Добірка наукової літератури з теми "Optoelectronic properties of nanoparticles"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Optoelectronic properties of nanoparticles".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Optoelectronic properties of nanoparticles"

1

Sakurai, Makoto, Ke Wei Liu, Romain Ceolato, and Masakazu Aono. "Optical Properties of ZnO Nanowires Decorated with Au Nanoparticles." Key Engineering Materials 547 (April 2013): 7–10. http://dx.doi.org/10.4028/www.scientific.net/kem.547.7.

Повний текст джерела
Анотація:
One of the key technologies in future optoelectronics is control of excitons in oxide materials by the coupling with plasmons on noble metal surfaces. Optical properties of ZnO nanowires decorated with Au nanoparticles were studied to understand fundamental mechanism of the coupling and to develop optoelectronic devices with new functionalities. Light intensity at the main peak position in the photoluminescence (PL) spectra of ZnO nanowires was enhanced with the coverage of Au nanoparticles. Lifetime of excitons excited optically decreased by the decoration of Au nanoparticles. Understanding of the coupling between excitons and plasmons leads to optical control of excitons and will pave the way for new type of optoelectronic devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Riyadh, Shahad, Mohammed Salman Mohammad, and Noorulhuda Riyadh Naser. "Optical Properties of Germanium Nanoparticles Prepared by Laser Ablation." University of Thi-Qar Journal of Science 10, no. 2 (December 26, 2023): 137–40. http://dx.doi.org/10.32792/utq/utjsci/v10i2.1119.

Повний текст джерела
Анотація:
The synthesis of germanium nanoparticles (Ge NPs) through pulsed laser ablation in deionized water is investigated for Nanophotonics and optoelectronic applications. This study delves into the influence of laser pulse energy on Ge NP properties, specifically highlighting size control and optical characteristics. Our findings reveal a significant reduction in Ge NP size, from an initial 30 nm to 20 nm, as the laser pulse energy increases. Notably, we observed size-dependent blue luminescence from the synthesized Ge NPs. This controlled synthesis holds promise for optoelectronics and sensing applications. The study provides valuable insights into precise Ge NP synthesis and underscores their intriguing optical properties, paving the way for advanced Nanophotonic devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lee, Chang-Woo, Ki-Woo Lee та Jai-Sung Lee. "Optoelectronic properties of β-Fe2O3 hollow nanoparticles". Materials Letters 62, № 17-18 (червень 2008): 2664–66. http://dx.doi.org/10.1016/j.matlet.2008.01.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

MA, DONGLING, and ARNOLD KELL. "HOLLOW, BRANCHED AND MULTIFUNCTIONAL NANOPARTICLES: SYNTHESIS, PROPERTIES AND APPLICATIONS." International Journal of Nanoscience 08, no. 06 (December 2009): 483–514. http://dx.doi.org/10.1142/s0219581x09006419.

Повний текст джерела
Анотація:
Nanoscale materials with various structures have attracted extensive research interest during the past decade. Among them, hollow, branched and multifunctional nanoparticles comprised of two different nanoparticle components are emerging as new classes of interesting nanomaterials owing to the unique optical, catalytic, electrical, magnetic and mechanical properties associated with their unusual morphologies as well as their potential wide range of applications in various fields such as photothermal therapy, diagnosis, drug delivery, catalysis, optoelectronic, electronics and biodiagnostics. In particular, branched nanoparticles promise to serve as building blocks for more complex materials and advanced devices through self-assembly and self-alignment and heterodimeric nanoparticles show promise for the development of tunable magnetic materials and multimodal biodiagnostic imaging tools.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Qureshi, Akbar Ali, Sofia Javed, Hafiz Muhammad Asif Javed, Muhammad Jamshaid, Usman Ali, and Muhammad Aftab Akram. "Systematic Investigation of Structural, Morphological, Thermal, Optoelectronic, and Magnetic Properties of High-Purity Hematite/Magnetite Nanoparticles for Optoelectronics." Nanomaterials 12, no. 10 (May 11, 2022): 1635. http://dx.doi.org/10.3390/nano12101635.

Повний текст джерела
Анотація:
Iron oxide nanoparticles, especially hematite (α-Fe2O3) and magnetite (Fe3O4) have attained substantial research interest in various applications of green and sustainable energy harnessing owing to their exceptional opto-magneto-electrical characteristics and non-toxicity. In this study, we synthesized high-purity hematite and magnetite nanoparticles from a facile top-down approach by employing a high-energy ball mill followed by ultrasonication. A systematic investigation was then carried out to explore the structural, morphological, thermal, optoelectrical, and magnetic properties of the synthesized samples. The experimental results from scanning electron microscopy and X-ray diffraction corroborated the formation of highly crystalline hematite and magnetite nanoparticles with average sizes of ~80 nm and ~50 nm, respectively. Thermogravimetric analysis revealed remarkable results on the thermal stability of the newly synthesized samples. The optical studies confirmed the formation of a single-phase compound with the bandgaps dependent on the size of the nanoparticles. The electrochemical studies that utilized cyclic voltammetry and electrochemical impedance spectroscopy techniques verified these iron oxide nanoparticles as electroactive species which can enhance the charge transfer process with high mobility. The hysteresis curves of the samples revealed the paramagnetic behavior of the samples with high values of coercivity. Thus, these optimized materials can be recommended for use in future optoelectronic devices and can prove to be potential candidates in the advanced research of new optoelectronic materials for improved energy devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Agrahari, Vivek, Mohan Chandra Mathpal, Mahendra Kumar, and Arvind Agarwal. "Investigations of optoelectronic properties in DMS SnO2 nanoparticles." Journal of Alloys and Compounds 622 (February 2015): 48–53. http://dx.doi.org/10.1016/j.jallcom.2014.10.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sathyaseela, Balaraman. "Ce Doped SnO2 Nanoparticcles: Investigation of Structural and Optical Properties." Nanomedicine & Nanotechnology Open Access 9, no. 1 (2024): 1–7. http://dx.doi.org/10.23880/nnoa-16000282.

Повний текст джерела
Анотація:
Tin oxide (SnO2 ) and (1 wt%, 3 wt%, 5wt %) Ce-doped SnO2 nanoparticles were synthesized by the Co-precipitation method. X-ray diffraction investigations have been confirmed that the synthesized nanoparticles are polycrystalline in nature with tetragonal rutile phase. The particle size is determined using Scherrer’s formula and it is found to increase with the “Ce” dopant. High resolution scanning electron microscope (HRSEM) and transmission electron microscopy (TEM) analysis showed spherical morphology composed of fine crystallites with diameters around ∼200 nm. Optical band gap was decreased by the doping confirming the direct energy transfer between f-electrons of rare earth ion and the SnO2 conduction or valence band. This study demonstrates the Ce doped SnO2 nanoparticles for applications in optoelectronic devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Li, Dikun, Hua Lu, Yangwu Li, Shouhao Shi, Zengji Yue, and Jianlin Zhao. "Plasmon-enhanced photoluminescence from MoS2 monolayer with topological insulator nanoparticle." Nanophotonics 11, no. 5 (January 21, 2022): 995–1001. http://dx.doi.org/10.1515/nanoph-2021-0685.

Повний текст джерела
Анотація:
Abstract Topological insulators (TI), as a kind of fantastic nanomaterial with excellent electrical and optical properties, have attracted particular attention due to the promising applications in optoelectronic devices. Herein, we experimentally demonstrated the interaction between light and molybdenum disulfide (MoS2) monolayer with an antimony telluride (Sb2Te3) TI nanoparticle. It was found that photoluminescence (PL) emission and Raman scattering signal can be boosted by 5 and 8 folds in MoS2 monolayer integrated with the TI nanoparticle, respectively. The measured and simulated dark-field scattering spectra illustrated that the enhancement of light–matter interaction could be derived from the generation of localized surface plasmons on the TI nanoparticle with distinctly boosted electric field. We also found that there exists a redshift of 5 nm for the enhanced PL peak, which could be attributed to the formation of trions in MoS2 induced by plasmon doping. This work would provide a new pathway for the applications of TI nanoparticles in the optoelectronics, especially light–matter interaction enhancement.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liao, Jianhui, Sander Blok, Sense Jan van der Molen, Sandra Diefenbach, Alexander W. Holleitner, Christian Schönenberger, Anton Vladyka, and Michel Calame. "Ordered nanoparticle arrays interconnected by molecular linkers: electronic and optoelectronic properties." Chemical Society Reviews 44, no. 4 (2015): 999–1014. http://dx.doi.org/10.1039/c4cs00225c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

KHASHAN, KHAWLA S. "OPTOELECTRONIC PROPERTIES OF ZnO NANOPARTICLES DEPOSITION ON POROUS SILICON." International Journal of Modern Physics B 25, no. 02 (January 20, 2011): 277–82. http://dx.doi.org/10.1142/s0217979211054744.

Повний текст джерела
Анотація:
In this work, a colloid of nanocrystalline ZnO particles was prepared by chemical method, and sprayed on porous silicon (PS) substrate which was prepared by electrochemical etching under a current density of 15 mA/cm2 for 10 min. The initial radius of the ZnO particles was found to be (2.2 nm). FTIR spectra exhibit the presence of Zn – O bond which indicates the formation of ZnO particles. Also spectra reveals the formation of SiH x(x = 1–2) and Si – O bond which indicates the presence of porous layer. High-performance rectification was obtained, with high photoresponsivity of 0.54 A/W at 400 nm. The corresponding quantum efficiency was 166.7%. The results show that ZnO on PS structures act as good candidates for making highly efficient photodiodes.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Optoelectronic properties of nanoparticles"

1

Landes, Christy. "The dependence of the opto-electronic properties of CdSe nanoparticles on surface properties." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/30657.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sinha, Banita. "Physicochemical and theoretical investigations on the synthesis characterization and optoelectronic properties of nanoparticles." Thesis, University of North Bengal, 2016. http://ir.nbu.ac.in/handle/123456789/2625.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

García, Castelló Núria. "Atomistic study of structural and electronic transport properties of silicon quantum dots for optoelectronic applications." Doctoral thesis, Universitat de Barcelona, 2014. http://hdl.handle.net/10803/145640.

Повний текст джерела
Анотація:
Introduction It is undisputed that the silicon became the material most widely used in electronics in recent decades[1,2]. The qualities of silicon are well known, from its abundance and low cost to its ability to easily combine with oxides, so that the material has become essential in integrated electronic circuits and CMOS technology. A step further, though, is the idea of integrating electronics and photonics on the same silicon-based technology[3]. However, new strategies are needed to overcome the two principal obstacles of a possible bulk Si photonics: the indirect band gap and the band gap amplitude, suitable for operation only in the infrared range. Due to the quantum confinement of electric charges in silicon quantum dots (Si QDs)[4], the value of the energy gap of the material increases as the size of QD decreases, giving values greater than bulk Si and making Si QDs good candidates for tunable-band gap devices. Several applications have been developed in recent years using these new properties, from light-emitting devices [5] to solar cell tandem type [6] or other opto-electronic devices [7]. Objectives of this Thesis This Thesis initiated a collaboration between our group and the group of Prof. Ossicini of the University of Modena and Reggio Emilia, who has been modeling Si QDs for the last five years[8-14]. In this context, we contributed with the capacity to study the transport properties of these models by taking advantage of mixing two different techniques, Transfer Hamiltonian (TH) and Density Functional Theory (DFT). Thus, the aim of this work was to develop an approach to study transport in nanostructures by taking advantage of the atomistic information that ab initio methods can provide. In particular, the transport through a single Si QD embedded in a SiO2 dielectric matrix and the influence of the Si QD size, the amorphization level, and the doping were studied. Results and conclusions About the size of QDs In the case of embedded QDs of few nanometers, the strong non-planar interface between Si and SiO2 require a different treatment with respect to common planar Si/SiO2 devices. In this PhD Thesis, we have shown that, for small QD sizes, the particle-in-a-box model cannot describe accurately DOS and band offset, because of the large contribution of interface states. In this regime an ab initio approach is necessary to take into account the atomistic detail of the interface between the Si QD and the first shell of O atoms surrounding it. Regarding the electronic transport in Si QDs, a correlation between electron (hole) barrier value and electron (hole) current was found, obtaining larger current values for smaller energy barriers. Specifically, a contrary dependence on Si QD size and amorphization level is found for electron and hole current. On one hand, electron (hole) current is higher for large (small) Si QDs, and, on the other hand, it is enhanced for amorphous (crystalline) systems. On the effects of doping Finally, the DFT-TH technique was used to study the influence of impurity atoms, B for p-doping and P for n-doping, in embedded Si QDs. It is remarkable that this study is one of the first attempts to model with DFT the inclusion of impurity atoms in embedded Si QDs, after the wide knowledge of ab initio works on free-standing Si QDs of the last years. The principal features that we found were: • The impurity positions with lower formation energy are inside the dot for P-doping (P-dot) and at the interface for B-doping (B-int). • Relation between shift of the Fermi energy and improvement of conductivity in doped systems (due to the change in energy barriers). • Improvement of the conductivity for the most energetically favorable position of P-doping (P-dot) but not for the position of B-doping (B-int). • Change in the conductivity between doped and undoped is higher for P-doping than B-doping for a given Si QD size and impurity position, and decreases with QD size for a given specie and impurity position. Bibliography [1] M. Segal. Material history: Learning from silicon. Nature, 483, S43 (2012). [2] H. J. Leamy and J. H.Wernick. Semiconductor silicon: the extraordinary made ordinary. MRS Bulletin, 22, 47 (1997). [3] X. Hao, E.-C. Cho, G. Scardera, Y. Shen, E. Bellet-Amalric, D. Bellet, G. Conibeer and M. Green. Phosphorus-doped silicon quantum dots for all-silicon quantum dot tandem solar cells. Sol. Energ. Mat. Sol. C, 93, 1524 (2009). [4] J. P. Proot, C. Delerue and G. Allan. Electronic structure and optical properties of silicon crystallites: Application to porous silicon. Appl. Phys. Lett., 61, 1948 (1992). [5] Y. Berencen, J. M. Ramirez, O. Jambois, C. Dominguez, J. A. Rodriguez and B. Garrido. Correlation between charge transport and electrolumi-nescence properties of Si-rich oxide/nitride/oxide-based light emitting capacitors. J. Appl. Phys., 112, 033114 (2012). [6] G. Conibeer, I. Perez-Wur, X. Hao, D. Di and D. Lin. Si solid-state quantum dot-based materials for tandem solar cells. Nanoscale Res. Lett., 7, 193 (2012). [7] L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzo and F. Priolo. Optical gain in silicon nanocrystals. Nature, 408, 440 (2000). [8] M. Luppi and S. Ossicini. Ab initio study on oxidized silicon clusters and silicon nanocrystals embedded in SiO2: Beyond the quantum confinement effect. Phys. Rev. B, 71, 035340 (2005). [9] R. Guerra, I. Marri, R. Magri, L. Martin-Samos, O. Pulci, E. Degoli and S. Ossicini. Silicon nanocrystallites in a SiO2 matrix: Role of disorder and size. Phys. Rev. B, 79, 155320 (2009). [10] R. Guerra, E. Degoli and S. Ossicini. Size, oxidation, and strain in small Si/SiO2 nanocrystals. Phys. Rev. B, 80, 155332 (2009). [11] R. Guerra and S. Ossicini. High luminescence in small Si/SiO2 nanocrystals: A theoretical study. Phys. Rev. B, 81, 245307 (2010). [12] R. Guerra, E. Degoli, M. Marsili, O. Pulci and S. Ossicini. Local-fields and disorder effects in free-standing and embedded Si nanocrystallites. Phys. Status Solidi B, 247, 2113 (2010). [13] R. Guerra, M. Marsili, O. Pulci and S. Ossicini. Local-field effects in silicon nanoclusters. Phys. Rev. B, 84, 075342 (2011). [14] M. Govoni, I. Marri and S. Ossicini. Auger recombination in Si and GaAs semiconductors: Ab initio results. Phys. Rev. B, 84, 075215 (2011).
Les nanopartícules de silici (silicon quantum dots, Si QDs, en anglès) són interessants materials que es proposen com a candidats per a la tercera generació de cel•les solars. Degut al confinement quàntic de les càrregues elèctriques dins del QD, el valor de l'energia de gap del material augmenta a mesura que la mida del QD disminueix, donant valors més gran que el Si bulk i fent que els QDs de Si siguin uns bons candidats per a dispositius amb valors de l'energia de gap modificables. En aquesta Tesi Doctoral proposem un marc teòric per estudiar el transport electrònic en nanoestructures aportant una descripció ab initio dels estats electrònics, basant-se en l'ús conjunt de dues tècniques: la Teoria del Funcional de la Densitat (Density Funcional Theory, DFT, en anglès) pel modelatge de la densitat d'estats del dispositiu i el Hamiltonià de Transferència (Transfer Hamiltonian, TH, en anglès) per la descripció del transport electrònic. Les principals conclusions d’aquesta Tesi Doctoral són: • En el cas de QDs de Si de pocs nanometres dins de matrius dielèctriques, la interfície fortament no-planar entre el Si i el SiO2 requereix un tractament diferent de la communtment utilitzada en l'heterojunció planar Si/SiO2. En aquesta Tesi Doctoral hem observat que, per Si QDs de mida petita, el model de partícula-dins-d'una-caixa no descriu les densitats d'estats i les barrers de potencial d'una forma acurada. Això és degut a què aquest model no recull l'efecte de la interfície, propietat que sembla ser essencial en la mida nanomètrica. • Respecte el transport electrònic en QDs de Si, Per una banda, el corrent d'electrons (forats) és més gran per a QDs DE Si de mida més gran (petita), i, per l'altra banda, el corrent d'electrons (forats) és més important per a sistemes amorfs (cristal•lins). • Les principals influències de dopatge tipus p (amb B) i tipus n (amb P) és (1) les configuracions de més baixa energia de formació són dins del QD quan dopem amb P, i a la interfície entre el QD i la primera capa d'oxígens quan dopem amb B, i (2) hi ha un millora en la conductivitat per la posició energètica més favorable pel dopatge amb P però no per la posició pel dopatge amb B.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Taha, Hatem. "Optoelectronic and mechanical properties of Sol-Gel derived Multi-Layer ITO thin films improved by elemental doping, Carbon Nanotubes and Nanoparticles." Thesis, Taha, Hatem (2018) Optoelectronic and mechanical properties of Sol-Gel derived Multi-Layer ITO thin films improved by elemental doping, Carbon Nanotubes and Nanoparticles. PhD thesis, Murdoch University, 2018. https://researchrepository.murdoch.edu.au/id/eprint/41359/.

Повний текст джерела
Анотація:
Transparent conductors (TCs) are an essential ingredient in numerous new applications which are emerging in the 21st century including high efficiency solar cells, rigid and tactile displays, light emitting diodes, photonics for communications and computing, energy efficient and smart windows and gas sensors, since they allow efficient light transmission while electric signals are applied or collected. So far, indium tin oxide (ITO) reflects the best trade-off between low electrical resistivity and high optical transparency, making it the first candidate as transparent conductor for most optoelectronics technologies despite its drawbacks such as expensiveness and poor mechanical characteristics. However, due to the intricacy of ITO, the coating characteristics strongly depend on the deposition conditions. Despite many developments in ITO-based transparent conductive coatings; these coating are yet to be commercialized for optoelectronic applications. Many challenges still exist in terms of the fabrication of high quality ITO-based transparent conductive coatings, in order to meet the criteria of better, cost-effectiveness and environmentally-friendly characteristics, especially in the context of transparent conductive electrodes. In this study, the deposition conditions along with incorporating thin ITO films with transition metals (Ti and Ag), carbon nanotubes (e.g., SWCNTs) and metals nanoparticles (Ag and Au nanoparticles) were optimized to synthesize high quality ITO based TCs via a facile, environmentally friendly and cost-effective sol-gel spin-coating method. ITO thin films were fabricated with different Ti and Ag doping concentration, different annealing temperature and different geometry such as single layer, bi-layer and multi-layer. The structural, surface morphology and composition, electrical, optical and mechanical properties were characterized using a wide range of complementary techniques, namely, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), electron dispersive X-ray (EDX), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), four point probes and Hall Effect, UV-Vis, nanoindentation and FEM modeling. All the fabricated ITO-based TCs showed a nano-sized grain-like morphology forming a homogenous surface structure. XRD results demonstrated a relatively good crystallinity of ITO-based thin film coatings after applying a suitable heat treatment. XPS and EDX analysis corroborated the existence of the main elements for each case of thin ITO coating. In the case of pure ITO and (Ti- and Ag-) doped ITO thin films with a thickness of 350 ±5 nm and 500 C annealing temperature, the highest optical transparency was determined to be 92% for pure ITO, 4 at.% Ti-doped ITO and 2 at.% Ag-doped ITO thin films, while the lowest electrical resistivity of 1.6×10-4 Ωcm was achieved for the ITO film prepared with 4 at.% Ti content. However, these thin films exhibit mechanical characteristics namely hardness and Young’s modulus in the range of (5.3 – 6.8) GPa and (128 – 148) GPa, respectively. In order to enhance their mechanical characteristics while maintaining their optoelectronic properties, SWCNTs were incorporated with ITO with different films thicknesses (i.e. 150, 210, 250 and 320) ± 5 nm, and the characterizations were carried out with respect to the film thickness. The hardness and Young’s modulus for SWCNTs/ITO thin films were in the range of (22 – 28) GPa and (254 – 306) GPa, respectively. The lowest electrical resistivity of 4.6×10-4 (Ω cm) was achieved for the thicker film, while the highest transmittance of 91.5 % was obtained from the thinner film. Obtained results show a significant improvement in the mechanical properties of SWCNT/ITO thin films compared with their counterparts of pure and doped ITO thin films, along with distinctively good optoelectronic properties. To minimize the consumption of indium, ITO thin films were combined with (very thin metal-, metal nanoparticles- and metal oxide-) layers in bi-layered and tri-layered geometries of (AuI), ((Au)nI), ((Ag)nI) and ((AgO)I), and (IAuI), (I(Au)nI), (I(Ag)nI) and (I(AgO)I), respectively, with films thicknesses (~ 130 ± 5 nm). For these coating systems, the lowest electrical resistivity 1.2×10-4 Ωcm was for ITO/Au/ITO thin film, while the highest optical transparency ~ 91.5% was for ITO/AgO/ITO thin film. Two thin films with the configurations of ITO\AgO\ITO and AgO\ITO for tri-layer and bi-layer coatings, respectively with the best optoelectronic performance were nominated as transparent conductive electrodes in designing inverted organic solar cells, and compared with pure ITO thin films. Power conversion efficiencies of 4.9%, 4.2% and 3.8% were found for ITO/AgO/ITO, AgO/ITO and ITO thin film coatings, respectively. To conclude, sol-gel spin-coating derived ITO based transparent conductive coatings present high quality crystal structure, distinctively good optoelectronic properties as well as reasonably mechanical characteristics, and comparable with those achieved from other sophisticated fabrication techniques such as sputtering, pulsed laser deposition, electron beam evaporation etc. All these attributes render the ITO-based coatings promising as transparent conductors in many industrial and technological applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Aghili, Yajadda Mir Massoud. "An investigation on the electrical and optical properties of thin films of gold nanoislands." Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/18963.

Повний текст джерела
Анотація:
In this thesis the electrical conduction mechanism and some of the optical properties of thin films (TFs) of gold nanoislands (GNIs) are studied to utilize them for applications in nanoelectronics, sensors, solar cells, and plasmonics. In a regular array of GNIs where NIs have an identical size and tunnel gap, the tunnel current can be calculated by using a relatively simple formula (provided in chapter one). In discontinuous GTFs, there are distributions of GNI sizes and tunnel gaps. Therefore, calculating the tunnel current in such systems at low and high applied voltages over a wide temperature range will be challenging. Here, we introduce a conduction percolation model where uncorrelated broad probability distributions for both the tunnel junction gaps and the Coulomb blockade energies are assumed. An excellent agreement is achieved between model calculations and experimental results at low and high applied voltages over a wide temperature range (2-300 K). In discontinuous GTFs where the Coulomb blockade energies become significantly small such that the tunnel resistance is not much higher than the GNI resistance, the metallic behaviour of GNIs and the thermal expansion of the substrate can play an important role in the temperature dependent resistance of discontinuous GTFs. In this thesis, the temperature dependence of the electrical resistance of discontinuous GTFs at temperatures between 2 K and 300 K is studied experimentally and by model calculations. We show that the tunnel junctions and the Coulomb blockade energies are important at low temperatures and that the thermal expansion of the substrate and the resistance of the GNIs affect the resistance at high temperatures. We obtain a simple expression for the temperature at which the resistance changes from non-metal-like behaviour into metal-like behaviour. iv To show an application of the discontinuous GTFs in nanoelectronics, we measure their resistances over a temperature range of 10-300 K. One of the samples essentially shows a temperature independent resistance (~ 2% resistance variation over a temperature range of 10-300 K). We find that such behaviour corresponds to the minimized Coulomb blockade energy (approximately 0.3 meV). This is achieved by reducing the nearest neighbour distance and increasing the size of the GNIs. It is shown that the temperature independent resistor operates in a regime where the thermally activated electron tunnelling is compensated by the metallic behaviour of the GNIs. Generally, z-scan measurements can be used to demonstrate the nonlinear light absorption in gold, but in TFs, scattering of light from the surface due to its roughness can introduce inaccuracy in measuring absorption nonlinearity. We overcome this problem by developing an experimental technique where a GTF is irradiated by a Nd-YAG pulsed laser at the wavelength of 532 nm in near resonance with the d-band transition of gold. The temperature increase in the GTF is estimated for different light intensities by electrical measurement. Then, the temperature increase is calculated by using a 1D heat transport equation by assuming a constant absorbance for the GTF at the low laser intensities. The comparison between results of the calculations revealed the nonlinear absorption in the GTF. We employed this deviation from the linear behaviour to determine the nonlinear absorption coefficient. It is shown that the nonlinear absorption is due to smearing of the Fermi distribution, and scattering of the light from the surface dose not play a major role in the temperature increase of the GTF. To demonstrate an application of discontinuous GTFs in opto-electronics, we use a discontinuous GTF to rectify an oscillating tunnel current at ultra high frequency (optical frequency). This is done by irradiating the GTF with a Nd-YAG pulsed laser at the v wavelength of 532 nm while a high DC voltage is applied to the sample. The tunnel current is found to be strongly enhanced by partial rectification of the plasmon-induced AC tunnel currents flowing between adjacent GNIs. In addition, our technique shows that the enhancement is due to the plasmon oscillation and the thermal effects seem not to contribute to the tunnel current enhancement.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ginger, David Stanton. "Optoelectronic properties of CdSe nanocrystals." Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621187.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Beliatis, Michail. "Laser fabrication of plasmonic metal nanoparticles for optoelectronic devices." Thesis, University of Surrey, 2011. http://epubs.surrey.ac.uk/761383/.

Повний текст джерела
Анотація:
Metal nanoparticles (MNP) are widely researched for the fabrication of novel low cost and more energy efficient optoelectronic devices. MNPs, which exhibit surface plasmon resonance (SPR), can be incorporated into thin film photovoltaic structures and as well as into substrates for enhancing the Raman spectroscopy performance. Recent demonstration of devices with plasmonic structures has limited utility due to the need for techniques of ordered MNPs for large area fabrication that are not currently available. This work examines the suitability of laser annealing for the fabrication of metal nanoparticles in large area optoelectronic devices, as well as the potential for tuning their optical properties precisely within the structure. Gold (Au), silver (Ag) and AuAg alloy particles were fabricated with laser annealing and fully characterized. Morphology characterization of the metal nanopartlcle films (MNFs) with scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed the control over the size by adjusting initial film thickness· and laser fluence. Optical characterization with UV-VIS spectrometry demonstrated that SPR of MNFs can be tuned by adjusting the alloy composition, the dielectric constant of surrounding medium, and the size distribution. This experimental result was confirmed by simulations. Direct incorporation of large well distributed Au nanoparticles into solar cells demonstrated enhanced performance. Dense MNFs with small particles decreased the photovoltaic efficiency. By contrast, in the case of Raman, small alloy particles with SPR wavelength close to the pump wavelength demonstrated the best enhancement. High resolution metal nanoparticle tracks written by the laser demonstrated gas sensing with good sensory capability. However, their high resistivity imposes difficulties in measurements. We conclude that with suitable optimisations the laser annealing technique studied here could be utilised for the fabrication of metal nanoparticles in large area optoelectronics devices. We demonstrate a number of such applications including solar cells and gas sensors and study the effects of metal nanoparticles within these devices in this thesis.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Figueiredo, José Maria Longras. "Optoelectronic properties of resonant tunnelling diodes." Doctoral thesis, Universidade do Porto. Reitoria, 2000. http://hdl.handle.net/10216/14347.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Casey, Abby. "Optoelectronic properties of new conjugated materials." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/46164.

Повний текст джерела
Анотація:
Next-generation electronic devices which are cheap, lightweight and flexible could be realised through the use of solution processable organic polymer and small molecule semiconductors. Unlike inorganic semiconductors such as silicon, soluble organic semiconductors could be processed using traditional high through-put printing techniques such as roll-to-roll processing and ink-jet printing, which would dramatically reduce manufacturing costs. Whilst organic semiconductors are not expected to be as high performance as inorganic semiconductors, improvements in performance are still required before commercialisation is possible. One way to help improve performance is to exploit the chemical versatility of organic materials. Many different structures can be synthesised through chemical modification, allowing the optoelectronic properties (such as the optical band gap and energy levels) and physical properties (such as solid state structure) of the material to be tuned. Materials can therefore be chemically designed to optimise their performance in organic electronic devices. This work is focused on exploring the relationship between chemical structure, material properties and device performance, through the design and synthesis of new materials for organic field-effect transistors (OFET) and organic photovoltaics (OPV). The majority of the new materials synthesised in this thesis are new donor-acceptor polymers (Chapters 2-6), in which an electron donating monomer and electron accepting monomer are co-polymerised. Whilst there is a vast wealth of different donor monomer structures available, there has been less focus on the synthesis of new electron accepting monomers. In this work the common electron acceptor monomer 2,1,3-benzothiadiazole (BT) is chemically modified to either increase the solubility (Chapter 2) or increase the electron accepting strength (Chapters 3 and 4). Increasing the strength of the electron accepting unit in donor-acceptor polymers was found to induce N-type (electron conducting) behaviour in OFET devices (Chapter 3) or improve OPV performance by reducing the optical band gap and increasing light absorption (Chapter 4). Power conversion efficiencies of ~6.5% in OPV devices were achieved. In chapter 6 a novel BT based acceptor monomer is designed to maximise polymer backbone planarity which resulted in promising hole mobilities of up to 0.5 cm2/Vs when tested in OFET devices. In Chapter 5 the strength of the common electron accepting unit benzo[d][1,2,3]thiadiazole (BTz) is also increased through chemical modification. Similarly to Chapter 4, we find that increasing the strength of the electron accepting unit of the donor-acceptor polymer improves the OPV performance through increased light absorption, resulting in efficiencies of ~6.5% in OPV devices. Finally in Chapter 7, new electron rich conjugated small molecules are synthesised and the optoelectronic properties investigated.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Figueiredo, José Maria Longras. "Optoelectronic properties of resonant tunnelling diodes." Tese, Universidade do Porto. Reitoria, 2000. http://hdl.handle.net/10216/14347.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Optoelectronic properties of nanoparticles"

1

service), SpringerLink (Online, ed. Self-Organized Arrays of Gold Nanoparticles: Morphology and Plasmonic Properties. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Trügler, Andreas. Optical Properties of Metallic Nanoparticles. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25074-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

P, Gubin S., ed. Magnetic nanoparticles. Weinheim: Wiley-VCH, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zarrabi, Nasim. Optoelectronic Properties of Organic Semiconductors. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93162-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Roundhill, D. Max, and John P. Fackler, eds. Optoelectronic Properties of Inorganic Compounds. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-6101-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Roundhill, D. Max. Optoelectronic Properties of Inorganic Compounds. Boston, MA: Springer US, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

M, Roundhill D., and Fackler John P, eds. Optoelectronic properties of inorganic compounds. New York: Plenum Press, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

A, Jenekhe Samson, Wynne Kenneth J. 1940-, Pacific Polymer Federation, and Pacific Polymer Conference (4th : 1995 : Kauai, Hawaii), eds. Photonic and optoelectronic polymers. Washington, DC: American Chemical Society, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Acklin, Beate. Magnetic nanoparticles: Properties, synthesis, and applications. Hauppauge, N.Y: Nova Science Publisher's, Inc., 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

E, Kestell Aiden, and DeLorey Gabriel T, eds. Nanoparticles: Properties, classification, characterization, and fabrication. Hauppauge, N.Y: Nova Science Publishers, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Optoelectronic properties of nanoparticles"

1

Gawad, Shady, Ana Valero, Thomas Braschler, David Holmes, Philippe Renaud, Vanni Lughi, Tomasz Stapinski, et al. "Optoelectronic Properties." In Encyclopedia of Nanotechnology, 2000. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100615.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Banin, Uri, Oded Millo, Stefanie Dehnen, Andreas Eichhöfer, John F. Corrigan, Olaf Fuhr, Dieter Fenske, Kerstin Blech, Melanie Homberger, and Ulrich Simon. "Properties." In Nanoparticles, 371–454. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631544.ch5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pogorelov, V. Ye, V. P. Bukalo, and Yu A. Astashkin. "Molecular Spectroscopy of Nanoparticles." In Frontiers of Nano-Optoelectronic Systems, 421–29. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-010-0890-7_28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gutsche, Christoph, Ingo Regolin, Andrey Lysov, Kai Blekker, Quoc-Thai Do, Werner Prost, and Franz-Josef Tegude. "III/V Nanowires for Electronic and Optoelectronic Applications." In Nanoparticles from the Gasphase, 357–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28546-2_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Koshida, N. "Optoelectronic Properties of Porous Silicon." In Optical Properties of Low Dimensional Silicon Structures, 133–38. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2092-0_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Han, Sang-Wook. "Microstructural Properties of Nanostructures." In Semiconductor Nanostructures for Optoelectronic Devices, 197–223. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22480-5_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Facibeni, Anna. "Antibacterial Properties of Silver Nanoparticles." In Silver Nanoparticles, 197–225. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003278955-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gray, Gary M., and Christopher M. Lawson. "Structure-Property Relationships in Transition Metal-Organic Third-Order Nonlinear Optical Materials." In Optoelectronic Properties of Inorganic Compounds, 1–27. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-6101-6_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kershaw, Stephen V. "Metallo-Organic Materials for Optical Telecommunications." In Optoelectronic Properties of Inorganic Compounds, 349–406. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-6101-6_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sibley, Scott, Mark E. Thompson, Paul E. Burrows, and Stephen R. Forrest. "Electroluminescence in Molecular Materials." In Optoelectronic Properties of Inorganic Compounds, 29–54. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-6101-6_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Optoelectronic properties of nanoparticles"

1

Jiang, Rui, Zhimou Xu, and Xiaopeng Qu. "The synthesis and the properties of the ZnS nanoparticles." In Optoelectronic Devices and Integration. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/oedi.2018.ot4a.29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kumari, Priyanka, Susruta Samanta, Kamakhya Prakash Misra, Anupam Sharma, Nilanjan Halder, and Saikat Chattopadhyay. "Optoelectronic properties of spherical ZnS nanoparticles synthesized by sol-gel method." In PROCEEDINGS OF THE 11TH INTERNATIONAL ADVANCES IN APPLIED PHYSICS AND MATERIALS SCIENCE CONGRESS & EXHIBITION. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0139067.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shin, Dong C., Myung S. Kim, Yong T. O, Sang J. Hong, and Beom G. Lee. "Optical properties of a SiO2photonic crystal layer fabricated by seeded growth of spherical nanoparticles." In Integrated Optoelectronic Devices 2005. SPIE, 2005. http://dx.doi.org/10.1117/12.588069.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kesavan, Arul Varman, Arun D. Rao, and Praveen C. Ramamurthy. "Polydispersed Metal Nanoparticles at the Interface for Improved Optoelectronic Properties in Perovskite Photovoltaics." In 2018 4th IEEE International Conference on Emerging Electronics (ICEE). IEEE, 2018. http://dx.doi.org/10.1109/icee44586.2018.8937886.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Xavier, Sheena, M. K. Jiji, Smitha Thankachan, and E. M. Mohammed. "Effect of sintering temperature on the structural and electrical properties of cobalt ferrite nanoparticles." In OPTOELECTRONIC MATERIALS AND THIN FILMS: OMTAT 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4861992.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fantoni, Alessandro, Miguel Fernandes, Yuri Vygranenko, Manuela Vieira, Elisabete Alegria, Ana Ribeiro, Duarte Prazeres, and Rui P. Silva. "Optical properties of metal nanoparticles embedded in amorphous silicon analysed using discrete dipole approximation." In Physics and Simulation of Optoelectronic Devices XXVI, edited by Marek Osiński, Yasuhiko Arakawa, and Bernd Witzigmann. SPIE, 2018. http://dx.doi.org/10.1117/12.2289983.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yang, Qiguang, Jaetae Seo, Wan-Joong Kim, SungSoo Jung, Bagher Tabibi, Justin Vazquez, Jasmine Austin, and Doyle Temple. "Optical properties of morphology-controlled gold nanoparticles." In Photonics and Optoelectronics Meetings, edited by Peixiang Lu, Katsumi Midorikawa, and Bernd Wilhelmi. SPIE, 2008. http://dx.doi.org/10.1117/12.822839.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Vindhya, P. S., T. Jeyasingh, and V. T. Kavitha. "Dielectric properties of zinc oxide nanoparticles using annona muricata leaf." In THE 3RD INTERNATIONAL CONFERENCE ON OPTOELECTRONIC AND NANO MATERIALS FOR ADVANCED TECHNOLOGY (icONMAT 2019). Author(s), 2019. http://dx.doi.org/10.1063/1.5093888.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Trejo-Durán, M., D. Cornejo-Monroy, E. Alvarado-Méndez, A. Olivares-Vargas, J. M. Estudillo-Ayala, and V. Castaño-Meneses. "Nonlinear optical properties of Au nanoparticles in solution." In SPIE Optics + Optoelectronics. SPIE, 2013. http://dx.doi.org/10.1117/12.2017595.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Farva, Umme, Tam Nguyen Truong Nguyen, and Chinho Park. "Optoelectronic properties of CdSe nanoparticles and their application to bulk hetero-junction solar cells." In 2009 34th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2009. http://dx.doi.org/10.1109/pvsc.2009.5411547.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Optoelectronic properties of nanoparticles"

1

Zhang, Mingjun. Mechanics of the Adhesive Properties of Ivy Nanoparticles. Fort Belvoir, VA: Defense Technical Information Center, November 2013. http://dx.doi.org/10.21236/ada606589.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Aikens, Christine M. Structure and Optical Properties of Noble Metal Nanoparticles. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada575706.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Aikens, Christine M. Structure and Optical Properties of Noble Metal Nanoparticles. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada575836.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hsieh, Timothy H., and Brian M. Wong. Optoelectronic and excitonic properties of oligoacenes and one-dimensional nanostructures. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/1002094.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Radousky, H., M. McElfresh, A. Berkowitz, and G. P. Carman. Exchange-Coupling in Magnetic Nanoparticles to Enhance Magnetostrictive Properties. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/15013323.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

DiSalvo, Francis J. Synthesis, Characterization and Properties of Nanoparticles of Intermetallic Compounds. Office of Scientific and Technical Information (OSTI), March 2015. http://dx.doi.org/10.2172/1172321.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Polsky, Ronen, Ryan W. Davis, Dulce C. Arango, Susan Marie Brozik, and David Roger Wheeler. Advanced optical measurements for characterizing photophysical properties of single nanoparticles. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/972888.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Leonard, Francois Leonard. Temperature dependence of the electronic and optoelectronic properties of carbon nanotube devices. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1113878.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Karaba, Parker. The Effect of pH on the Photoluminescent Properties of Silicon Nanoparticles. Portland State University Library, January 2016. http://dx.doi.org/10.15760/honors.326.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dolomatov, M. Yu, R. Z. Bakhtizin, S. A. Shutkova, K. F. Latyipov, Z. Z. Ishniyazov, N. H. Paymurzina, and A. M. Petrov. Structure and electrophysical properties of materials based on nanoparticles of oil asphaltenes. PHYSICAL-TECHNICAL SOCIETY OF KAZAKHSTAN, December 2017. http://dx.doi.org/10.29317/ejpfm.2017010208.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії