Добірка наукової літератури з теми "Organic electrodes"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Organic electrodes".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Organic electrodes"

1

Song, Chunyan, Xiaohui Wang, Xueying Xie, Jingang Zhao, Nan Zhang, and Zhenqi Gu. "Study on the Electrochemical Technology and Nanotechnology of Composite Electrode Used as An Alternative to Ultraviolet Light." Journal of Physics: Conference Series 2083, no. 2 (November 1, 2021): 022069. http://dx.doi.org/10.1088/1742-6596/2083/2/022069.

Повний текст джерела
Анотація:
Abstract Advanced oxidation technology has the advantage of being able to efficiently degrade refractory organics, and plays an important role in the treatment of industrial organic wastewater. The article analyses its role in the purification of organic wastewater by the electrochemical method of polymer composite nano-titanium dioxide. The oxygen evolution potential of the nano titanium dioxide electrode is up to 2.8V, showing excellent electrochemical performance. Didache, Si/BDD, Nb/BDD, It/BDD electrodes and surface-modified BDD electrodes can generate strong oxidizing hydroxyl radicals on the surface of the electrodes, which are organic to phenols, dyes, pesticides, and surfactants. The degradability of wastewater is strong. Nano-titanium dioxide electrodes can degrade a variety of organic matter, with a current efficiency of >90%, and can completely mineralize organic matter. Nano-titanium dioxide electrodes have good application prospects in organic wastewater treatment.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Li, Xiang, Yan Wang, Linze Lv, Guobin Zhu, Qunting Qu, and Honghe Zheng. "Electroactive organics as promising anode materials for rechargeable lithium ion and sodium ion batteries." Energy Materials 2, no. 2 (2022): 200014. http://dx.doi.org/10.20517/energymater.2022.11.

Повний текст джерела
Анотація:
Electroactive organics have attracted significant attention as electrode materials for next-generation rechargeable batteries because of their structural diversity, molecular adjustability, abundance, flexibility, environmental friendliness and low cost. To date, a large number of organic materials have been applied in a variety of energy storage devices. However, the inherent problems of organic materials, such as their dissolution in electrolytes and low electronic conductivity, have restricted the development of organic electrodes. In order to solve these problems, many groups have carried out research and remarkable progress has been made. Nevertheless, most reviews of organic electrodes have focused on the positive electrode rather than the negative electrode. This review first provides an overview of the recent work on organic anodes for Li- and Na-ion batteries. Six categories of organic anodes are summarized and discussed. Many of the key factors that influence the electrochemical performance of organic anodes are highlighted and their prospects and remaining challenges are evaluated.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Velasco-Medina, Carlos, Patricio J. Espinoza-Montero, Marjorie Montero-Jimenez, José Alvarado, Mónica Jadán, Patricio Carrera, and Lenys Fernandez. "Development and Evaluation of Copper Electrodes, Modified with Bimetallic Nanoparticles, to be Used as Sensors of Cysteine-Rich Peptides Synthesized by Tobacco Cells Exposed to Cytotoxic Levels of Cadmium." Molecules 24, no. 12 (June 12, 2019): 2200. http://dx.doi.org/10.3390/molecules24122200.

Повний текст джерела
Анотація:
We report on two new electrochemical sensors which, coupled to differential pulse voltammetry, constitutes a useful tool for diagnosis of heavy metal pollution. The electrochemical sensors AgHgNf/Cu and the AgBiNf/Cu were obtained by deposition of bimetallic particles of AgHg or AgBi on copper electrodes covered with a Nafion (Nf) film, respectively. Micrographs of the electrode’s surface showed evenly scattered bimetallic particles, with an approximate diameter of 150 nm, embedded in the Nafion (Nf) film. In order to test the electrodes, the hydrogen evolution signal according to the Brdička reaction was measured for the determination of cysteine-rich peptides (CRp) produced by plants. To check the accuracy of the electrodes, real samples of Nicotiana tabacum cells exposed to cytotoxic levels of cadmium were tested. The AgHgNf/Cu electrode produced detection limits (DLs) of 0.088 µmol L−1 for Cysteine and 0.139µmol L−1 for Glutathione, while for the AgBiNf/Cu electrode DLs were 0.41 µmol L−1 for cysteine and 0.244 µmol L−1 for glutathione. Thus, the new electrodes could be a useful analytical electrochemical system very convenient for fieldwork. The electrodes were capable of direct, accurate, and sensitive detection of synthesized peptides, despite the complex matrix where the Nicotiana tabacum cells were grown.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kim, Sung Jin, Hyeon Jun Lee, Sung Kyu Kim, Chae Ryong Cho, and Se Young Jeong. "A Study on Spin Injection of Ferromagnetic Electrode for OLED Application." Advances in Science and Technology 52 (October 2006): 98–103. http://dx.doi.org/10.4028/www.scientific.net/ast.52.98.

Повний текст джерела
Анотація:
We have investigated the magnetic effect on the electrical properties of Al and Ni electrode based organic light-emitting devices (OLEDs). The Ni electrode-based OLEDs were compared to Al-based OLEDs in terms of their applied magnetic fields (0.3 T). We found that for current density-voltage on Al and Ni electrodes for OLEDs, Ni electrodes can be applied to OLEDs. The value of magneto-impedance or the resistance ratio decreased in comparison to situations with the absence of a magnetic field. The magneto-impedance or resistance effect indicated that the spin polarization was preserved through the organic layer. We found that the frequency response of magneto-impedance decreased the external magnetic field at room temperature. Electrical characterizations of the OLEDs with spin-polarized electrodes indicated the applicability of the ferromagnetic electrodes to organic light-emitting devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Erdoğdu, Gamze. "Electrochemical Detection of Epinephrine at Organic Conducting Polymers Electrodes." Sensor Letters 18, no. 3 (March 1, 2020): 173–78. http://dx.doi.org/10.1166/sl.2020.4204.

Повний текст джерела
Анотація:
In this paper, a rapid and sensitive modified electrode for the determination of Epinephrine (EP) is proposed. In this study, active compound EP was determined from commercial drug form based on electrochemical oxidation properties at various electrodes by voltammetric methods. Electrodes modified by the electrodeposition of conducting organic polymers such as poly(3-methylthiophene, PMT), polypyrrole (PPY) and polyaniline (PAN) were used as chemical sensors for voltammetric analysis and flow injection detection of EP. The electrochemical behavior of EP at conducting polymer electrodes was compared and the effects on behavior of electrolyte type and its pH and the film thickness were systematically examined. The results showed that the proposed modified surface catalyzes the oxidation of EP. Electrocatalytic efficiency decreases in order of PMT > PPY > PAN. Voltammetric peak positions were affected by the nature of the electrolyte and its pH. Also, the effect of increasing film thickness was to observe increased peak heights for oxidation potential of EP. The best results for the determination of EP were obtained by DPV in Na2SO4 (pH 2.0) and PMT electrodes. Polymer coated electrodes were also used in an amperometric detector for flow injection analysis of EP. The responses of the polymer electrode were 5–15 times larger as compared to those of bare platinum. PMT showed improved performance as an amperometric detector for flow injection analysis systems over other types of polymer electrodes. Detection limits as low as 1× 10–9 M were achieved using the PMT, compared to 1 × 10–6 M using platinum electrodes.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hamzah, Hairul Hisham, Nur Hidayah Saleh, Bhavik Anil Patel, Mohd Muzamir Mahat, Saiful Arifin Shafiee, and Turgut Sönmez. "Recycling Chocolate Aluminum Wrapping Foil as to Create Electrochemical Metal Strip Electrodes." Molecules 26, no. 1 (December 23, 2020): 21. http://dx.doi.org/10.3390/molecules26010021.

Повний текст джерела
Анотація:
The development of low-cost electrode devices from conductive materials has recently attracted considerable attention as a sustainable means to replace the existing commercially available electrodes. In this study, two different electrode surfaces (surfaces 1 and 2, denoted as S1 and S2) were fabricated from chocolate wrapping aluminum foils. Energy dispersive X-Ray (EDX) and field emission scanning electron microscopy (FESEM) were used to investigate the elemental composition and surface morphology of the prepared electrodes. Meanwhile, cyclic voltammetry (CV), chronoamperometry, electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV) were used to assess the electrical conductivities and the electrochemical activities of the prepared electrodes. It was found that the fabricated electrode strips, particularly the S1 electrode, showed good electrochemical responses and conductivity properties in phosphate buffer (PB) solutions. Interestingly, both of the electrodes can respond to the ruthenium hexamine (Ruhex) redox species. The fundamental results presented from this study indicate that this electrode material can be an inexpensive alternative for the electrode substrate. Overall, our findings indicate that electrodes made from chocolate wrapping materials have promise as electrochemical sensors and can be utilized in various applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Joester, Derk, Andrew Hillier, Yi Zhang, and Ty J. Prosa. "Organic Materials and Organic/Inorganic Heterostructures in Atom Probe Tomography." Microscopy Today 20, no. 3 (May 2012): 26–31. http://dx.doi.org/10.1017/s1551929512000260.

Повний текст джерела
Анотація:
Nano-scale organic/inorganic interfaces are key to a wide range of materials. In many biominerals, for instance bone or teeth, outstanding fracture toughness and wear resistance can be attributed to buried organic/inorganic interfaces. Organic/inorganic interfaces at very small length scales are becoming increasingly important also in nano and electronic materials. For example, functionalized inorganic nanomaterials have great potential in biomedicine or sensing applications. Thin organic films are used to increase the conductivity of LiFePO4 electrodes in lithium ion batteries, and solid electrode interphases (SEI) form by uncontrolled electrolyte decomposition. Organics play a key role in dye-sensitized solar cells, organic photovoltaics, and nano-dielectrics for organic field-effect transistors. The interface between oxide semiconductors and polymer substrates is critical in emergent applications, for example, flexible displays.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Li, Rong Bin, and Bin Yuan Zhao. "Electrocatalytic Behaviour of Diamond Electrode for Organic Compound." Advances in Science and Technology 48 (October 2006): 169–73. http://dx.doi.org/10.4028/www.scientific.net/ast.48.169.

Повний текст джерела
Анотація:
The electrochemical behavior of a boron-doped diamond film electrode prepared by chemical vapor deposition was studied. The surface microstructure of the electrode was studied by means of scanning electron microscopy. The electrochemical behavior of the electrode was investigated by cyclic voltammetry and AC Impedance. The diamond films exhibited a “cauliflower-like” morphology and contained microcrystallites. The results showed the electrode having a very wide potential window and very low background current. The potential windows in acidic, neutral or alkaline medium were respectively 4.4[V], 4.0[V] and 3.0[V]. The background current was as low as -8×10-6~5×10-7[A]. In the electrolyte including Ferri/Ferrocyanide, the electrode surface kept good activity, and the electrochemical reaction occurring on the surface was a diffusion-controlled reaction, with good quasi- reversibility. Compared with Pt and graphite electrodes, diamond electrodes can oxidize compounds like phenol effectively, and the process of oxidization was very simple and complete.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Vėbraitė, Ieva, Moshe David-Pur, David Rand, Eric Daniel Głowacki, and Yael Hanein. "Electrophysiological investigation of intact retina with soft printed organic neural interface." Journal of Neural Engineering 18, no. 6 (November 19, 2021): 066017. http://dx.doi.org/10.1088/1741-2552/ac36ab.

Повний текст джерела
Анотація:
Abstract Objective. Understanding how the retina converts a natural image or an electrically stimulated one into neural firing patterns is the focus of on-going research activities. Ex vivo, the retina can be readily investigated using multi electrode arrays (MEAs). However, MEA recording and stimulation from an intact retina (in the eye) has been so far insufficient. Approach. In the present study, we report new soft carbon electrode arrays suitable for recording and stimulating neural activity in an intact retina. Screen-printing of carbon ink on 20 µm polyurethane (PU) film was used to realize electrode arrays with electrodes as small as 40 µm in diameter. Passivation was achieved with a holey membrane, realized using laser drilling in a thin (50 µm) PU film. Plasma polymerized 3.4-ethylenedioxythiophene was used to coat the electrode array to improve the electrode specific capacitance. Chick retinas, embryonic stage day 13, both explanted and intact inside an enucleated eye, were used. Main results. A novel fabrication process based on printed carbon electrodes was developed and yielded high capacitance electrodes on a soft substrate. Ex vivo electrical recording of retina activity with carbon electrodes is demonstrated. With the addition of organic photo-capacitors, simultaneous photo-electrical stimulation and electrical recording was achieved. Finally, electrical activity recordings from an intact chick retina (inside enucleated eyes) were demonstrated. Both photosensitive retinal ganglion cell responses and spontaneous retina waves were recorded and their features analyzed. Significance. Results of this study demonstrated soft electrode arrays with unique properties, suitable for simultaneous recording and photo-electrical stimulation of the retina at high fidelity. This novel electrode technology opens up new frontiers in the study of neural tissue in vivo.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wójcik, Szymon, and Małgorzata Jakubowska. "Optimization of anethole determination using differential pulse voltammetry on glassy carbon electrode, boron doped diamond electrode and carbon paste electrode." Science, Technology and Innovation 3, no. 2 (December 27, 2018): 21–26. http://dx.doi.org/10.5604/01.3001.0012.8152.

Повний текст джерела
Анотація:
Voltammetry is the general term for all techniques in which the current is measured as a function of electrode potential. The voltammetric techniques can be applied for the quantitative analysis of inorganic and organic species and are best suited for substances which can be either oxidized or reduced on electrodes. These techniques are characterized by high sensitivity which results in the possibility of performing determinations at a low concentration level. In voltammetry, many different types of working electrodes are applied. One of the important groups are solid electrodes, among which carbon electrodes play an important role. They represent a good alternative to mercury electrodes, however, surface preparation before the usage is required. In this work anethole determination will be presented using three types of carbon electrodes: glassy carbon electrode, boron doped diamond electrode and carbon paste electrode. Optimization process will be also described.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Organic electrodes"

1

Hall, Geoffrey F. "Organic phase enzyme electrodes." Thesis, Cranfield University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278720.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Saini, S. "Organic phase enzyme electrodes." Thesis, Cranfield University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332925.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Murphy, Lindy Jane. "Conducting organic salt enzyme electrodes." Thesis, Imperial College London, 1990. http://hdl.handle.net/10044/1/46459.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kim, Yong Hyun. "Alternative Electrodes for Organic Optoelectronic Devices." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-113279.

Повний текст джерела
Анотація:
This work demonstrates an approach to develop low-cost, semi-transparent, long-term stable, and efficient organic photovoltaic (OPV) cells and organic light-emitting diodes (OLEDs) using various alternative electrodes such as conductive polymers, doped ZnO, and carbon nanotubes. Such electrodes are regarded as good candidates to replace the conventional indium tin oxide (ITO) electrode, which is expensive, brittle, and limiting the manufacturing of low-cost, flexible organic devices. First, we report long-term stable, efficient ITO-free OPV cells and transparent OLEDs based on poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) electrodes by using a solvent post-treatment or a structure optimization. In addition, a high performance internal light out-coupling system for white OLEDs based on PEDOT:PSS-coated metal oxide nanostructures is developed. Next, we demonstrate highly efficient ITO-free OPV cells and OLEDs with optimized ZnO electrodes doped with alternative non-metallic elements. The organic devices based on the optimized ZnO electrodes show significantly improved efficiencies compared to devices with standard ITO. Finally, we report semi-transparent OPV cells with free-standing carbon nanotube sheets as transparent top electrodes. The resulting OPV cells exhibit very low leakage currents with good long-term stability. In addition, the combination of various kinds of bottom and top electrodes for semi-transparent and ITO-free OPV cells is investigated. These results demonstrate that alternative electrodes-based OPV cells and OLEDs have a promising future for practical applications in efficient, low-cost, flexible and semi-transparent device manufacturing
Die vorliegende Arbeit demonstriert einen Ansatz zur Verwirklichung von kostengünstigen, semi-transparenten, langzeitstabilen und effizienten Organischen Photovoltaik Zellen (OPV) und Organischen Leuchtdioden (OLEDs) durch die Nutzung innovativer Elektrodensysteme. Dazu werden leitfähige Polymere, dotiertes ZnO und Kohlenstoff-Nanoröhrchen eingesetzt. Diese alternativen Elektrodensysteme sind vielversprechende Kandidaten, um das konventionell genutzte Indium-Zinn-Oxid (ITO), welches aufgrund seines hohen Preises und spröden Materialverhaltens einen stark begrenz Faktor bei der Herstellung von kostengünstigen, flexiblen, organischen Bauelementen darstellt, zu ersetzten. Zunächst werden langzeitstabile, effiziente, ITO-freie Solarzellen und transparente OLEDs auf der Basis von Poly(3,4-ethylene-dioxythiophene):Poly(styrenesulfonate) (PEDOT:PSS) Elektroden beschrieben, welche mit Hilfe einer Lösungsmittel-Nachprozessierung und einer Optimierung der Bauelementstruktur hergestellt wurden. Zusätzlich wurde ein leistungsfähiges, internes Lichtauskopplungs-System für weiße OLEDs, basierend auf PEDOT:PSS-beschichteten Metalloxid-Nanostrukturen, entwickelt. Weiterhin werden hoch effiziente, ITO-freie OPV Zellen und OLEDs vorgestellt, bei denen mit verschiedenen nicht-metallischen Elementen dotierte ZnO Elektroden zur Anwendung kamen. Die optimierten ZnO Elektroden bieten im Vergleich zu unserem Laborstandard ITO eine signifikant verbesserte Effizienz. Abschließend werden semi-transparente OPV Zellen mit freistehenden Kohlenstoff-Nanoröhrchen als transparente Top-Elektrode vorgestellt. Die daraus resultierenden Zellen zeigen sehr niedrige Leckströme und eine zufriedenstellende Stabilität. In diesem Zusammenhang wurde auch verschiedene Kombinationen von Elektrodenmaterialen als Top- und Bottom-Elektrode für semi-transparente, ITO-freie OPV Zellen untersucht. Zusammengefasst bestätigen die Resultate, dass OPV und OLEDs basierend auf alternativen Elektroden vielversprechende Eigenschaften für die praktische Anwendung in der Herstellung von effizienten, kostengünstigen, flexiblen und semi-transparenten Bauelement besitzen
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Korell, Ulrich. "Electrochemistry at organic conducting salt electrodes." Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61171.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Driscoll, B. J. "Enzyme electrodes using conducting organic salts." Thesis, Imperial College London, 1988. http://hdl.handle.net/10044/1/47038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Stec, Helena M. "Metal window electrodes for organic photovoltaics." Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/57652/.

Повний текст джерела
Анотація:
The work presented in this thesis focuses on the development ultra-thin metal film electrodes for organic photovoltaics (OPVs) with the aim of boosting device performance, lowering the cost and/or extending the range potential application. Chapter 1 gives a general overview of OPVs, including the materials used for their fabrication and the fundamental processes underpinning OPV’s operation. The experimental techniques and equipment used are described in Chapter 2. Chapter 3 describes the development of a solvent free method for the fabrication of highly transparent ultra-thin Au films on glass based on co-deposition of a mixed molecular adhesive layer prior to Au thermal evaporation. By integrating microsphere lithography into the fabrication process the transparency could be improved via the incorporation of a random array of micron-sized circular apertures into the film. In Chapter 4 it is shown that these films are amenable to rapid thermal annealing to realise highly crystalline window electrodes with improved transparency and conductivity. By capping these films with a very thin transition metal oxide layer their thermal stability can be dramatically improved, whilst at the same time improving their far field transparency. In Chapter 5 the molecular adhesive method for the fabrication of ultra-thin Au films on glass is translated to the technologically important flexible substrates and extended to the lower cost coinage metals Ag and Cu. In Chapter 6 a lithography-free approach to fabricating thin Au and Ag films with a dense array of sub-wavelength apertures is reported. These electrodes support surface plasmon resonances which couple strongly with visible light concentrating it near to the electrode surface, thereby increasing light harvesting. Chapter 7 shows how the electrodes developed in Chapter 3 can be used to investigate a fundamental question of importance in OPV research and indicates the direction of future work. The results of chapters 3, 5 and 6 have been published in peer reviewed scientific journals.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Selzer, Franz. "Transparent Electrodes for Organic Solar Cells." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-199652.

Повний текст джерела
Анотація:
The aim of this work was to investigate silver nanowire as well as carbon nanotube networks as transparent conducting electrodes for small molecule organic solar cells. In the framework of the nanowire investigations, a low-temperature method at less than 80 °C is developed to obtain highly conductive networks directly after the deposition and without post-processing. In detail, specific non-conductive organic materials act as a matrix where the nanowires are embedded in such that a mutual attraction based on capillary forces and hydrophobic interaction is created. This process is mediated by the ethanol contained in the nanowire dispersion and works only for sublayer materials which exhibit hydrophobic and hydrophilic groups at the same time. In contrast to high-temperature processed reference electrodes (210 °C for 90 min) without matrix, a slightly lower sheet resistance of 10.8 Ohm/sq at a transparency of 80.4 % (including substrate) is obtained by using polyvinylpyrrolidone as the sublayer material. In comparison to annealed silver nanowire networks, the novel approach yields a performance enhancement in corresponding organic solar cells which can compete with ITO-based devices. Furthermore, a novel approach for scalable, highly conductive, and transparent silver nanowire top-electrodes for organic optoelectronic devices is introduced. By utilizing a perfluorinated methacrylate as stabilizer, silver nanowires with high aspect ratio can be transferred into inert solvents which do not dissolve most organic compounds making this modified dispersion compatible with small molecule and polymer-based organic optoelectronic devices. The inert silver nanowire dispersion yields highly performing top-electrodes with a sheet resistance of 10.0 Ohm/sq at 80.0 % transparency (including substrate) directly after low-temperature deposition at 30 °C and without further post-processing. In comparison to similarly prepared reference devices comprising a thin-metal film as transparent top-electrode, reasonable power conversion efficiencies are demonstrated by spray-coating this dispersion directly on simple, air-exposed small molecule-based organic solar cells. Moreover, a deeper understanding of the percolation behavior of silver nanowire networks has been achieved. Herein, direct measurements of the basic network parameters, including the wire-to-wire junction resistance and the resistance of a single nanowire of pristine and annealed networks have been carried out for the first time. By putting the values into a simulation routine, a good accordance between measurement and simulation is achieved. Thus, an examination of the electrical limit of the nanowire system used in this work can be realized by extrapolating the junction resistance down to zero. The annealed silver nanowires are fairly close to the limit with a theoretical enhancement range of only 20 % (common absolute sheet resistance of approximately 10 Ohm/sq) such that a significant performance improvement is only expected by an enlargement of the nanowire length or by the implementation of new network geometries. In addition, carbon nanotube networks are investigated as alternative network-type, transparent bottom-electrode for organic small molecule solar cells. For that purpose, cleaning and structuring as well as planarization procedures are developed and optimized which maintain the optoelectronic performance of the carbon nanotube electrodes. Furthermore, a hybrid electrode consisting of silver nanowires covered with carbon nanotubes is fabricated yielding organic solar cells with only 0.47 % power conversion efficiency. In contrast, optimized electrodes comprising only carbon nanotubes show significantly higher efficiency. In comparison to identically prepared ITO devices, comparable or lower power conversion efficiencies of 3.96 % (in p-i-n stack), 4.83 % (in cascade cell) as well as 4.81 % (in p-n-i-p architecture) are demonstrated. For an inverted n-i-p stack design, the highest power conversion efficiency of 5.42 % is achieved.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hutter, Oliver S. "Nanostructured copper electrodes for organic photovoltaics." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/71005/.

Повний текст джерела
Анотація:
This thesis describes a body of original research focused on the development of a viable alternative to the indium-tin oxide (ITO) glass window electrode used in organic photovoltaic (OPV) devices, based on the use of ultra-thin Cu films. The first results chapter describes a low cost, robust Cu | Al bilayer window electrode that simultaneously functions as the low work function electron-extracting electrode and as a sink for oxygen/water molecules in OPVs. When the electrode is exposed to air, an ultra-thin oxide layer forms at its surface without any increase in surface roughness, and the sheet resistance of the electrode actually decreases. However, this electrode has the disadvantage of a lower far-field transparency than ITO glass. The second results chapter describes how the transparency of ultra-thin Cu films can be increased to a level comparable to that of ITO glass across most of the spectrum over which OPVs harvest light using an overlayer of tungsten sub-oxide (WO3-x) which is spontaneously doped with Cu, increasing both its refractive index and electrical conductivity. Unfortunately these electrodes are not air stable. The third results chapter describes how the developments described in the previous two chapters might be integrated to realise an electrode that is both air-stable and highly transparent. The final results chapter describes a very different approach to coupling light into an OPV based on a Cu electrode with a dense array of sub-optical wavelength apertures. These electrodes absorb light strongly, concentrating it as surface plasmon excitations. It is shown that this trapped light can be absorbed by the light harvesting organic semiconductor in organic photovoltaics so that electrodes with very low far-field transparency can perform as well as more transparent electrodes.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Schubert, Sylvio. "Transparent top electrodes for organic solar cells." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-162670.

Повний текст джерела
Анотація:
Organic solar cells offer attractive properties for novel applications and continuous advances in material and concept development have led to significant improvements in device performance. To exploit their full potential (roll-to-roll production of flexible and top-illuminated devices, using e.g. opaque metal foil or textile as substrate), highly transparent, conductive, mechanically flexible, and cost-efficient top electrodes are of great importance. The current standard material indium tin oxide (ITO) is rigid, expensive and requires a high energy / high temperature deposition process, limiting ITO (and other transparent conductive oxides) to bottom electrode applications. This work presents fundamental investigations to understand and control the properties of transparent conductors and documents four different approaches to prepare transparent electrodes on top of efficient small molecule organic solar cells, with the aim to replace ITO. Fullerene C60 layers are investigated as completely carbon-based electrodes. For an optimized doping concentration, sheet resistance and transmittance are improved and efficient solar cells are realized. Since the lateral charge transport is still limited, a combination with a microstructured conductor is suggested. Pulsed laser deposition allows for the first time a damage-free preparation of gallium doped zinc oxide (ZnO:Ga) layers on top of organic devices by careful optimization of the deposition atmosphere. ZnO:Ga electrodes with a transmittance of Tvis = 82.7 % and sheet resistance Rs = 83 Ohm/sq are obtained. The formation of local shunts due to ZnO:Ga droplets is identified and then prevented by a shadow mask between the target and the sample, enabling solar cells with similar efficiency (2.9 %) compared to a reference device using a state-of-the-art metal top contact. Another very promising alternative are intrinsically flexible, ultra-thin silver layers. By introducing an oxide interlayer, the adverse interpenetration of silver and organic materials is prevented and the charge extraction from the solar cells is improved. With a second oxide layer on top, the silver electrode is significantly stabilized, leading to an increased solar cell lifetime of 4500 h (factor of 107). Scanning electron micrographs of Ag thin films reveal a poor wetting on organic and oxide substrates, which strongly limits the electrode performance. However, it is significantly improved by a 1 nm thin seed layer. An optimized Au/Ag film reaches Tvis = 78.1 % and Rs = 19 Ohm/sq, superior to ITO. Finally, silver electrodes blended with calcium show a unique microstructure which enables unusually high transmittance (84.3 % at 27.3 Ohm/sq) even above the expectations from bulk material properties and thin film optics. Such values have not been reached for transparent electrodes on top of organic material so far. Solar cells with a Ca:Ag top electrode achieve an efficiency of 7.2 %, which exceeds the 6.9 % of bottom-illuminated reference cells with conventional ITO electrodes and defines a new world record for top-illuminated organic solar cells. With these electrodes, semi-transparent and large-area devices, as well as devices on opaque and flexible substrates are successfully prepared. In summary, it is shown that ZnO:Ga and thin metal electrodes can replace ITO and fill the lack of high performance top electrodes. Moreover, the introduced concepts are not restricted to specific solar cell architectures or organic compounds but are widely applicable for a variety of organic devices.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Organic electrodes"

1

Gupta, Ram K., ed. Organic Electrodes. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98021-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

P, Tomilov A., and Institut ėlektrokhimii im. A.N. Frumkina., eds. Ėlektrosintez: Ėlektrodnye reakt͡s︡ii s uchastiem organicheskikh soedineniĭ : sbornik nauchnykh trudov. Moskva: "Nauka", 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Budniok, Antoni. Materiały elektrodowe stosowane w organicznej syntezie elektrochemicznej. Katowice: Uniwersytet Śląski, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

G, Compton R., and Hamnett A, eds. New techniques for the study of electrodes and their reactions. Amsterdam: Elsevier, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

G, Peters D., Steckhan E. 1943-, Electrochemical Society. Organic and Biological Electrochemistry Division., and Electrochemical Society, eds. Reactive intermediates in organic and biological electrochemistry: Proceedings of the international symposium in honor of the late professor Eberhard Steckhan. Pennington, NJ: Electrochemical Society, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

P, Weeks Daniel, ed. Pushing electrons: A guidefor students of organic chemistry. 2nd ed. Fort Worth: Saunders College, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pushing electrons: A guide for students of organic chemistry. 3rd ed. Fort Worth: Saunders College Pub., 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Weeks, Daniel P. Pushing electrons: A guide for students of organic chemistry. 2nd ed. Fort Worth: Saunders College Pub., 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Weeks, Daniel P. Pushing electrons: A guide for students of organic chemistry. 2nd ed. Fort Worth: Saunders College Pub., 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Guberman, S. Dissociative Recombination of Molecular Ions with Electrons. Boston, MA: Springer US, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Organic electrodes"

1

Kausar, Ayesha. "Polymeric Nanofibers as Electrodes for Fuel Cells." In Organic Electrodes, 155–69. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98021-4_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jiang, Wenkun, Yinghui Han, Zhiwen Xue, Yongqi Zhu, and Xin Zhang. "Conducting Polymer-Based Nanofibers for Advanced Electrochemical Energy Storage Devices." In Organic Electrodes, 101–18. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98021-4_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Erkmen, Cem, Didem N. Unal, Sevinc Kurbanoglu, and Bengi Uslu. "Basics of Electrochemical Sensors." In Organic Electrodes, 81–99. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98021-4_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rahman, Sultana, Ozge Selcuk, Faiza Jan Iftikhar, Sevinc Kurbanoglu, Afzal Shah, Mohammad Siddiq, and Bengi Uslu. "Polymeric Nanofibers as Electrodes for Sensors." In Organic Electrodes, 399–413. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98021-4_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Malik, Rinki, Payal Tyagi, Suman Lata, and Rajender Singh Malik. "Polymeric Nanofibers as Electrodes for Supercapacitor." In Organic Electrodes, 311–35. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98021-4_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sheibani, Esmaeil, Li Yang, and Jinbao Zhang. "Conjugated Polymer for Charge Transporting Applications in Solar Cells." In Organic Electrodes, 119–35. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98021-4_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sandoval-González, Antonia, Erika Bustos, and Carolina Martínez-Sánchez. "Basic and Advanced Considerations of Energy Storage Devices." In Organic Electrodes, 63–80. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98021-4_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mensah-Darkwa, Kwadwo, Daniel N. Ampong, Daniel Yeboah, Emmanuel A. Tsiwah, and Ram K. Gupta. "Organic Electrodes for Flexible Energy Storage Devices." In Organic Electrodes, 357–77. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98021-4_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chakhtouna, Hanane, Brahim El Allaoui, Nadia Zari, Rachid Bouhfid, and Abou el kacem Qaiss. "Bio-inspired Polymers as Organic Electrodes for Batteries." In Organic Electrodes, 189–206. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98021-4_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mondal, Monojit, Arkaprava Datta, and Tarun K. Bhattacharyya. "Materials and Synthesis of Organic Electrode." In Organic Electrodes, 27–46. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98021-4_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Organic electrodes"

1

Wu, J. W. "Electro-optic measurement of the electric-field distributions in coplanar-electrode poled polymers." In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.md.9.

Повний текст джерела
Анотація:
In electro-optic thin film samples, two configurations of electrodes are commonly adopted for the electric field poling, parallel and coplanar. In the parallel-plate configuration, electro-optic (EO) polymer is sandwiched between two thin electrode plates on top of a substrate. Because the size of electrodes is larger than the polymer thin film thickness, the electric field distribution is almost uniform inside the polymer film between the top and bottom electrodes. In the coplanar electrode structure, two thin separate electrodes with a narrow gap in between them are deposited on top of substrate, and EO polymer film is spin coated. Here the film covers both electrodes and the dc poling and EO effect measuring fields pass through and above the film making the electric field distribution complicated. Furthermore the electric field lines have different shapes for different thickness of thin films, since the dielectric constant of polymer films is different from that of the air.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mori, Takehiko, Koji Shibata, Hiroshi Wada, and Jun-ichi Inoue. "OFETs with Organic-metal Electrodes." In 2008 MRS Fall Meetin. Materials Research Society, 2008. http://dx.doi.org/10.1557/proc-1115-h05-24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Medeiros, Maria C. R., Ana L. G. Mestre, Pedro M. C. Inácio, José M. L. Santos, Inês M. Araujo, José Bragança, Fabio Biscarini, and Henrique L. Gomes. "Performance assessment of polymer based electrodes for in vitro electrophysiological sensing: the role of the electrode impedance." In SPIE Organic Photonics + Electronics, edited by Ioannis Kymissis, Ruth Shinar, and Luisa Torsi. SPIE, 2016. http://dx.doi.org/10.1117/12.2237659.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Maisch, Philipp, Kai C. Tam, Luca Lucera, Frank W. Fecher, Hans-Joachim Egelhaaf, Horst Scheiber, Eugen Maier, and Christoph J. Brabec. "Inkjet printing of semitransparent electrodes for photovoltaic applications." In SPIE Organic Photonics + Electronics, edited by Zakya H. Kafafi, Paul A. Lane, and Ifor D. W. Samuel. SPIE, 2016. http://dx.doi.org/10.1117/12.2236968.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lenk, Simone, and Sebastian Reineke. "Application of ultrathin metal electrodes in OLEDs." In Solid-State and Organic Lighting. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/soled.2015.dw3d.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Guo, Fei, Peter Kubis, Thomas Przybilla, Erdmann Spiecker, Karen Forberich, and Christoph J. Brabec. "Semitransparent organic photovoltaic modules with Ag nanowire top electrodes." In SPIE Organic Photonics + Electronics, edited by Zakya H. Kafafi, Paul A. Lane, and Ifor D. W. Samuel. SPIE, 2014. http://dx.doi.org/10.1117/12.2058288.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zeng, Beibei, Zakya H. Kafafi, and Filbert J. Bartoli. "Plasmonic electrodes for organic photovoltaics: polarization-independent absorption enhancement." In SPIE Organic Photonics + Electronics, edited by Zakya H. Kafafi, Paul A. Lane, and Ifor D. W. Samuel. SPIE, 2014. http://dx.doi.org/10.1117/12.2061240.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Saleh, Abdulelah. "Inkjet-printed Ti3C2Tx MXene electrodes for multimodal cutaneous biosensing." In Organic Bioelectronics Conference 2022. València: Fundació Scito, 2022. http://dx.doi.org/10.29363/nanoge.obe.2022.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bernède, J. C., P. Predeep, Mrinal Thakur, and M. K. Ravi Varma. "Organic Photovoltaic Cells: Engineering of the Interfaces Electrodes∕Organic Material." In OPTICS: PHENOMENA, MATERIALS, DEVICES, AND CHARACTERIZATION: OPTICS 2011: International Conference on Light. AIP, 2011. http://dx.doi.org/10.1063/1.3646767.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lee, Jong-Lam. "Towards highly transparent conducting electrodes for flexible devices." In Solid-State and Organic Lighting. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/soled.2014.dtu2d.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Organic electrodes"

1

Tobin J. Marks, R.P.H. Chang, Tom Mason, Ken Poeppelmeier, and Arthur J. Freeman. ENGINEERED ELECTRODES AND ELECTRODE-ORGANIC INTERFACES FOR HIGH-EFFICIENCY ORGANIC PHOTOVOLTAICS. Office of Scientific and Technical Information (OSTI), November 2008. http://dx.doi.org/10.2172/940916.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Weaver, R., and J. Ogborn. CGX-00-005 Cellulosic-Covered Electrode Storage - Influence on Welding Performance and Weld Properties. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 2005. http://dx.doi.org/10.55274/r0011816.

Повний текст джерела
Анотація:
Cellulosic-covered electrodes have been used for shielded metal arc welding (SMAW) circumferential welding of line pipe over many decades. They are characterized by electrode coverings containing organic matter. Unlike low hydrogen SMAW electrodes that achieve optimum results at low covering moisture levels, cellulosic-covered electrodes require much higher covering moisture levels for proper operation. For example, pipe welders have been known to deliberately expose electrodes to the weather, or even dip them in water prior to use. There are suggestions that high incidents of hydrogen assisted cracking (HAC) might be associated with low moisture levels in the cellulosic-covered electrodes used. This suggests further that storage and handling practices based on conventional wisdom in the field may not be sufficient as the industry transitions to more demanding applications and higher-strength materials. Consequently, this work was undertaken to develop more definitive information on the performance of cellulosic-covered electrodes for three purposes: � determine the influence of various storage and handling practices on electrode covering moisture, � determine the influence of covering moisture on electrode operability, weld metal chemical composition, and weld hardness, and � develop more definitive guidelines for cellulosic-covered electrode storage and handling practice. Three different E8010 type electrodes (one E8018-G and two E8018-P1) were subjected to various storage conditions - temperatures from -40�C (-40�F) to 66�C (150�F), and time periods up to 196 hours. As the temperature increased there was a tendency for lower electrode covering moisture levels with corresponding increases in weld metal alloy content (particularly Mn, Si, and Ti), increased weld hardness, increased weld strength, and higher tendency to HAC. Variations in electrode operation were also noted.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Marks, Tobin. Materials Science of Electrodes and Interfaces for High-Performance Organic Photovoltaics. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1332714.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nguyen, Thuc-Quyen, Guillermo Bazan, and Alexander Mikhailovsky. Mechanistic Studies of Charge Injection from Metallic Electrodes into Organic Semiconductors Mediated by Ionic Functionalities: Final Report. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1127463.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Olson, Dana. Carbon Nanosheets and Nanostructured Electrodes in Organic Photovoltaic Devices: Cooperative Research and Development Final Report, CRADA Number CRD-08-321. Office of Scientific and Technical Information (OSTI), April 2012. http://dx.doi.org/10.2172/1039824.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Xiao, Teng. Modifying the organic/electrode interface in Organic Solar Cells (OSCs) and improving the efficiency of solution-processed phosphorescent Organic Light-Emitting Diodes (OLEDs). Office of Scientific and Technical Information (OSTI), January 2012. http://dx.doi.org/10.2172/1048522.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mason, T. O., R. P. H. Chang, A. J. Freeman, T. J. Marks, and K. R. Poeppelmeier. Interface and Electrode Engineering for Next-Generation Organic Photovoltaic Cells: Final Technical Report, March 2005 - August 2008. Office of Scientific and Technical Information (OSTI), November 2008. http://dx.doi.org/10.2172/942085.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Laibinis, Paul E., Robert L. Graham, Hans A. Biebuyck, and George M. Whitesides. X-Ray Damage to CF3CO2-Terminated Organic Monolayers on Si/Au Supports is due Primarily to X-Ray Induced Electrons. Fort Belvoir, VA: Defense Technical Information Center, December 1991. http://dx.doi.org/10.21236/ada243446.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії