Avant de pouvoir dresser une carte de la contamination des LAS en utilisant les méthodes de biosurveillance actuelles, il est important de savoir comment les organismes sentinelles accumulent cette famille de molécules. Cette thèse a pour objectif de caractériser en conditions contrôlées les capacités de bioaccumulation et d’élimination des LAS chez différents organismes représentatifs de la zone côtière de Méditerranée Nord Occidental. Les organismes choisis appartiennent à différents niveaux trophiques : 5 espèces de microalgue, la moule de Méditerranée Mytilus galloprovincialis et la daurade royale Sparus aurata. Les résultats montrent une accumulation des LAS par tous les organismes exposés à des concentrations naturellement mesurées dans l’environnement (< 10 µg l-1). Cette accumulation varie en fonction des conditions biotiques (poids ou état physiologique des organismes) et abiotiques (température, saison ou concentration d’exposition). Les LAS sont accumulés dans les organes de manière hétérogène. La masse viscérale et la vésicule biliaire sont les organes qui concentrent le plus les LAS. Quelque soit la voie de contamination, les LAS sont peu retenus et rapidement éliminés lorsque les organismes sont placés dans des conditions normales
LAS (Linear alkylbenzene Sulfonate) represent the group of synthetic surfactants that is most wide spread in detergent formulation and is used in most household (cleaning?) products. With more than one million tonnes produced annually, surfactants are largely disposed of in waste water and have been discharged into the aquatic environment with effluent for over 40 years. The fate of LAS in the marine environment is not well understood and the risk for organisms is thought to be negligible. Before drawing a contamination map of Mediterranean coasts by using existing biomonitoring programs, it is necessary to understand how marine species deal with LAS. This focus of this thesis is on characterising LAS bioaccumulation and elimination kinetics under controlled laboratory conditions, for organisms representative of the North-Occidental Mediterranean coast. Tested species come from different trophic levels: 5 species of microalgae, the Mediterranean mussel Mytilus galloprovincialis and the sea bream Sparus aurata. Results show LAS accumulation in all organisms exposed to natural concentration observed in the environment (< 10 µg l-1). Accumulation varies according to biotic (weight or physiological stat of organisms) and abiotic (temperature or exposure concentration). LAS are accumulated heterogeneously in organs and mainly in visceral mass or gall bladder. Whatever the contamination pathway (food or waterborne exposure) elimination from the body is fast when animals are placed in normal conditions
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Organismes marins – Effets de la pollution"

1

Grouhel, Anne, and Marie-Jo Thébaud. Analyse de contaminants organiques PCB, OCP, HAP dans les organismes marins. Plouzané: Ifremer, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

1945-, Rand Gary M., and Petrocelli Sam R, eds. Fundamentals of aquatic toxicology: Methods and applications. Washington: Hemisphere Pub. Corp., 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hilvarsson, Annelie. The antifoulant medetomidine: Sublethal effects and bioaccumulation in marine organisms. Göteborg: Göteborg University, Faculty of Science, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hilvarsson, Annelie. The antifoulant medetomidine: Sublethal effects and bioaccumulation in marine organisms. Göteborg: Göteborg University, Faculty of Science, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Programme, United Nations Environment, Intergovernmental Oceanographic Commission, International Atomic Energy Agency, and Food and Agriculture Organization of the United Nations., eds. Contaminant monitoring programmes using marine organisms: Quality assurance and good laboratory practice. Nairobi, Kenya: UNEP, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

IMO/FAO/UNESCO/WMO/WHO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Pollution. and United Nations, eds. Long term consequences of low-level marine contamination: An analytical approach. [Geneva]: UNEP, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

V, Dorigan Janet, and Harrison, Florence Louise Montana, 1926-, eds. Physiological responses of marine organisms to environmental stresses: Research supported by U.S. Department of Energy, 1980 to 1986. Washington, D.C: U.S. Dept. of Energy, Office of Energy Research, Office of Health and Environmental Research, Ecological Research Division, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

François, Galgani, Grouhel Anne, Thébaud Marie-Jo, and Institut français de recherche pour l'exploitation de la mer, eds. Les marqueurs biologiques des effets des polluants: L'acétylcholinestérase. Plouzané: Ifremer, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Faigenblum, Jacques. Chemicals and bacteriological organisms in recreational shellfish: Final report. Olympia, Wash: Shellfish Section, Office of Environmental Health Programs, State of Washington Dept. of Social and Health Services, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Faigenblum, Jacques. Chemicals and bacteriological organisms in recreational shellfish: Final report. [Olympia, Washington: Dept. of Social and Health Services, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Organismes marins – Effets de la pollution"

1

Sousa, Joao, Benjamin Ferrari, Michael L. Brennan, and Ole Varmer. "Concluding Statement." In Threats to Our Ocean Heritage: Potentially Polluting Wrecks, 157–59. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-57960-8_12.

Повний текст джерела
Анотація:
AbstractThe grim reality of potentially polluting legacy wrecks presents a multifaceted threat that extends far beyond the decaying hulks on the ocean floor. These wrecks serve as silent sentinels of a bygone era, leaking toxic substances that indiscriminately poison marine life and disrupt the intricate web of oceanic relationships. From the smallest plankton to the largest apex predators, no organism remains untouched by the effects of these pollution sources.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sezgin, Rabia, Ugur Atakli, and Muharrem Balci. "The Ecological Role of Phytoplankton and the Drivers of Harmful Algal Blooms: Responses to Climate-Induced Stressors in Marine Ecosystems." In Ecological Dynamics in the Face of Climate Change, 75–88. Istanbul: Nobel Tip Kitabevleri, 2024. http://dx.doi.org/10.69860/nobel.9786053359258.5.

Повний текст джерела
Анотація:
Phytoplankton, a group of single-celled organisms capable of photosynthesis, are vital to marine ecosystems due to their primary production and role in biogeochemical cycles. They adapt to diverse environments and utilize complex nutritional strategies. Phytoplankton contribute to the global carbon cycle through carbon fixation and sequestration, particularly by diatoms and coccolithophores. However, climate change and anthropogenic impacts are altering their dynamics, with rising temperatures, acidification, and pollution affecting growth, productivity, and community structure. Harmful algal blooms (HABs), driven by eutrophication and increased nutrient loads, pose significant threats to marine ecosystems, causing toxic effects and disrupting food webs. Effective management of these issues requires extensive research, international cooperation, and informed policy measures. Understanding phytoplankton’s responses to environmental changes is crucial for predicting marine ecosystem futures and developing strategies to mitigate the adverse effects of climate change and pollution.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chilma-Arias, Andres, Sebastian Giraldo-Vaca, and Juan A. Sánchez. "A Light Pollution Assessment in the Fringing Reefs of San Andrés Island: Towards Reducing Stressful Conditions at Impacted Coral Reefs." In Disaster Risk Reduction, 89–102. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-6663-5_5.

Повний текст джерела
Анотація:
AbstractThe degradation of the night sky’s quality due to artificial light sources negatively affects marine environments, because many organisms use natural light as cues for reproductive and dispersal behaviors, find favorable habitats, and for the biochemistry of their symbiotic microorganisms. Despite the tremendous effect on marine life, measuring the effects of artificial light pollution is difficult because our understanding of natural light brightness coming from celestial bodies like the Moon is minimal. Here, we fill this gap by quantifying the sky’s brightness and Artificial Light Pollution at Night (ALAN). This study assessed light pollution along the reefs around San Andrés Island, which Hurricane Iota significantly impacted. We modified and installed Sky Quality Meters (LU-DL) at both leeward and fringing reefs, down to 11 m depth. The results indicate the highest ALAN values in the area of Johnny Cay (18 msas) compared to Acuario (20 msas) and West View (21 msas). Additionally, National Oceanic and Atmospheric Administration NOAA and Unihedron databases show an increase in artificial light on land, where constant artificial light and coastal vegetation loss due to Hurricane Iota (between 15 and 19th November 2020), are the main factors that may be generating this increase in artificial light.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Guerrini, Federica. "Data-Informed Models for the Coupled Dispersal of Microplastics and Related Pollutants Applied to the Mediterranean Sea." In Special Topics in Information Technology, 3–14. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15374-7_1.

Повний текст джерела
Анотація:
AbstractMicroplastic pollution is a ubiquitous environmental threat, in particular to the oceans. In the marine environment, microplastics are not just passively transported by sea currents, but often get contaminated with organic pollutants during the journey. The uptake of chemicals onto microplastics can worsen the adverse effects of microplastics to marine organisms; however, investigation on this urgent phenomenon is hampered by the impossibility of monitoring and tracking such small plastic fragments during their motion at sea. This work aims at addressing the need for an effective modelling of the advection–diffusion processes jointly involving microplastics and the pollutants they carry to further our understanding of their spatiotemporal patterns and ecological impacts, focusing on the Mediterranean Sea. Here we present the conceptual design, methodological settings, and modelling results of a novel, data-informed 2D Lagrangian–Eulerian modelling framework that simultaneously describes (i) the Lagrangian dispersal of microplastic on the sea surface, (ii) the Eulerian advection–diffusion of selected organic contaminants, and (iii) the gradient-driven chemical exchanges between microplastic particles and chemical pollutants in the marine environment in a simple, yet comprehensive way. Crucial to the realism of our model is exploiting the wide variety and abundance of data linked with drivers of Mediterranean marine pollution by microplastics and chemicals, ranging from national censuses to satellite data of surface water runoff and GPS ship tracking, other than the use of oceanographic reanalyses to inform microplastics’ motion at sea. The results of our method applied to a multi-year simulation contribute to a first basin-wide assessment of the role of microplastics as a vehicle of other pollutants of concern in the marine environment. The framework proposed here is intended as a flexible tool to help advance knowledge towards a comprehensive description of the multifaceted threat of marine plastic pollution and an informed support to targeted mitigation policies.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Paul, Agbekpornu, and Kevudo Isaac. "The Risks of Microplastic Pollution in the Aquatic Ecosystem." In Environmental Sciences. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.108717.

Повний текст джерела
Анотація:
Microplastic pollution is a global issue that has a detrimental effect on the food chain in the marine ecosystem. They are found in their highest concentrations along coastal lines and within mid-ocean gyres. In marine environments, microplastics are a threat to marine organisms, as they are often in the same size range as prey and are mistaken as food. When ingested can have a deleterious range of effects on marine organisms, a process which may facilitate the transfer of chemical additives or hydrophobic waterborne pollutants to aquatic lives. In this chapter, we looked at the risk of microplastic pollution and its impact on marine organisms and humankind. The study shows that consumption of microplastics has led to ingestion of chemical toxins in aquatic fish, which leads to damage of digestive organs, choking of marine organisms, channel for the spread of microbes, and a reduction in growth and reproductive output. These threats increase the risk to aquatic fishes and human survival. Hence, the need to educate the public on the dangers of using products that pose an immediate and long-term threat to the marine ecosystem and the health of its organism, and the food we eat by marine scientists.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

M., Vinayaka, Shanmukha N. T., Lokeshappa B., and Shanwaj Nadaf. "Marine Biodiversity Impact Assessment." In Advances in Environmental Engineering and Green Technologies, 87–110. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-3330-3.ch006.

Повний текст джерела
Анотація:
Human activities, including pollution, invasive species, habitat degradation, overfishing, and climate change, are causing a decline in marine biodiversity and ecosystems. These issues disrupt food webs, habitat loss, and interfere with marine organisms' health and reproduction. Climate change also strains marine life. Conservation efforts and sustainable management techniques are needed to protect marine biodiversity, including pollution management, habitat protection, sustainable fishing methods, and climate change mitigation. Integrated strategies addressing pollution, habitat protection, sustainable fishing, and climate change mitigation are crucial for preserving marine ecosystems.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Singh, Bhupinder, Christian Kaunert, and Gursahib Singh. "Scaling Legal Framework for Plastic Pollution and Advancing Cutting Edge Water Governance." In Advances in Environmental Engineering and Green Technologies, 197–222. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-9163-1.ch010.

Повний текст джерела
Анотація:
The growing danger of plastic pollution and its catastrophic effects on marine ecosystems highlight the pressing need for creative approaches to water governance as well as a thorough legal framework. Marine pollution comprises a mixture of chemicals and debris, primarily originating from terrestrial sources and finding its way into the ocean through runoff or wind dispersion. This contamination leads to adverse effects on the environment, the well-being of various organisms and the global economic structures. The significant factors such as- littering, storm winds and inadequate waste management collectively contribute to the buildup of this refuse. This chapter explores the complex interactions between state-of-the-art governance models and legal tools, with an emphasis on protecting marine life and reducing plastic pollution. In line with the objectives of Sustainable Development Goal 14 (SDG 14) Life below Water.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gray, John S., and Michael Elliott. "Human impacts on soft-sediment systems—pollution." In Ecology of Marine Sediments. Oxford University Press, 2009. http://dx.doi.org/10.1093/oso/9780198569015.003.0013.

Повний текст джерела
Анотація:
A widely accepted definition of marine pollution is “the introduction by man, directly or indirectly, of substances or energy into the marine environment (including estuaries) resulting in such deleterious effects as harm to living resources, hazards to human health, hindrance to marine activities including fishing, impairment of the quality for use of seawater, and reduction of amenities”. (Wells et al. 2002). This differs from contamination since it results in biological damage, whether to the natural or human system, whereas contamination can be regarded merely as the introduction of substances by human activities (McLusky and Elliott 2004). Furthermore, pollution and pollutants can refer to biological and physical materials as well as chemicals (Gray 1992, Elliott 2003). In the case of the benthos, there is an extensive literature indicating that every type of pollutant has an effect on the benthos and so it is not surprising that the benthos is the mainstay of any monitoring and investigative programme. Pollution can affect organisms living in sediments by physical variables associated with the pollution source, such as increased sedimentation of particles, which leads to smothering of the fauna. In such cases the effect can in fact be regarded as a disturbing factor if the effects lead to mortality of individuals (Gray 1992). Alternatively, pollution can affect the fauna by toxicity where increased concentrations of contaminants lead to biochemical and physiological effects and ensuing mortality if certain thresholds for adaptation are exceeded. Here, however, we first treat the effects of the most widespread form of pollution affecting the marine environment— increased organic matter in sediments. Excess organic matter enters the marine environment principally as sewage, although it can also include waste from paper pulp mills or changed river run-off, for example. Excess organic matter causes physical effects such as smothering and also leads to reduced oxygen concentrations in the water column or pore-water in sediments. Sewage discharged into confined bodies of water frequently leads to the well-known symptoms termed eutrophication, resulting, in the most extreme cases, in a total lack of oxygen and the presence of hydrogen sulfide in the sediment, with a corresponding absence of fauna (e.g. de Jonge and Elliott 2001).
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kumar Sachan, Rohan Samir, Manpreet Kaur Somal, Ritu Bala, Bentham Science Publisher Khushboo, Mukesh Kumar, Inderpal Devgon, and Arun Karnwal. "Bioplastic as an Alternative to Microplastic." In Microplastic Pollution: Causes, Effects and Control, 156–72. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815165104123010011.

Повний текст джерела
Анотація:
Microplastics pose an imminent risk to the marine environment, biota, and ecosystem. Their consumption threatens organisms because of the material's ability to absorb and concentrate environmental contaminants in oceans and then transfer them through food chains. Microplastic may harm soil biota, such as earthworms, and can alter soil biophysical parameters, such as soil bulk density, aggregation, and water-holding capacity. To find alternatives to microplastics, scientists have developed biodegradable plastics that can be discarded in the environment and broken down quickly by the enzymatic activity of micro-organisms. Bioplastics are made from biological or renewable components. The bioplastic produced from potato peels, corn, sugarcane, wheat, rice, banana peels, and other natural materials is eco-friendly and biodegradable. Bioplastic is also known as Low-carbon plastic. The use of low-carbon plastic aids in the regulation of global temperature rise. It is used to make toys, home interiors, shopping bags, bottles, labels, trash bags, and packaging materials. It has wide applications for bone nails and tissue scaffolds in the medical industry. Its development also faces other obstacles, including price difficulties, technical improvements, and waste collection and treatment. Synthesis and characterization methods will help overcome these obstacles. The present chapter will focus on bioplastic and its types, the synthesis of bioplastic, the difference between microplastic and bioplastic, and bioplastic as an alternative approach.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kaur, Kuljit, and Harpreet Kaur. "Removal of Microplastic Contaminants from Aquatic Environment." In Microplastic Pollution: Causes, Effects and Control, 69–92. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815165104123010007.

Повний текст джерела
Анотація:
Microplastics (MPs) contamination has recently been recognized as a serious global concern for global food security and modern society's well-being due to its widespread presence in the aquatic and terrestrial environment. According to a growing number of reports, micro- and nanosized plastic components have been discovered in nearly every part of the world, from the bottom of the ocean to the mountain top. Microplastics have become prevalent in the environment due to the gradual disposal of plastic waste, a lack of conventional detection processes with particular removal techniques, and a slow disposal rate. By adsorbing various heavy metals, pathogens, and other chemical additives frequently utilised in the production of raw plastic, microplastics have been shown to work as potential vectors. At the tertiary level of the food chain, microplastics are consumed by marine organisms such as fish and crustaceans, and then by humans. This phenomenon is responsible for clogging digestive systems, disrupting digestion, and ultimately reducing the reproductive growth of entire living species. As a result of these repercussions, microplastics have become a growing concern as a new possible risk, demanding the management of microplastics in aquatic media. This review chapter gives a comprehensive overview of existing and newly developed technologies for detecting and removing microplastics from aquatic environments in order to minimise the ultimate possible impact on aquatic habitats.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Organismes marins – Effets de la pollution"

1

Kosyan, Alisa, Alisa Kosyan, Vladimir Gulbin, and Vladimir Gulbin. "FIRST CASE OF IMPOSEX IN NEPTUNEA CONVEXA (GASTROPODA: BUCCINIDAE) FROM BATHYAL DEPTHS (SEA OF OKHOTSK, >1400 M)." In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.31519/conferencearticle_5b1b93d3467d09.11646865.

Повний текст джерела
Анотація:
Owing to its worldwide use as an anti-fouling agent, tributyltin (TBT) is a common contaminant of marine ecosystems. Its wide distribution, high hydrophobicity and persistence have raised concern about bioaccumulation, potential biomagnifications in food webs, and adverse effects on the environment and human health. The most frequent and acute effect of TBT is found in gastropods, usually living in shallow waters, rarely at depths more than 100 m. This study reports about the first case of imposex in a deep water buccinid whelk Neptunea convexa collected at 1437 m in the Sea of Okhotsk. Among five collected specimens, the two were imposex females at the 1st stage of imposex development, while the rest three were males with normally developed penises. Most probably, TBT entered the whelk’s body by eaten benthic organisms, which feed on detritus with traces of TBT, but other reasons, such as heavy metal pollution, are also discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kosyan, Alisa, Alisa Kosyan, Vladimir Gulbin, and Vladimir Gulbin. "FIRST CASE OF IMPOSEX IN NEPTUNEA CONVEXA (GASTROPODA: BUCCINIDAE) FROM BATHYAL DEPTHS (SEA OF OKHOTSK, >1400 M)." In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.21610/conferencearticle_58b4315a4e465.

Повний текст джерела
Анотація:
Owing to its worldwide use as an anti-fouling agent, tributyltin (TBT) is a common contaminant of marine ecosystems. Its wide distribution, high hydrophobicity and persistence have raised concern about bioaccumulation, potential biomagnifications in food webs, and adverse effects on the environment and human health. The most frequent and acute effect of TBT is found in gastropods, usually living in shallow waters, rarely at depths more than 100 m. This study reports about the first case of imposex in a deep water buccinid whelk Neptunea convexa collected at 1437 m in the Sea of Okhotsk. Among five collected specimens, the two were imposex females at the 1st stage of imposex development, while the rest three were males with normally developed penises. Most probably, TBT entered the whelk’s body by eaten benthic organisms, which feed on detritus with traces of TBT, but other reasons, such as heavy metal pollution, are also discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Alshamsi, S., and K. Hussain. "Development of Biodegradable Surfactants for Oil Spill Remediation." In ADIPEC. SPE, 2024. http://dx.doi.org/10.2118/223033-ms.

Повний текст джерела
Анотація:
Abstract Oil spills in ocean habitats present very serious risks to sea ecosystems, prompt and efficient remediation approaches are needed. Regular chemical surfactants use in oil spill cleanup can pose risk and difficulties because of their toxicity to the environment and ocean habitats, leading to long-lasting ecological damage. This study presents the development of a biodegradable surfactant, termed BioClean-Surf, which is developed using principles of green and eco-friendly chemistry from natural sources like coconut oil, soybean oil, and amino acids. The aim is to develop an effective and environmentally friendly surfactant that can emulsify and disperse oil to reduce its long-lasting effects on marine environments. Laboratory experiments were conducted to assess the performance of BioClean-Surf in real-world conditions. The surfactant was synthesized through esterification and saponification processes, with its chemical structure and purity confirmed using advanced techniques like nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), and Fourier-transform infrared (FTIR) spectroscopy. Experiments evaluated the surfactant's ability to emulsify and disperse oil in water across three different surfactant-to-oil (S:O) ratios (1:5, 1:10, 1:50). The biodegradability of BioClean-Surf was tested using the OECD 301 standard, and toxicity was assessed through bioassays on aquatic organisms. Measurements of oil droplet size reduction, water turbidity, and bacterial cell count were continuously monitored over 60 days to observe the surfactant's efficacy. The results demonstrated that BioClean-Surf effectively emulsifies and disperses oil, significantly reducing residual oil in water samples and achieving optimal performance at an S:O ratio of 1:10. Biodegradability tests confirmed that BioClean-Surf breaks down rapidly in natural conditions, minimizing its long-term ecological footprint. Toxicity evaluations indicated that the surfactant is non-toxic to marine life, ensuring safe application in natural water bodies. These findings confirm that BioClean-Surf offers a highly effective and environmentally sustainable solution for oil spill remediation, aligning with global efforts to promote green technologies and reduce marine pollution.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Organismes marins – Effets de la pollution"

1

Lenz, Mark. RV POSEIDON Fahrtbericht / Cruise Report POS536/Leg 1. GEOMAR, October 2020. http://dx.doi.org/10.3289/geomar_rep_ns_56_2020.

Повний текст джерела
Анотація:
DIPLANOAGAP: Distribution of Plastics in the North Atlantic Garbage Patch Ponta Delgada (Portugal) – Malaga (Spain) 17.08. – 12.09.2019 The expedition POS 536 is part of a multi-disciplinary research initiative of GEOMAR investigating the origin, transport and fate of plastic debris from estuaries to the oceanic garbage patches. The main focus will be on the vertical transfer of plastic debris from the surface and near-surface waters to the deep sea and on the processes that mediate this transport. The obtained data will help to develop quantitative models that provide information about the level of plastic pollution in the different compartments of the open ocean (surface, water column, seafloor). Furthermore, the effects of plastic debris on marine organisms in the open ocean will be assessed. The cruise will provide data about the: (1) abundance of plastic debris with a minimum size of 100 μm as well as the composition of polymer types in the water column at different depths from the sea surface to the seafloor including the sediment, (2) abundance and composition of plastic debris in organic aggregates (“marine snow”), (3) in pelagic and benthic organisms (invertebrates and fish) and in fecal pellets, (4) abundance and the identity of biofoulers (bacteria, protozoans and metazoans) on the surface of plastic debris from different water depths, (5) identification of chemical compounds (“additives”) in the plastic debris and in water samples.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gregow, Hilppa, Antti Mäkelä, Heikki Tuomenvirta, Sirkku Juhola, Janina Käyhkö, Adriaan Perrels, Eeva Kuntsi-Reunanen, et al. Ilmastonmuutokseen sopeutumisen ohjauskeinot, kustannukset ja alueelliset ulottuvuudet. Suomen ilmastopaneeli, 2021. http://dx.doi.org/10.31885/9789527457047.

Повний текст джерела
Анотація:
The new EU strategy on adaptation to climate change highlights the urgency of adaptation measures while bringing forth adaptation as vitally important as a response to climate change as mitigation. In order to provide information on how adaptation to climate change has been promoted in Finland and what calls for attention next, we have compiled a comprehensive information package focusing on the following themes: adaptation policy, impacts of climate change including economic impacts, regional adaptation strategies, climate and flood risks in regions and sea areas, and the availability of scientific data. This report consists of two parts. Part 1 of the report examines the work carried out on adaptation in Finland and internationally since 2005, emphasising the directions and priorities of recent research results. The possibilities of adaptation governance are examined through examples, such as how adaptations steering is organised in of the United Kingdom. We also examine other examples and describe the Canadian Climate Change Adaptation Platform (CCAP) model. We apply current information to describe the economic impacts of climate change and highlight the related needs for further information. With regard to regional climate strategy work, we examine the status of adaptation plans by region and the status of the Sámi in national adaptation work. In part 2 of the report, we have collected information on the temporal and local impacts of climate change and compiled extensive tables on changes in weather, climate and marine factors for each of Finland's current regions, the autonomous Åland Islands and five sea areas, the eastern Gulf of Finland, the western Gulf of Finland, the Archipelago Sea, the Bothnian Sea and the Bay of Bothnia. As regards changes in weather and climate factors, the changes already observed in 1991-2020 are examined compared to 1981-2010 and future changes until 2050 are described. For weather and climate factors, we examine average temperature, precipitation, thermal season duration, highest and lowest temperatures per day, the number of frost days, the depth and prevalence of snow, the intensity of heavy rainfall, relative humidity, wind speed, and the amount of frost per season (winter, spring, summer, autumn). Flood risks, i.e. water system floods, run-off water floods and sea water floods, are discussed from the perspective of catchment areas by region. The impacts of floods on the sea in terms of pollution are also assessed by sea area, especially for coastal areas. With regard to marine change factors, we examine surface temperature, salinity, medium water level, sea flood risk, waves, and sea ice. We also describe combined risks towards sea areas. With this report, we demonstrate what is known about climate change adaptation, what is not, and what calls for particular attention. The results can be utilised to strengthen Finland's climate policy so that the implementation of climate change adaptation is strengthened alongside climate change mitigation efforts. In practice, the report serves the reform of the National Climate Change Adaptation Plan and the development of steering measures for adaptation to climate change both nationally and regionally. Due to its scale, the report also serves e.g. the United Nations’ aim of protecting marine life in the Baltic Sea and the national implementation of the EU strategy for adaptation to climate change. As a whole, the implementation of adaptation policy in Finland must be speeded up swiftly in order to achieve the objectives set and ensure sufficient progress in adaptation in different sectors. The development of binding regulation and the systematic evaluation, monitoring and support of voluntary measures play a key role.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії