Добірка наукової літератури з теми "Organic Hybrid Porous Materials"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Organic Hybrid Porous Materials".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Organic Hybrid Porous Materials"

1

Sosa, Joshua, Timothy Bennett, Katherine Nelms, Brandon Liu, Roberto Tovar, and Yangyang Liu. "Metal–Organic Framework Hybrid Materials and Their Applications." Crystals 8, no. 8 (August 14, 2018): 325. http://dx.doi.org/10.3390/cryst8080325.

Повний текст джерела
Анотація:
The inherent porous nature and facile tunability of metal–organic frameworks (MOFs) make them ideal candidates for use in multiple fields. MOF hybrid materials are derived from existing MOFs hybridized with other materials or small molecules using a variety of techniques. This led to superior performance of the new materials by combining the advantages of MOF components and others. In this review, we discuss several hybridization methods for the preparation of various MOF hybrids with representative examples from the literature. These methods include covalent modifications, noncovalent modifications, and using MOFs as templates or precursors. We also review the applications of the MOF hybrids in the fields of catalysis, drug delivery, gas storage and separation, energy storage, sensing, and others.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Loy, Douglas A., and Kenneth J. Shea. "Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials." Chemical Reviews 95, no. 5 (July 1995): 1431–42. http://dx.doi.org/10.1021/cr00037a013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Opanasenko, Maksym, Mariya Shamzhy, Fengjiao Yu, Wuzong Zhou, Russell E. Morris, and Jiří Čejka. "Zeolite-derived hybrid materials with adjustable organic pillars." Chemical Science 7, no. 6 (2016): 3589–601. http://dx.doi.org/10.1039/c5sc04602e.

Повний текст джерела
Анотація:
Porous organic–inorganic materials with tunable textural characteristics were synthesized using the top-down process by intercalating silsesquioxanes and polyhedral oligomeric siloxanes of different types between crystalline zeolite-derived layers.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wang, Shaolei, Liangxiao Tan, Chengxin Zhang, Irshad Hussain, and Bien Tan. "Novel POSS-based organic–inorganic hybrid porous materials by low cost strategies." Journal of Materials Chemistry A 3, no. 12 (2015): 6542–48. http://dx.doi.org/10.1039/c4ta06963c.

Повний текст джерела
Анотація:
Two kinds of POSS-based organic–inorganic hybrid porous materials have been synthesized via Friedel–Crafts and Scholl coupling reactions, for the first time, using low-cost building blocks i.e., octaphenylsilsesquioxanes and simple knitting approaches to obtain high Brunauer–Emmett–Teller (BET) surface area porous polyhedral oligomeric silsesquioxane (POSS)-based hybrid materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shi, Jun, Li Zhang, Yingliang Liu, Shengang Xu, and Shaokui Cao. "Biomineralized organic–inorganic hybrids aiming for smart drug delivery." Pure and Applied Chemistry 86, no. 5 (May 19, 2014): 671–83. http://dx.doi.org/10.1515/pac-2013-0112.

Повний текст джерела
Анотація:
AbstractOrganic–inorganic hybrid materials have received great interest in the last 10 years in the controlled drug delivery area because of their excellent biocompatible, biomimetic, and pH-sensitive properties. Biomineralization is a biomineral-inspired route to prepare novel organic–inorganic hybrids, which involves a diffusion-controlled deposition of inorganic minerals within porous polymeric matrices. Proper combination of controlled biomineralization technique with the rational choice of polymer templates would lead to the successful development of smart self-assembled drug carriers. The present work mainly summarizes our recent work about the biomineralized organic–inorganic hybrid materials aiming for smart drug delivery including hybrid beads, membranes, and micro/nano gels. Furthermore, prospect for future development of the smart organic–inorganic hybrids is also discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Casas-Solvas, Juan M., and Antonio Vargas-Berenguel. "Porous Metal–Organic Framework Nanoparticles." Nanomaterials 12, no. 3 (February 3, 2022): 527. http://dx.doi.org/10.3390/nano12030527.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chongdar, Sayantan, Sudip Bhattacharjee, Piyali Bhanja, and Asim Bhaumik. "Porous organic–inorganic hybrid materials for catalysis, energy and environmental applications." Chemical Communications 58, no. 21 (2022): 3429–60. http://dx.doi.org/10.1039/d1cc06340e.

Повний текст джерела
Анотація:
In this feature article, we highlight various synthetic strategies for designing organic–inorganic hybrid porous materials, starting from their molecular building blocks, and their task-specific applications in energy and environmental research.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhang, Dan-Dan, Sheng-Zhen Zu, and Bao-Hang Han. "Inorganic–organic hybrid porous materials based on graphite oxide sheets." Carbon 47, no. 13 (November 2009): 2993–3000. http://dx.doi.org/10.1016/j.carbon.2009.06.052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Loy, Douglas A., Gregory M. Jamison, Brigitta M. Baugher, Edward M. Russick, Roger A. Assink, S. Prabakar, and Kenneth J. Shea. "Alkylene-bridged polysilsesquioxane aerogels: highly porous hybrid organic-inorganic materials." Journal of Non-Crystalline Solids 186 (June 1995): 44–53. http://dx.doi.org/10.1016/0022-3093(95)00032-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

LOY, D. A., and K. J. SHEA. "ChemInform Abstract: Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials." ChemInform 26, no. 46 (August 17, 2010): no. http://dx.doi.org/10.1002/chin.199546289.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Organic Hybrid Porous Materials"

1

Jones, James Thomas Anthony. "Synthesis and characterisation of porous organic/inorganic hybrid materials." Thesis, University of Liverpool, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.533999.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

VITTONI, CHIARA. "Hybrid Organic-Inorganic Materials for CO2 Capture and Utilization." Doctoral thesis, Università del Piemonte Orientale, 2018. http://hdl.handle.net/11579/97188.

Повний текст джерела
Анотація:
In this PhD thesis, different types of hybrid organic-inorganic materials were studied as solid sorbents for the carbon dioxide capture, in order to give additional hints to the comprehension of phenomena playing an important role in CO2 adsorption processes. In the first part, hybrid organic-inorganic SBA-15 silicas functionalized with variable amount of amino groups were studied aiming to evaluate the influence of the different basic species on CO2 capture ability. Afterwards, it was decided to study the influence of siliceous support properties on the adsorption process. For this purpose, silica-based materials with different structure, morphology and particle size were selected and tested in the same experimental conditions, aiming to understand the effect of their physico-chemical properties on the CO2 adsorption. On one side MCM-41 silica-based materials with different particle diameter, passing from micrometric to nanometric scale, were considered, in order to study the size effect of the support on the adsorption properties. Furthermore, the effect of the porosity was evaluated by using as adsorbent a non-porous material (Stöber silica) and comparing the obtained results with those of MCM-41-based materials. Finally, the possible use of silica-based materials as catalyst for the carbon dioxide transformation into more useful products was studied. In particular, heterogeneous Cu-based catalyst supported on SiO2 have been studied as for the promotion of hydrogenation reaction of CO2 to formic acid.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Haryadi, Haryadi Chemistry Faculty of Science UNSW. "Porous hybrid organic-inorganic silica materials: preparation, structural and transport properties." Awarded by:University of New South Wales. School of Chemistry, 2005. http://handle.unsw.edu.au/1959.4/28806.

Повний текст джерела
Анотація:
The aim of this project was to prepare a series of silica materials based on sol-gel processing of alkoxysilanes using glucose and glycerol as templates for potential applications in membrane design for pervaporation. The materials were characterized using structural and dynamic techniques to gain information about the effect of the templates on the formation of micro- and mesoporous silicates. The interaction between templates and silica matrices were investigated using FTIR, Raman Spectroscopy, Solid State NMR Spectroscopy, Physisorption and SEM. Close contact between templates and silica networks was observed by NMR cross polarization studies. The chemistry was then extended to prepare hybrid organic-inorganic silica materials by introducing organic ligands, with glycerol as a template to control the porosity of the hybrid materials. By varying the ligand as well as the template, the physical properties of the gel can be controlled. Composites of hydroxypropylcellulose, HPC, and silica were also prepared and characterized. There was no phase separation during sol-gel processing suggesting HPC was dispersed homogenously in the silica matrices. This was also confirmed by solid state NMR. Temperature dependence showed some indications of conformational change in the HPC within the silicate, above 308K. The transport properties of the hybrid materials were observed by monitoring the diffusion behaviour of water and several selected solvents using Pulsed Field Gradient NMR. The self-diffusion of water and the organic solvents in the hybrid silica materials were two to three orders of magnitude smaller than in the liquid bulk suggesting restricted diffusion at the pore surface. The effect of surface polarity also contributed to water and solvents diffusivities. The temperature dependence of diffusion was useful to derive the activation energy whereas the dependence on NMR observation time provided information on both tortuosity and pore connectivity of the hybrid silica materials. The hybrid silica membranes were prepared by spin coating of polymeric silica sol on top of a macroporous alumina support after being occluded by colloidal silica. It was then used for pervaporation of water ethanol mixtures. The results implied that separation factor increased as the temperature increased. However permeate fluxes were less affected.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Erigoni, Andrea. "Organic-Inorganic Hybrid Catalysts for Chemical Processes of Industrial Interest." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/165238.

Повний текст джерела
Анотація:
[ES] El trabajo de investigación descrito en la presente Tesis Doctoral ha sido desarrollado en el marco del proyecto europeo MULTI2HYCAT (grant agreement N. 720783) y se ha centrado en la síntesis y caracterización de materiales mono- y multi-funcionales que presentan sitios catalíticos ácidos, básicos o redox. Diferentes líneas de investigación han sido desarrolladas en paralelo para obtener distintos materiales híbridos que serán empleados en diferentes procesos catalíticos, en línea con las necesidades de los socios industriales del proyecto. Debido a la naturaleza colaborativa del proyecto, cada miembro académico se ha en-centrado en un aspecto del desarrollo de los materiales. Es por ello que el Instituto de Tecnología Química (ITQ-CSIC), donde se ha llevado a cabo esta Tesis Doctoral, se ha centrado en la síntesis de los catalizadores híbridos. Por ello, parte de la caracterización descrita en el Capítulo 3 se ha llevado a cabo en la Università del Piemonte Orientale (IT), durante una estancia de un mes. Ademas, algúnos resultados catalíticos descritos en los Capítulos 3 y 5 han sido obtenidos por la University of Southampton (UK). En el Capítulo 3, se ha descrito la síntesis de dos catalizadores heterogéneos híbridos que presentan moléculas de ácido aril-sulfónico en su composición. En uno de ellos, el anillo aromático presentará átomos de flúor en posición 2, 3, 5, 6. Se han llevado a cabo dos estrategias de síntesis multi-etapas, a través de la síntesis de los precursores alkoxi-silanos, a través de procesos de condensación junto a un precursor de sílice (en ausencia de agentes directores de estructura, a pH neutro y temperaturas bajas) y de una reacción de tethering. Los materiales híbridos han sido caracterizados a través de dife-rentes técnicas. Las propiedades texturales, la estabilidad térmica y la composición química de los catalizadores ha sido estudiada. Además, moléculas sondas han sido adsorbidas en los materiales hibridos y las interacciones entre ellos han sido estudiadas a través de espectroscopias FTIR y RMN multi-nuclear. El catalizador hibrido en que el anillo aromático estaba fluorado resultó ser el más activo catalíticamente en la reac-ción de formación de acetal entre benzaldehído y etilenglicol. Una versión de los hí-bridos en que la superficie había sido pasivada con grupos metilos también fue obteni-da. Las propiedades de los materiales híbridos pasivados fueron comparadas, para po-der estudiar el efecto de la polaridad de la superficie del soporte sobre la actividad catalítica. En el Capítulo 4 se describe la síntesis de órgano-catalizadores híbridos obtenidos por anclaje de precursores de silicio funcionalizados con grupos básicos sobre un soporte del tipo MCM-41. Los catalizadores han sido caracterizados y empleados en diferentes reacciones de formación de enlaces C-C, como la condensación de Knoevenagel y la adición de Michael. Los catalizadores híbridos han sido empleados en la condensación entre furfural y metil isobutil cetona. El catalizador más activo ha sido seleccionado para ser funcionalizado posteriormente con nanoparticulas de paladio y empleado en un proceso catalítico en cascada. Mecanismos de reacción han sido pro-puesto para cada proceso catalítico. El efecto beneficioso debido a la presencia de los grupos silanoles en la superficie del soporte también fue analizado. En el Capítulo 5, la síntesis de catalizadores híbridos multi-funcionales fue descrita. Basándose en los resultados obtenidos en el Capítulo 4, se ha preparado un catalizador que presente grupos aminopropil- y nanopartículas de paladio. Las propiedades estructurales y texturales han sido estudiadas. Además, a través de la microscopia electrónica de transmisión, la distribución dimensional de las nanoparticulas ha sido estimada, resultando en un tamaño medio equivalente a la dimensión de los canales mesoporosos del soporte, MCM-4
[CA] El treball de recerca descrit en aquesta tesi doctoral es va desenvolupar en el marc del projecte europeu MULTI2HYCAT (grant agreement N. 720783) i se centra en la sínte-si i la caracterització de catalitzadors híbrids mono i multifuncionals amb àcid, base o redox actius llocs. S'han desenvolupat diverses línies d'investigació en paral·lel per dissenyar múltiples catalitzadors híbrids per a diferents processos catalítics, basant-se en les necessitats dels socis industrials. A causa del caràcter col·laboratiu del projecte, cada soci acadèmic es va centrar princi-palment en un aspecte de tot el procés. Institut de Tecnologia Química (ITQ-CSIC), on es va desenvolupar aquesta tesi, està principalment centrat en el disseny i síntesi de catalitzadors híbrids. Per això, part dels resultats de caracterització reportats al Capítol 3 s'han dut a terme a la Università del Piemonte Orientale (IT), durant una estada d'un mes. Alguns dels resultats catalítics reportats al Capítol 3 i al Capítol 5 han estat reali-tzats per la Universitat de Southampton (Regne Unit). En el Capítol 3, s'ha descrit la síntesi de dos catalitzadors heterogenis híbrids que pre-senten molècules d'àcid aril-sulfònic en la composició. En un d'ells, l'anell aromàtic presentarà àtoms de fluor en posició 2, 3, 5, 6. S'han dut a terme dues estratègies de síntesi multi-etapes, a través de la síntesi dels precursors alkoxi-silans, mitjançant pro-cessos de condensació al costat d'un precursor de sílice (en absència d'agents directors d'estructura, a pH neutre i temperatures baixes) i d'una reacció de tethering. Els mate-rials híbrids han estat caracteritzats mitjançant diferents tècniques. Les propietats texturals, l'estabilitat tèrmica i la composició química dels catalitzadors ha sigut estudiada. A més, molècules sondes han estat adsorbides en els materials híbrids i les interaccions entre ells han estat estudiades mitjançant espectroscòpies FTIR i RMN multi-nuclear. El catalitzador híbrid en que l'anell aromàtic estava fluorat va resultar ser el més actiu catalíticament en la reacció de formació d'acetal entre benzaldehid i etilenglicol. Una versió dels híbrids en que la superfície havia estat pasivada amb grups metilos també va ser obtinguda. Les propietats dels materials híbrids passivats van ser comparades, per poder estudiar l'efecte de la polaritat de la superfície del suport sobre l'activitat catalítica. En el Capítol 4 es descriu la síntesi d'organo-catalitzadors híbrids obtinguts per ancoratge de precursors de silici funcionalitzats amb grups bàsics sobre un suport del tipus MCM-41. Els catalitzadors han estat caracteritzats i empleats en diferents reaccions de formació d'enllaços C-C, com la condensació de Knoevenagel i l'addició de Michael. Finalment, els catalitzadors híbrids han estat emprats en la condensació entre furfural i metil isobutil cetona. El catalitzador més actiu ha estat seleccionat per a ser funcionalitzat posteriorment amb nanoparticules de pal·ladi i emprat en un procés catalític en cascada. Mecanismes de reacció han estat proposat per a cada procés catalític. L'efecte beneficiós a causa de la presència dels grups silanols en la superfície de suport també va ser analitzat. En el Capítol 5, la síntesi de catalitzadors híbrids multi-funcionals va ser descrita. Basant-se en els resultats obtinguts en el Capítol 4, s'ha preparat un catalitzador que presenti grups aminopropil- i nanopartícules de palladi. Les propietats estructurals i texturals han estat estudiades. A més, a través de la microscòpia electrònica de trans-missió, la distribució dimensional de les nanoparticulas ha estat estimada, resultant en una grandària mitjana equivalent a la dimensió dels canals mesoporosos del suport, MCM-41. El material ha estat emprat com a catalitzador multi-funcional.
[EN] The research work described in this Doctoral Thesis was developed within the frame of the MULTI2HYCAT European Project (grant agreement N. 720783) and it is focused on the synthesis and characterization of mono- and multi-functional hybrid catalysts featuring acid, base or redox active sites. Several research lines have been developed in parallel to design multiple hybrid catalysts for different catalytic processes, building upon the needs of the industrial partners. Due to the collaborative nature of the project, each academic partners mainly focused on one aspect of the whole process. Instituto de Tecnología Química (ITQ-CSIC), where this Thesis was developed, mostly focused on the design and synthesis of the hybrid catalysts. For that, part of the characterization results reported in Chapter 3 have been carried out at Università del Piemonte Orientale (IT), during a one month stay. Some of the catalytic results reported in Chapter 3 and Chapter 5 have been car-ried out by the University of Southampton (UK). In Chapter 3 the synthesis of two different heterogeneous hybrid catalysts carrying aryl-sulfonic moieties, in which the aromatic ring was either fluorinated or not, is re-ported. Two multi-step synthetic approaches were developed, involving the synthesis of the silyl-derivative precursor, template-free one-pot co-condensation (at low tem-perature and neutral pH) and tethering reaction. A multi-technique approach was im-plemented to characterize the hybrid catalysts. Textural properties, thermal stability and chemical makeup of the materials were studied. Moreover, probe molecules were adsorbed onto the hybrids and the interaction were studied with multi-nuclear NMR and FTIR spectroscopies. The catalytic activity of the two hybrids showed superior performances for the fluoro-aryl-sulfonic acid, compared to the non-fluorinated mate-rial, in the acetal formation between benzaldehyde and ethylene glycol. Silanol-capped versions of the hybrids have also been prepared and their properties have been com-pared with those of hydrophilic hybrids, to study the effect of the polarity of the sur-face on the overall catalytic activity of the hybrids. In Chapter 4, the synthesis of hybrid mesoporous organocatalysts, obtained by graft-ing of commercial and custom-made silyl-derivatives onto MCM-41 supports, is re-ported. The hybrid catalysts were characterized and tested for different reactions in-volving C-C bond formation, such as Knoevenagel condensations and Michael addi-tion. Finally, the catalysts were tested in the condensation between furfural and methyl isobutyl ketone and the most performing catalyst was selected for the synthesis of a multi-functional hybrid. Reaction mechanisms have been proposed and the beneficial effect of the surface silanol groups on the catalytic activity was demonstrated. In Chapter 5, the synthesis of hybrid multi-functional catalysts is reported. Building upon the results reported in Chapter 4, a hybrid catalyst featuring aminopropyl moie-ties and palladium nanoparticles was developed. Structural and textural properties of the catalysts were accessed. Moreover, transmission electron microscopy showed a narrow nanoparticles distribution, centered a value equivalent to the size of the meso-porous channels of the support. The catalyst was tested in a tandem process involving the aldol condensation between furfural and methyl isobutyl ketone followed by hy-drogenation of the aldol adduct. The influence of several variables on the activity of the multi-functional catalyst was explored, with the scope of paving the way for more thorough studies to be carried out in flow regime. Lastly, proof-of-concept syntheses of multi-functional hybrid catalysts featuring base sites and supported metal complex are reported.
The research work described in this Doctoral Thesis was developed within the frame of the MULTI2HYCAT European Project (grant agreement N. 720783). I would like to thank la Caixa foundation for my PhD scholarship.
Erigoni, A. (2021). Organic-Inorganic Hybrid Catalysts for Chemical Processes of Industrial Interest [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/165238
TESIS
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dedecker, Kevin. "Multifunctional Hybrid materials for the capture and detection of volatile organic Compounds : Application to the preservation of cultural heritage objects." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLV003.

Повний текст джерела
Анотація:
Lors de leur stockage ou de leur exposition, les objets du patrimoine sont soumis à des processus physico-chimiques d’altération liés à leur environnement et en particulier à l’action de polluants primaires (e.g. dioxyde de soufre, oxydes d’azote), secondaires (ozone) ou de composés organiques volatils (COVs). Il a été démontré que ces gaz/vapeurs se comportent comme des agents d’hydrolyse et d’oxydation. L’acide acétique fait partie des COVs ayant un impact considérable et reconnu dans la conservation des objets du patrimoine en particulier des films photographiques. En vue de lutter contre ses effets délétères, ce projet de thèse s’est focalisé sur la conception de nouveaux matériaux poreux hybrides multifonctionnels appelés « Metal-Organic Frameworks » (MOFs) pour la capture sélective de l’acide acétique en présence d’humidité (40% humidité relative) et à température ambiante. Les remarquables propriétés d’adsorption (sensibilité, sélectivité et capacité) et la grande versatilité des MOFs (balance hydrophile/hydrophobe, taille/forme des pores,…) ont été utilisés pour préconcentrer de façon sélective l’acide acétique en milieu humide. Les matériaux les plus performants ont ensuite été préparés sous forme de nanoparticules pour l’élaboration de films minces de qualité optique afin d’en étudier les propriétés d’adsorption et de co-adsorption (acide acétique/eau) par ellipsométrie. L’incorporation de nanoparticules métalliques plasmoniques a ensuite été effectuée afin de concevoir un capteur colorimétrique. L’objectif final de ce travail est de concevoir un nouveau type d’adsorbant caractérisé par une capacité et une sélectivité d’adsorption élevée et dont on pourrait aisément déterminer le niveau de saturation en acide acétique afin d’anticiper son remplacement et ainsi assurer la préservation des objets stockés et exposés dans les musées
During their storage or their exhibition, the cultural heritage objects undergo physicochemical alteration processes related to their environment and in particular to the action of primary (e.g. sulfur dioxide, nitric oxides), secondary (ozone) pollutants or Volatile Organic Compounds (VOCs). It has been demonstrated that these gases/vapors are involved in hydrolysis and oxidation reactions. Among the most common VOCs encountered in museums, Acetic acid has a significant and recognized role in the deterioration of cultural heritage objects such as photographic films. In order to face this issue, this Ph.D. thesis focused on the design of new porous multifunctional hybrid materials denoted « Metal-Organic Frameworks » (MOFs) for the selective capture of acetic acid in the presence of moisture (40% relative humidity) and at room temperature. The remarkable adsorption properties (sensitivity, selectivity and capacity) and the great versatility of MOFs (hydrophicity/hydrophobicity balance, size/shape of pores,…) were used to preconcentrate selectively the acetic acid in humid conditions. The most performing materials were then prepared as nanoparticles and then used for the elaboration of high optical quality thin films in order to study the coadsorption (acetic acid/water) properties of MOFs by ellipsometry. The incorporation of plasmonic metal nanoparticles was then carried out in order to design a colorimetric sensor. The final objective is to devise a novel type of adsorbent that integrates a high VOC adsorption capacity and selectivity under humid conditions and an easy on-line monitoring of their saturation capacityin order to anticipate its replacement and therefore ensure the preservation of the stored and exhibited objects in museums
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sanderyd, Viktor. "Novel Hybrid Nanomaterials : Combining Mesoporous Magnesium Carbonate with Metal-Organic Frameworks." Thesis, Uppsala universitet, Nanoteknologi och funktionella material, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355366.

Повний текст джерела
Анотація:
Nanotechnology as a field has the potential to answer some of the major challenges that mankind faces in regards to environmental sustainability, energy generation and health care. Though, solutions to these concerns can not necessarily rely on our current knowhow. Instead, it is reasonable to expect that humanity must adapt and learn to develop new materials and methods to overcome the adversities that we are facing. This master thesis has involved developing novel materials, serving as a small step in the continuous march towards a bright future where this is possible. More specifically, this work sought to combine mesoporous magnesium carbonate with various metal-organic frameworks to utilize the beneficial aspects from each of these constituents. The ambition was that these could be joined to render combined micro-/mesoporous core-shell structures, with high surface areas and many active sites whilst maintaining a good permeability. Numerous different synthesis routes were developed and explored in the pursuit of viable routes to design novel materials with potential future applications within for instance drug delivery, water harvesting from air and gas adsorption. Coreshell structures of the hydrophilic mesoporous magnesium carbonate covered with the hydrophobic zeolitic imidazole framework ZIF-8 was successfully synthesized for the first time, and practical studies demonstrated a dramatically enhanced water stability, which is perceived to have an impact on further research on these materials. ZIF-67 was also combined with mesoporous magnesium carbonate in a similar manner. Further, Mg-MOF-74 was grown directly from mesoporous magnesium carbonate, where the latter acted as a partially self-sacrificing template, with the aim of rendering a porous hierarchical structure with contributions from the micro- and mesoporous ranges. The outcomes of all these syntheses were characterized using several analyzing methods such as scanning electron microscopy, X-ray diffraction, energy dispersive spectroscopy and nitrogen sorption analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mohamed, Mona Hanafy. "Organic-Inorganic Hybrid Materials Based on Oxyanion Linkers for Selective Adsorption of Polarizable Gases." Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5811.

Повний текст джерела
Анотація:
The separation of industrially important gases into pure supplies that can be used for many practical applications is based mainly on energy intensive methods such as the cryogenic distillation which is costly and energy intensive. Therefore other routes have been introduced to industrial separation of gases such as the selective adsorption using porous solid materials. Zeolites and activated carbon are the most widely used recyclable energy-efficient porous solid materials for industrial gas separations, however the low uptake and selectivity hurdles their commercialization in some separation applications. Metal organic frameworks (MOFs) have been extensively studied as solid porous materials in term of gas separations nevertheless the future of MOFs for practical gas separations is considered to be vague and stringent due to their low stability, low capacity and selectivity especially at low partial pressures of the adsorbed gas, the competitive adsorption of the contaminants such as H2O, NOX and SOX, high cost of the organic ligands, besides the challenges of the formulation of MOFs which is very important in the MOFs marketing. In this context we present new porous materials based on inorganic linkers as well as the organic molecules, Organic-Inorganic Hybrid Materials, which were found to conquer the current challenges for the exploitation of MOFs in practical gas separation such as separation of trace and low CO2 concentrations and Xe separation from Xe/Kr mixtures. The work presented herein encompasses the development of novel 48.67 topology metal organic material (MOM) platform of formula [M(bp)2(M'O4)] (M= Co or Ni; bpe= bipyridine-type linkers; M'= W, Mo or Cr) that have been assigned RCSR code mmo based upon pillaring of [M(bp)2] square grids by angular WO42-, MoO42- or CrO42- pillars. Such pillars are unexplored in MOMs. They represent ideal platforms to test the effect of pore size and chemistry upon gas sorption behavior since they are readily fine-tuned and can be varied at their 3-positions (metal, organic linker and the inorganic pillar) without changing the overall structure. Such an approach allows for systematic control of pore size to optimize interactions between the framework and the adsorbent in order to enhance selectivity and/or gas uptake. Interestingly, these nets showed a high chemical stability in air, water, boiling water and in a wide range of pH which is certainly a desirable property in industry and commercialization of MOMs. [Ni(bpe)2(MoO4)] (bpe= 1,2-bis(4-pyridyl) ethane), MOOFOUR-1-Ni, and its chromate analog, CROFOUR-1-Ni, exhibit remarkable CO2 affinity and selectivity, especially at low loading. This behavior can be attributed to exceptionally high isosteric heats of adsorption (Qst) of CO2 in MOOFOUR-1-Ni and CROFOUR-1-Ni of ~56 and ~50 kJ/mol, respectively, at zero loading. These results were validated by modeling which indicate that the electrostatics of such inorganic anions towards CO2 affords favourable attractions to CO2 that are comparable to the effect of unsaturated metal centres. The use of WO42- instead of CrO42- or MoO42- as an angular pillar in mmo topology nets has afforded two isostructural porous nets of formula [M(bpe)2WO4] (M = Co or Ni, bpe=1,2-(4-pyridyl)ethene). The Ni variant, WOFOUR-1-Ni, is highly selective towards CO2 thanks to its exceptionally high isosteric heat of adsorption (Qst) of -65.5 kJ/mol at zero loading. The fine-tunability and the inherent modularity of this platform allow us exquisite design and control over the pore chemistry through the incorporation of different functionalities inside the channels of the networks which was then demonstrated as valuable strategy in terms of carbon dioxide capture at condition relevant to the direct CO2 capture from air. The exploitation of 4,4'-azopyridine in the design and synthesis of CROFOUR-2-Ni, an isostructure of CROFOUR-1-Ni, affords a paradigm shift in the CO2 adsorption properties as exemplified by the enhanced CO2 isosteric heat of adsorption at moderate and high loading in CROFOUR-2-Ni and the superior CO2 selectivity even for trace and low CO2 concentration. The two isostructures, CROFOUR-1-Ni and CROFOUR-2-Ni have been also investigated in term of Xe adsorption and separation from Xe/Kr mixtures. The two structures were found to exhibit the remarkable Xe affinity and selectivity which, together with high stability, good recyclability, low regeneration energy and low cost of the two materials could not only diminish the cost of the Xe and Kr production but also can potentially afford a high purity of the separated gases.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kitschke, Philipp, Marc Walter, Tobias Rüffer, Andreas Seifert, Florian Speck, Thomas Seyller, Stefan Spange, et al. "Porous Ge@C materials via twin polymerization of germanium(II) salicyl alcoholates for Li-ion batteries." Universitätsbibliothek Chemnitz, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-197302.

Повний текст джерела
Анотація:
The germylenes, germanium(II) 2-(oxidomethyl)phenolate (1), germanium(II) 4-methyl-2-(oxidomethyl)phenolate (2) and germanium(II) 4-bromo-2-(oxidomethyl)phenolate (3) were synthesized and their thermally induced twin polymerization to give organic–inorganic hybrid materials was studied. The compounds 1–3 form oligomers including dimers, trimers and tetramers as a result of intermolecular coordination of the benzylic oxygen atom to germanium. The structural motifs were studied by single crystal X-ray diffraction analysis and DFT-D calculations. Thermally induced twin polymerization of these germylenes gave hybrid materials based on germanium-containing phenolic resins. Carbonization of these resins under reductive conditions resulted in porous materials that are composed of germanium and carbon (Ge@C materials), while oxidation with air provided non-porous germanium dioxide. The porous Ge@C materials were tested as potential anode materials for rechargeable Li-ion batteries. Reversible capacities of 540 mA h g−1 were obtained at a current density of 346 mA g−1 without apparent fading for 100 cycles, which demonstrates that germanium is well accessible in the hybrid material
Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ordon, Karolina. "Functionalized semiconducting oxides based on bismuth vanadate with anchored organic dye molecules for photoactive applications." Thesis, Le Mans, 2018. http://www.theses.fr/2018LEMA1006/document.

Повний текст джерела
Анотація:
La recherche de nouveaux matériaux en tant que photocatalyseurs en lumière visible pour la dépollution de l’environnement (eaux, atmosphères) est un domaine de recherche très actif et suscite l’intérêt d’une large communauté scientifique en Physique, Chimie et Sciences des matériaux. Des recherches exhaustives sont actuellement menées pour améliorer l’efficacité photocatalytique de certaines classes de matériaux photoactifs connus, et pour développer la synthèse de nouveaux matériaux fonctionnels. Dans ce contexte, les semiconducteurs oxydes photoactifs à base de vanadates de bismuth (BiVO4) possédant une bande électronique au milieu du spectre visible, offrent une sérieuse alternative aux photocatalyseurs classiques efficaces (TiO2, ZnO) dont la photo-excitation requiert uniquement la fraction UV du spectre solaire. Le travail effectué dans le cadre de cette thèse est donc dédié aux matériaux à base BiVO4 sous forme d’architectures mésoporeuses ou d’assemblages hybrides associant des groupes organiques à transfert de charges.Deux contributions majeures ont été développées dont la première portant sur la réalisation expérimentale d’architectures mésoporeuses inédites, fonctionnalisées par des groupes organiques sensibilisateurs et l’étude de leurs propriétés électroniques et optiques en vue d’optimiser leurs efficacités photocatalytiques. La deuxième partie porte sur des simulations numériques de nanostructures hybrides par des approches exploitant la méthode DFT, ab-initio ou des modèles de chimie quantique. Des systèmes modèles ont été construits associant des nanoclusters (NC) et des groupes organiques (GO). Les propriétés électroniques et optiques ainsi que les caractéristiques structurelles et vibrationnelles des systèmes (NC-GO) ont été déterminées et confrontées aux données expérimentales. Les phénomènes de transfert de charges impliqués entre les groupes organiques et la structure inorganique ont été caractérisés ainsi que leur rôle dans l’efficacité des réponses photo-catalytiques des systèmes hybrides
The search for new materials as photocatalysts invisible light for the depollution of the environment (waters, atmospheres) is a very active field of research and attracts the interest of a large scientific community in Physics, Chemistry and Materials Science. Recent research developpements are conducted to improve the photocatalytic efficiency of certain classes of known photoactive materials, and to develop the synthesis of new functional materials. In this context, photoactive oxide semiconductors based on bismuth vanadate (BiVO4) having an electronic band in the middle of the visible spectrum, offer a serious alternative to efficient conventional photocatalysts (TiO2, ZnO) whose photo-excitation requires only the UV fraction of the solar spectrum.The work done in this thesis is therefore dedicated toBiVO4-based materials in the form of mesoporous architectures or hybrid assemblies associating organic groups with charge transfer processes. Two major contributions have been developed, one of which is the experimental realization of novel mesoporous architectures, functionalized by sensitizing organic groups and the study of their electronic and optical properties in order to optimize their photocatalytic efficiencies. The second part deals with numerical simulations of hybrid nanostructures using approaches as the DFT method, ab-initio or quantum chemistry codes. Model systems have been constructed associating BiVO4nanoclusters (NC) and organic groups (GO). The electronic and optical properties as well as the structural and vibrational characteristics of the systems (NC-GO) were determined and compared with the experimental data. The charge transfer phenomena involved between the organic groups and the inorganic structure were characterized as well as their role in the efficiency of photo-catalytic responses of hybrid systems
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ebert, T., A. Wollbrink, A. Seifert, R. John, and S. Spange. "Multiple polymerization – formation of hybrid materials consisting of two or more polymers from one monomer." Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-220106.

Повний текст джерела
Анотація:
Hybrid materials consisting of three different components were synthesized by the polymerization of one heterotrifunctional monomer in just one reaction step using, at the most, one catalyst. The polymerization of 2-furfuyloxy-2-methyl-4H-1,3,2-benzodioxasiline leading to a hybrid material consisting of phenolic resin, poly(furfuryl alcohol), and polymethylsilsesquioxane is, to the best of our knowledge, the first polymerization of this kind. The influence of different catalysts on the polymerization behavior and thus on the structure of the hybrid material was investigated. In accordance with the term “twin polymerization”, which is used for the polymerization of one monomer yielding two separate polymers, this type of polymerization could be called “triple polymerization”. The term “multiple polymerization” is introduced as a general term for the underlying concept of the synthesis of multiple polymers starting from one monomer in one process step
Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Organic Hybrid Porous Materials"

1

O, Sŏng-gŭn. Kobunja ka pʻyomyŏn e kyŏrhap toen tagongsŏng mugi ipcha rŭl iyong han suso chŏjang maegaechʻe kaebal =: Development of hydrogen-storage system using a porous organic/inorganic hybrid material. [Seoul]: Sanŏp Chawŏnbu, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

O, Sŏng-gŭn. Kobunja ka pʻyomyŏn e kyŏrhap toen tagongsŏng mugi ipcha rŭl iyong han suso chŏjang maegaechʻe kaebal =: Development of hydrogen-storage system using a porous organic/inorganic hybrid material. [Seoul]: Sanŏp Chawŏnbu, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

C, Klein Lisa, ed. Organic/inorganic hybrid materials II. Warrendale, Penn: Materials Research Society, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Li, Quan, ed. Functional Organic and Hybrid Nanostructured Materials. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527807369.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

1934-, Mark James E., Lee C. Y.-C. 1947-, Biancini P. A. 1957-, and American Chemical Society. Division of Polymeric Materials: Science and Engineering., eds. Hybrid organic-inorganic composites. Washington, D.C: American Chemical Society, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhu, Yun-Pei, and Zhong-Yong Yuan. Mesoporous Organic-Inorganic Non-Siliceous Hybrid Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45634-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Grewal, Paramjit. Computational studies of inorganic-organic hybrid materials. Portsmouth: University of Portsmouth, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gladkov, S. O. Dielectric Properties of Porous Media. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rurack, Knut, and Ramón Martínez-Máñez, eds. The Supramolecular Chemistry of Organic-Inorganic Hybrid Materials. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470552704.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Knut, Rurack, and Martínez-Máñez Ramón, eds. The supramolecular chemistry of organic-inorganic hybrid materials. Hoboken, N.J: Wiley, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Organic Hybrid Porous Materials"

1

Hüsing, Nicola, and Ulrich Schubert. "Porous Inorganic-Organic Hybrid Materials." In Functional Hybrid Materials, 86–121. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602372.ch4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hüsing, Nicola, and Sarah Hartmann. "Inorganic–Organic Hybrid Porous Materials." In Hybrid Nanocomposites for Nanotechnology, 131–71. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-30428-1_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sakaushi, Ken. "Two-Dimensional Organic and Hybrid Porous Frameworks as Novel Electronic Material Systems: Electronic Properties and Advanced Energy Conversion Functions." In Functional Organic and Hybrid Nanostructured Materials, 419–44. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527807369.ch11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mal, N. K., and K. Hinokuma. "Proton Conducting Membrane from Hybrid Inorganic Organic Porous Materials for Direct Methanol Fuel Cell." In Chemistry of Phytopotentials: Health, Energy and Environmental Perspectives, 201–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23394-4_43.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jesionowski, Teofil, Beata Michalska, Marcin Wysokowski, and Łukasz Klapiszewski. "The Use of Spray Drying in the Production of Inorganic-Organic Hybrid Materials with Defined Porous Structure." In Lecture Notes on Multidisciplinary Industrial Engineering, 169–83. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73978-6_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kepert, Cameron J. "Metal-Organic Framework Materials." In Porous Materials, 1–67. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470711385.ch1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kundu, Tanay, Leisan Gilmanova, Wai Fen Yong, and Stefan Kaskel. "Metal-Organic Frameworks for Environmental Applications." In Porous Materials, 1–39. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65991-2_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mitzi, David B. "Hybrid Organic-Inorganic Electronics." In Functional Hybrid Materials, 347–86. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602372.ch10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ramachandran, Sasikumar, and Alagar Muthukaruppan. "Porous Hybrid Materials with POSS." In Polymer/POSS Nanocomposites and Hybrid Materials, 255–97. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02327-0_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Doménech-Carbó, Antonio. "Electrochemistry of Metal-Organic Frameworks." In Electrochemistry of Porous Materials, 101–12. 2nd ed. Names: Domeénech-Carboó, Antonio, author. Title: Electrochemistry of porous materials / Antonio Domeénech Carboó. Description: Second edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9780429351624-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Organic Hybrid Porous Materials"

1

Tokranova, Natalya, Igor A. Levitsky, Bai Xu, James Castracane, and William B. Euler. "Hybrid solar cells based on organic material embedded into porous silicon." In Integrated Optoelectronic Devices 2005, edited by James G. Grote, Toshikuni Kaino, and Francois Kajzar. SPIE, 2005. http://dx.doi.org/10.1117/12.590945.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Calvo, Mauricio, Andrea Rubino, Miguel Anaya, Juan Francisco Galisteo, and Hernan Miguez. "ABX3 perovskite nanocrystals templated in porous matrices." In 10th International Conference on Hybrid and Organic Photovoltaics. Valencia: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.hopv.2018.088.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mal, Nawal Kishor, and Koichiro Hinokuma. "Inorganic Organic Hybrid Porous Silica for Fuel Cell Technology." In 2011 International Conference on Nanoscience, Technology and Societal Implications (NSTSI). IEEE, 2011. http://dx.doi.org/10.1109/nstsi.2011.6111805.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Armani, Andrea M., Jinghan He, Andre Kovach, and Hyungwoo Choi. "Hybrid Organic/Inorganic Integrated Photonics." In Novel Optical Materials and Applications. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/noma.2019.nom2b.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lim, JiHyun, Min-Sung Kim, Woongsik Jang, Jin Kuen Park, and Dong Hwan Wang. "Three-dimensional carrier pathway by triazine-based porous organic polymer for efficient inverted perovskite solar cells." In Organic, Hybrid, and Perovskite Photovoltaics XXI, edited by Kwanghee Lee, Zakya H. Kafafi, Paul A. Lane, Harald W. Ade, and Yueh-Lin (Lynn) Loo. SPIE, 2020. http://dx.doi.org/10.1117/12.2571637.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Míguez, Hernán. "Ligand-free perovskite quantum dots embedded in porous matrices: synthesis, properties and optoelectronic devices." In International Conference on Hybrid and Organic Photovoltaics. València: Fundació Scito, 2022. http://dx.doi.org/10.29363/nanoge.hopv.2022.301.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kim, Yun-Hi, and Soon-Ki Kwon. "Development of new organic semiconducting materials for organic photovoltaics (Conference Presentation)." In Organic, Hybrid, and Perovskite Photovoltaics XIX, edited by Kwanghee Lee, Zakya H. Kafafi, and Paul A. Lane. SPIE, 2018. http://dx.doi.org/10.1117/12.2322554.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nguyen, Thuc-Quyen. "Novel materials for organic electrochemical transistors." In Organic and Hybrid Field-Effect Transistors XX, edited by Oana D. Jurchescu and Iain McCulloch. SPIE, 2021. http://dx.doi.org/10.1117/12.2597204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, Hang, Chongxiong Duan, Feier Li, and Hongxia Xi. "Rapid room-temperature synthesis of hierarchical porous metal organic frameworks." In MATERIALS SCIENCE, ENERGY TECHNOLOGY AND POWER ENGINEERING II (MEP2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5041118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Katayama, Junko, Shigeru Yamaki, Masahiro Mitsuyama, and Makoto Hanabata. "Organic-inorganic hybrid materials for nanoimprint lithography." In SPIE 31st International Symposium on Advanced Lithography, edited by Michael J. Lercel. SPIE, 2006. http://dx.doi.org/10.1117/12.655053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Organic Hybrid Porous Materials"

1

Ziolo, Ronald F., Eduardo Arias, and Ivana Moggio. Organic and Hybrid Organic Solid-State Photovoltaic Materials and Devices. Fort Belvoir, VA: Defense Technical Information Center, February 2014. http://dx.doi.org/10.21236/ada596284.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Haddad, Tim, and Shawn Phillips. Nanostructured Hybrid Organic/Inorganic Materials. Silsesquioxane Modified Plastics. Fort Belvoir, VA: Defense Technical Information Center, December 1998. http://dx.doi.org/10.21236/ada409298.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Francis, Matthew. Virus-Based Scaffolds for Organic/Inorganic Hybrid Materials. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada455770.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Haddad, Timothy S., Russell Stapleton, Hong G. Jeon, Patrick T. Mather, and Joseph D. Lichtenhan. Nanostructured Hybrid Organic/Inorganic Materials, Silsesquioxane Modified Plastics. Fort Belvoir, VA: Defense Technical Information Center, January 1996. http://dx.doi.org/10.21236/ada386916.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bulovic, Vladimir. Integrated Vacuum Growth System for Hybrid Organic-Inorganic Materials. Fort Belvoir, VA: Defense Technical Information Center, March 2004. http://dx.doi.org/10.21236/ada422230.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Phillips, Shawn H., Timothy S. Haddad, and Rusty L. Blanski. New Multi-Functional Materials Using Versatile Hybrid (Inorganic/Organic) POSS Nanotechnology. Fort Belvoir, VA: Defense Technical Information Center, April 2001. http://dx.doi.org/10.21236/ada410570.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jamison, G. M., D. A. Loy, R. S. Saunders, and T. M. Alam. LDRD final report on polyphosphaacetylenes, new hybrid conducting organic-inorganic materials. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/270675.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bulovic, Vladimir. PECASE: Nanostructure Hybrid Organic/Inorganic Materials for Active Opto-Electronic Devices. Fort Belvoir, VA: Defense Technical Information Center, January 2011. http://dx.doi.org/10.21236/ada547102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Black, Hayden T., and Katharine Lee Harrison. Ionic Borate-Based Covalent Organic Frameworks: Lightweight Porous Materials for Lithium-Stable Solid State Electrolytes. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1330204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Blanksi, Rusty L., Shawn H. Phillips, Kevin Chaffee, Joseph Lichtenhan, and Andre Lee. The Synthesis of Hybrid Materials by the Blending of Polyhedral Oligosilsesquioxanes into Organic Polymers. Fort Belvoir, VA: Defense Technical Information Center, April 2000. http://dx.doi.org/10.21236/ada409297.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії