Добірка наукової літератури з теми "Optoacoustic Imaging"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Optoacoustic Imaging".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Optoacoustic Imaging"

1

ESENALIEV, RINAT O. "BIOMEDICAL OPTOACOUSTICS." Journal of Innovative Optical Health Sciences 04, no. 01 (January 2011): 39–44. http://dx.doi.org/10.1142/s1793545811001253.

Повний текст джерела
Анотація:
Optoacoustics is a promising modality for biomedical imaging, sensing, and monitoring with high resolution and contrast. In this paper, we present an overview of our studies for the last two decades on optoacoustic effects in tissues and imaging capabilities of the optoacoustic technique. In our earlier optoacoustic works we studied laser ablation of tissues and tissue-like media and proposed to use optoacoustics for imaging in tissues. In mid-90s we demonstrated detection of optoacoustic signals from tissues at depths of up to several centimeters, well deeper than the optical diffusion limit. We then obtained optoacoustic images of tissues both in vitro and in vivo. In late 90s we studied optoacoustic monitoring of thermotherapy: hyperthermia, coagulation, and freezing. Then we proposed and studied optoacoustic monitoring of blood oxygenation, hemoglobin concentration, and other physiologic parameters.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Roberts, Sheryl, Chrysafis Andreou, Crystal Choi, Patrick Donabedian, Madhumitha Jayaraman, Edwin C. Pratt, Jun Tang, et al. "Sonophore-enhanced nanoemulsions for optoacoustic imaging of cancer." Chemical Science 9, no. 25 (2018): 5646–57. http://dx.doi.org/10.1039/c8sc01706a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Laramie, Matt, Mary Smith, Fahad Marmarchi, Lacey McNally, and Maged Henary. "Small Molecule Optoacoustic Contrast Agents: An Unexplored Avenue for Enhancing In Vivo Imaging." Molecules 23, no. 11 (October 25, 2018): 2766. http://dx.doi.org/10.3390/molecules23112766.

Повний текст джерела
Анотація:
Almost every variety of medical imaging technique relies heavily on exogenous contrast agents to generate high-resolution images of biological structures. Organic small molecule contrast agents, in particular, are well suited for biomedical imaging applications due to their favorable biocompatibility and amenability to structural modification. PET/SPECT, MRI, and fluorescence imaging all have a large host of small molecule contrast agents developed for them, and there exists an academic understanding of how these compounds can be developed. Optoacoustic imaging is a relatively newer imaging technique and, as such, lacks well-established small molecule contrast agents; many of the contrast agents used are the same ones which have found use in fluorescence imaging applications. Many commonly-used fluorescent dyes have found successful application in optoacoustic imaging, but others generate no detectable signal. Moreover, the structural features that either enable a molecule to generate a detectable optoacoustic signal or prevent it from doing so are poorly understood, so design of new contrast agents lacks direction. This review aims to compile the small molecule optoacoustic contrast agents that have been successfully employed in the literature to bridge the information gap between molecular design and optoacoustic signal generation. The information contained within will help to provide direction for the future synthesis of optoacoustic contrast agents.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Regensburger, Adrian P., Emma Brown, Gerhard Krönke, Maximilian J. Waldner, and Ferdinand Knieling. "Optoacoustic Imaging in Inflammation." Biomedicines 9, no. 5 (April 28, 2021): 483. http://dx.doi.org/10.3390/biomedicines9050483.

Повний текст джерела
Анотація:
Optoacoustic or photoacoustic imaging (OAI/PAI) is a technology which enables non-invasive visualization of laser-illuminated tissue by the detection of acoustic signals. The combination of “light in” and “sound out” offers unprecedented scalability with a high penetration depth and resolution. The wide range of biomedical applications makes this technology a versatile tool for preclinical and clinical research. Particularly when imaging inflammation, the technology offers advantages over current clinical methods to diagnose, stage, and monitor physiological and pathophysiological processes. This review discusses the clinical perspective of using OAI in the context of imaging inflammation as well as in current and emerging translational applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bell, Gavin, Ghayathri Balasundaram, Amalina Binte Ebrahim Attia, Francesca Mandino, Malini Olivo, and Ivan P. Parkin. "Functionalised iron oxide nanoparticles for multimodal optoacoustic and magnetic resonance imaging." Journal of Materials Chemistry B 7, no. 13 (2019): 2212–19. http://dx.doi.org/10.1039/c8tb02299b.

Повний текст джерела
Анотація:
The synthesis of iron oxide (Fe3O4) nanoparticles conjugated with an optoacoustic molecule to give multimodal imaging of magnetic resonance imaging (MRI) and multispectral optoacoustic tomography (MSOT).
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tzoumas, Stratis, and Vasilis Ntziachristos. "Spectral unmixing techniques for optoacoustic imaging of tissue pathophysiology." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2107 (October 16, 2017): 20170262. http://dx.doi.org/10.1098/rsta.2017.0262.

Повний текст джерела
Анотація:
A key feature of optoacoustic imaging is the ability to illuminate tissue at multiple wavelengths and therefore record images with a spectral dimension. While optoacoustic images at single wavelengths reveal morphological features, in analogy to ultrasound imaging or X-ray imaging, spectral imaging concedes sensing of intrinsic chromophores and externally administered agents that can reveal physiological, cellular and subcellular functions. Nevertheless, identification of spectral moieties within images obtained at multiple wavelengths requires spectral unmixing techniques, which present a unique mathematical problem given the three-dimensional nature of the optoacoustic images. Herein we discuss progress with spectral unmixing techniques developed for multispectral optoacoustic tomography. We explain how different techniques are required for accurate sensing of intrinsic tissue chromophores such as oxygenated and deoxygenated haemoglobin versus extrinsically administered photo-absorbing agents and nanoparticles. Finally, we review recent developments that allow accurate quantification of blood oxygen saturation (sO 2 ) by transforming and solving the sO 2 estimation problem from the spatial to the spectral domain. This article is part of the themed issue ‘Challenges for chemistry in molecular imaging’.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nunes, Antonio, Vikram J. Pansare, Nicolas Beziere, Argiris Kolokithas Ntoukas, Josefine Reber, Matthew Bruzek, John Anthony, Robert K. Prud’homme, and Vasilis Ntziachristos. "Quenched hexacene optoacoustic nanoparticles." Journal of Materials Chemistry B 6, no. 1 (2018): 44–55. http://dx.doi.org/10.1039/c7tb02633a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Vogt, Nina. "Optoacoustic imaging of neural activity." Nature Methods 16, no. 5 (April 30, 2019): 362. http://dx.doi.org/10.1038/s41592-019-0415-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mishra, Kanuj, Juan Pablo Fuenzalida-Werner, Vasilis Ntziachristos, and Andre C. Stiel. "Photocontrollable Proteins for Optoacoustic Imaging." Analytical Chemistry 91, no. 9 (April 2019): 5470–77. http://dx.doi.org/10.1021/acs.analchem.9b01048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Butler, Reni, Philip T. Lavin, F. Lee Tucker, Lora D. Barke, Marcela Böhm-Vélez, Stamatia Destounis, Stephen R. Grobmyer, et al. "Optoacoustic Breast Imaging: Imaging-Pathology Correlation of Optoacoustic Features in Benign and Malignant Breast Masses." American Journal of Roentgenology 211, no. 5 (November 2018): 1155–70. http://dx.doi.org/10.2214/ajr.17.18435.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Optoacoustic Imaging"

1

Tomaszewski, Michal Robert. "Functional imaging of cancer using Optoacoustic Tomography." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/284931.

Повний текст джерела
Анотація:
Poor oxygenation of solid tumours has been linked with resistance to chemo- and radio-therapy and poor patient outcomes. Measuring the functional status of the tumour vasculature, including blood flow fluctuations and changes in oxygenation is important in cancer staging and therapy monitoring. A robust method is needed for clinical non-invasive measurement of the oxygen supply and demand in tumours. Current clinically approved imaging modalities suffer high cost, long procedure times and limited spatio-temporal resolution. Optoacoustic tomography (OT) is an emerging clinical imaging modality that can provide static images of endogenous haemoglobin concentration and oxygenation. In this work, an integrated framework for quantitative analysis of functional imaging using OT is developed and applied in vivo with preclinical cancer models. Oxygen Enhanced (OE)-OT is established here to provide insight into tumour vascular function and oxygen availability in the tissue. Tracking oxygenation dynamics using OE-OT reveals significant differences between two prostate cancer models in nude mice with markedly different vascular function (PC3 & LNCaP), which appear identical in static OT. OE-OT metrics are shown to be highly repeatable and correlate directly on a per-tumour basis to tumour vascular maturity, hypoxia and necrosis, assessed ex vivo. Dynamic Contrast Enhanced (DCE) OT demonstrates the relationship between OE-OT response and tumour perfusion in vivo. Finally, the possibility of using OT data acquired at longer wavelengths to report on tumour water and lipid content is investigated, with a view to future providing intrinsically co-registered imaging of tumour oxygenation and cellular necrosis. These findings indicate that OE-OT holds potential for application in prostate cancer patients, to improve delineation of aggressive and indolent disease, while combined with DCE-OT, it may offer significant advantage for localised imaging of tumour response to vascular targeted therapies. Further work is needed to establish whether OT can provide a new method to detect tumour necrosis in vivo.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gertsch, Andreas Gustav. "Contrast enhancement in optoacoustic imaging using nano particles /." Bern : [s.n.], 2007. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Abeyakoon, Oshaani Vayanthimala. "Clinical translation of optoacoustic imaging in breast cancer." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/276973.

Повний текст джерела
Анотація:
Optoacoustic (OA) imaging is an emerging low-cost hybrid imaging investigation/technique currently in clinical feasibility studies for breast cancer diagnosis and staging. The technique applies pulsed light to the tissue of interest where molecules absorb the light photons and generate acoustic pressure waves. The resulting acoustic responses are detected using ultrasound transducers and converted into images. Image contrast within a pixel is dependent on the relative concentration and absorption characteristics (i.e. spectrum) of the chromophores within the illuminated tissue. Thus, tissue responses from illumination using multiple wavelengths, chosen to reflect the differential absorption of oxy-/deoxy- and total haemoglobin, can be measured. In turn, these signals can be regarded as surrogate measures of tissue hypoxia and neoangiogenesis, hallmarks of cancer associated with adverse outcomes. The aim of this PhD was to translate optoacoustic imaging into the breast clinic to try and fulfil some of the unmet clinical needs in breast cancer imaging using the imaging biomarker roadmap by O'Connor et al. Translation of this new technology to the clinical environment required extensive preparatory work, including the procurement and installation of a scanner prototype, liaison with UK regulatory bodies to secure ethical and MHRA approval, as well as several technical developments (performed during the course of the PhD) to make the technology suitable for breast cancer imaging. The first chapter of the thesis reviews the unmet needs of breast cancer imaging, being followed by a summary of recent techniques and technologies that may potentially fulfil gaps in knowledge and address some of the specific diagnostic challenges in breast cancer imaging. The capabilities of optoacoustic imaging are then discussed in the context of this evolving landscape of new imaging techniques and technologies with a particular focus on the tumour biology (neoangiogenesis and hypoxia) that can be measured in humans using multimodality and multi parametric imaging. Chapter 2 reviews of the current state of clinical translation of optoacoustic imaging, highlighting the particular areas in which clinical translation has advanced the most (breast cancer, melanoma and inflammatory bowel disease). Chapter 3 discusses the logistical, regulatory and technical challenges and solutions involved in translating optoacoustic imaging to the clinic and setting up a clinical service. Chapter 4 presents a series of validation experiments of oxygen saturation aimed at establishing the relationship between the optoacoustic signal and invasive pO2 measurements with an OxyLite probe in a porcine kidney model. This work was conducted in close collaboration with leading clinicians from the local transplant team. The following chapter describes the results of the first stage of our clinical work in the breast, namely the healthy volunteer study. This part had several aims: to perform qualitative assessment of the optoacoustic features of the normal breast under physiological conditions; to establish a robust scanning technique and identify technical and image interpretation pitfalls; and to perform qualitative evaluation of the hormonal changes that occur during the menstrual cycle and menopause, which, in turn, were used to validate surrogate measures of oxy-, deoxy and total haemoglobin. Chapter 6 then focuses on the qualitative assessment of benign and malignant breast lesions and their appearances on optoacoustic imaging. The patient study was divided into three phases. Phase 1 created a feature set to differentiate benign from malignant lesions, while Phase 2 was a transition between the prototype scanner and the installation of the first-generation clinical scanner. In Phase 3 the feature set created in Phase 1 was validated in a reader study. The sensitivity and specificity of optoacoustic imaging for lesion detection and differentiation of benign from malignant lesions was compared with mammography and ultrasound. Chapter 7 then deals with the quantitative analysis of the Phase 1 and Phase 3 data acquired in Chapter 6, assessing the relationships between the use of single wavelengths, spectral unmixing, vascularity versus receptor status, heterogeneity of signal intensity in relation to tumour stage and grade. This chapter also discusses the potential and limitations of quantifying the optoacoustic signal and leads to the final chapter, a discussion of future directions in optoacoustic imaging in breast cancer. At the end of this thesis, chapter 8 briefly discusses the potential future directions for the use of optoacoustic imaging as a clinical and scientific tool.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Azizian, Kalkhoran Mohammad. "Design and development of a universal handheld probe for optoacoustic-ultrasonic 3D imaging." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI027/document.

Повний текст джерела
Анотація:
La présente dissertation est principalement consacrée à la conception et à la caractérisation d’une sonde universelle pour l’imagerie volumétrique ultrasons-optoacoustique et le développement d’un algorithme de reconstruction adapté aux exigences physiques pour la conception du système. Les traits distinctifs de cette dissertation sont l’introduction d’une nouvelle géométrie pour les sondes manuelles ultrasons-optoacoustique et des évaluations systématiques basées sur des méthodes de pré-reconstruction et post-reconstruction. Pour éviter l’interprétation biaisée, une évaluation capable d’évaluer le potentiel de la sonde doit être faite. Les caractéristiques mentionnées établissent un cadre pour l’évaluation des performances du système d’imagerie d’une manière précise. En outre, elle permet d’optimiser les performances suivant l’objectif fixé. Ainsi, deux algorithmes de reconstruction anticipée ont été élaborés pour la conception du système OPUS (optoacoustique ultrasons) capables de produire des images avec un contraste et une résolution homogènes sur tout le volume d’intérêt. L’intérêt d’avoir de tels algorithmes est principalement dû au fait que l’analyse des données médicales est souvent faite dans des conditions difficiles, car on est face au bruit, au faible contraste, aux projections limités et à des transformations indésirables opérées par les systèmes d’acquisition. Cette thèse montre, aussi, comment les artefacts de reconstruction peuvent être réduits en compensant les propriétés d’ouverture et en atténuant les artefacts dus à l’échantillonnage angulaire parcimonieux. Afin de transférer cette méthodologie à la clinique et de valider les résultats théoriques, une plate-forme d’imagerie expérimentale a été développée. En utilisant le système de mesure développé, l’évolution d’une nouvelle géométrie annulaire parcimonieuse et sa dynamique ont été étudiées et une preuve de concept a été démontrée à travers des mesures expérimentales dans le but d’évaluer les progrès réalisés
When the interest is in multiscale and multipurpose imaging, there exists such a will in integrating multi-modalilties into a synergistic paradigm in order to leverage the diagnostic values of the interrogating agents. Employing multiple wavelengths radiation, optoacoustic imaging benefits from the optical contrast to specifically resolve molecular structure of tissue in a non-invasive manner. Hybridizing optoacoustic and ultrasound imaging comes with the promises of delivering the complementary morphological, functional and metabolic information of the tissue. This dissertation is mainly devoted to the design and characterization of a hybridized universal handheld probe for optoacoustic ultrasound volumetric imaging and developing adaptive reconstruction algorithms toward the physical requirements of the designed system. The distinguishing features of this dissertation are the introduction of a new geometry for optoacoustic ultrasonic handheld probe and systematic assessments based on pre and post reconstruction methods. To avoid the biased interpretation, a de facto performance assessment being capable of evaluating the potentials of the designed probe in an unbiased manner must be practiced. The aforementioned features establish a framework for characterization of the imaging system performance in an accurate manner. Moreover, it allows further task performance optimization as well. Correspondingly, two advanced reconstruction algorithms have been elaborated towards the requirement of the designed optoacoustic-ultrasound (OPUS) imaging system in order to maximize its ability to produce images with homogeneous contrast and resolution over the entire volume of interest. This interest is mainly due to the fact that the medical data analysis pipeline is often carried out in challenging conditions, since one has to deal with noise, low contrast, limited projections and undesirable transformations operated by the acquisition system. The presented thesis shows how reconstruction artifacts can be reduced by compensating for the detecting aperture properties and alleviate artifacts due to sparse angular sampling. In pursuit of transferring this methodology to clinic and validating the theoretical results, a synthetic imaging platform was developed. Using the measurement system, the evolution of a novel sparse annular geometry and its dynamics has been investigated and a proof of concept was demonstrated via experimental measurement with the intention of benchmarking progress
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gao, Du Yang. "Engineering of protein-based multifunctional nanoparticles with near-infrared absorption as photoacoustic contrast agents for biological applications." Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3953810.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Montilla, Leonardo Gabriel. "Advanced Devices for Photoacoustic Imaging to Improve Cancer and Cerebrovascular Medicine." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/312510.

Повний текст джерела
Анотація:
Recent clinical studies have demonstrated that photoacoustic imaging (PAI) provides important diagnostic information for breast cancer staging. Despite these promising studies, PAI remains an unfeasible option for clinics due to the cost to implement, the required large modification in user conduct and the inflexibility of the hardware to accommodate other applications for the incremental enhancement in diagnostic information. The research described in this dissertation addresses these issues by designing attachments to clinical ultrasound probes and incorporating custom detectors into commercial ultrasound scanners. The ultimate benefit of these handheld devices is to expand the capability of current ultrasound systems and facilitate the translation of PAI to enhance cancer diagnostics and neurosurgical outcomes. Photoacoustic enabling devices (PEDs) were designed as attachments to two clinical ultrasound probes optimized for breast cancer diagnostics. PAI uses pulsed laser excitation to create transient heating (<1°C) and thermoelastic expansion that is detected as an ultrasonic emission. These ultrasonic emissions are remotely sensed to construct noninvasive images with optical contrast at depths much greater than other optical modalities. The PEDs are feasible in terms of cost, user familiarity and flexibility for various applications. Another possible application for PAI is in assisting neurosurgeons treating aneurysms. Aneurysms are often treated by placing a clip to prevent blood flow into the aneurysm. However, this procedure has risks associated with damaging nearby vessels. One of the developed PEDs demonstrated the feasibility to three-dimensionally image tiny microvasculature (<0.3mm) beyond large blood occlusions (>2.4mm) in a phantom model. The capability to use this during surgery would suggest decreasing the risks associated with these treatments. However, clinical ultrasound arrays are not clinically feasible for microsurgical applications due to their bulky size and linear scanning requirements for 3D. Therefore, capacitive micromachined ultrasound transducer (CMUT) two-dimensional arrays compatible with standard ultrasound scanners were used to generate real-time 3D photoacoustic images. Future probes, designed incorporating CMUT arrays, would be relatively simple to fabricate and a convenient upgrade to existing clinical ultrasound equipment. Eventually, a handheld tool with the ability to visualize, in real-time 3D, the desired microvasculature, would assist surgical procedures. The potential implications of PAI devices compatible with standard ultrasound equipment would be a streamlined cost efficient solution for translating photoacoustics into clinical practice. The practitioner could then explore the benefits of the enhanced contrast adjunctive to current ultrasound applications. Clinical availability of PAI could enhance breast cancer diagnostics and cerebrovascular surgical outcomes.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Oancea, Andreas [Verfasser], Vasilis [Akademischer Betreuer] Ntziachristos, and Franz [Akademischer Betreuer] Pfeiffer. "Optoacoustic System and Method for Mesoscopic Imaging / Andreas Oancea. Gutachter: Franz Pfeiffer ; Vasilis Ntziachristos. Betreuer: Vasilis Ntziachristos." München : Universitätsbibliothek der TU München, 2013. http://d-nb.info/1045730033/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wang, Xueding. "Functional photoacoustic tomography of animal brains." Diss., Texas A&M University, 2004. http://hdl.handle.net/1969.1/2736.

Повний текст джерела
Анотація:
This research is primarily focused on laser-based non-invasive photoacoustic tomography of small animal brains. Photoacoustic tomography, a novel imaging modality, was applied to visualize the distribution of optical absorptions in small-animal brains through the skin and skull. This technique combines the high-contrast advantage of optical imaging with the high-resolution advantage of ultrasonic imaging. Based on the intrinsic optical contrast, this imaging system successfully visualized three-dimensional tissue structures in intact brains, including lesions and tumors in brain cerebral cortex. Physiological changes and functional activities in brains, including cerebral blood volume and blood oxygenation in addition to anatomical information, were also satisfactorily monitored. This technique successfully imaged the dynamic distributions of exogenous contrast agents in small-animal brains. Photoacoustic angiography in small-animal brains yielding high contrast and high spatial resolution was implemented noninvasively using intravenously injected absorbing dyes. In the appendix, the theory of Monte Carlo simulation of polarized light propagation in scattering media was briefly summarized.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Araque, Caballero Miguel Ángel [Verfasser], Vasilis [Akademischer Betreuer] Ntziachristos, and Rudolf [Akademischer Betreuer] Gross. "Incorporating Sensor Properties in Optoacoustic Imaging / Miguel Angel Araque Caballero. Gutachter: Rudolf Gross ; Vasilis Ntziachristos. Betreuer: Vasilis Ntziachristos." München : Universitätsbibliothek der TU München, 2013. http://d-nb.info/104767873X/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dima, Alexander [Verfasser], Vasilis [Akademischer Betreuer] Ntziachristos, and Klaus [Akademischer Betreuer] Diepold. "Optoacoustic handheld imaging for clinical screening and intervention / Alexander Dima. Betreuer: Vasilis Ntziachristos. Gutachter: Klaus Diepold ; Vasilis Ntziachristos." München : Universitätsbibliothek der TU München, 2016. http://d-nb.info/1093788240/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Optoacoustic Imaging"

1

A, Oraevsky Alexander, and Society of Photo-optical Instrumentation Engineers., eds. Biomedical optoacoustics II: 23-24 January 2001, San Jose, USA. Bellingham, Wash., USA: SPIE, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

A, Oraevsky Alexander, and Society of Photo-optical Instrumentation Engineers., eds. Biomedical optoacoustics III: 20-21 January 2002, San Jose, USA. Bellingham, Wash., USA: SPIE, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

A, Oraevsky Alexander, and Society of Photo-optical Instrumentation Engineers., eds. Biomedical optoacoustics IV: 26-27 January 2003, San Jose, California, USA. Bellingham, Wash., USA: SPIE, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Andreas, Mandelis, ed. Photoacoustic and thermal wave phenomena in semiconductors. New York: North-Holland, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

A, Oraevsky Alexander, Society of Photo-optical Instrumentation Engineers., and International Biomedical Optics Society, eds. Biomedical optoacoustics: 25-27 January 2000, San Jose, USA. Bellingham, Wash: SPIE, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

J, Bornhop Darryl, and Society of Photo-optical Instrumentation Engineers., eds. Biomedical nanotechnology architectures and applications: 20-24 January 2002, San Jose, [California] USA. Bellingham, Wash: SPIE, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics (9th 2008 San Jose, Calif.). Photons plus ultrasound: Imaging and sensing 2008 : the Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics : 20-23 January 2008, San Jose, California, USA. Edited by Oraevsky Alexander A, Wang Lihong V, SPIE (Society), and Fairway Medical Technologies Inc. Bellingham, Wash: SPIE, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics (9th 2008 San Jose, Calif.). Photons plus ultrasound: Imaging and sensing 2008 : the Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics : 20-23 January 2008, San Jose, California, USA. Edited by Oraevsky Alexander A, Wang Lihong V, SPIE (Society), and Fairway Medical Technologies Inc. Bellingham, Wash: SPIE, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Photoacoustic imaging and spectroscopy. Boca Raton: Taylor & Francis, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wang, Lihong V. Photoacoustic Imaging and Spectroscopy. Taylor & Francis Group, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Optoacoustic Imaging"

1

Frenz, M., M. Jaeger, A. Gertsch, M. Kitz, and D. Schweizer. "Optoacoustic imaging." In Acoustical Imaging, 287–94. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8823-0_40.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Omar, Murad, Dominik Soliman, and Vasilis Ntziachristos. "Multimodal Optoacoustic Imaging." In Image Fusion in Preclinical Applications, 69–99. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02973-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Razansky, Daniel. "Functional Optoacoustic Imaging." In Handbook of Neurophotonics, 129–46. First edition. | Boca Raton, FL : CRC Press, 2020. | Series: Series in cellular and clinical imaging: CRC Press, 2020. http://dx.doi.org/10.1201/9780429194702-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Napp, Joanna, Andrea Markus, and Frauke Alves. "Optical and Optoacoustic Imaging." In Molecular Imaging in Oncology, 439–92. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42618-7_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Razansky, Daniel, and Vasilis Ntziachristos. "Optical and Optoacoustic Imaging." In Molecular Imaging in Oncology, 155–87. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42618-7_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Eisenblätter, Michel, and Moritz Wildgruber. "Optical and Optoacoustic Imaging Probes." In Molecular Imaging in Oncology, 337–55. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42618-7_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Liopo, Anton V., and Alexander A. Oraevsky. "Nanoparticles as Contrast Agents for Optoacoustic Imaging." In Nanotechnology for Biomedical Imaging and Diagnostics, 111–49. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118873151.ch5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Taruttis, Adrian, and Vasilis Ntziachristos. "Optical and Optoacoustic Imaging in the Diffusive Regime." In Handbook of Photonics for Biomedical Engineering, 1–21. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-6174-2_19-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Taruttis, Adrian, and Vasilis Ntziachristos. "Optical and Optoacoustic Imaging in the Diffusive Regime." In Handbook of Photonics for Biomedical Engineering, 221–46. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-007-5052-4_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ho, Chris Jun Hui, Neal C. Burton, Stefan Morscher, U. S. Dinish, Josefine Reber, Vasilis Ntziachristos, and Malini Olivo. "Advances in Optoacoustic Imaging: From Benchside to Clinic." In Frontiers in Biophotonics for Translational Medicine, 75–109. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-627-0_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Optoacoustic Imaging"

1

Oberheide, Uwe, Birte Jansen, Ingo Bruder, Holger Lubatschowski, Herbert Welling, and Wolfgang Ertmer. "Optoacoustic Imaging for Ophthalmology." In European Conference on Biomedical Optics. Washington, D.C.: Optica Publishing Group, 2001. http://dx.doi.org/10.1364/ecbo.2001.4434_1.

Повний текст джерела
Анотація:
The feasibility of optoacoustic imaging was investigated for ophthalmologic application in the treatment of glaucoma. Difficulties in the treatment with laser cyclophotocoagulation are mainly due to uncertainties in the localization of the ciliary body. With laser optoacoustics it is possible to localize the position of the ciliary body on enucleated porcine and rabbit eyes. Additionally, the changes in the optical properties of the tissue induced by coagulation with a diode laser were observed.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Esenaliev, Rinat O., Irene Y. Petrov, Adelaide Micci, Donald S. Prough, Yuriy Petrov, Jutatip Guptarak, Auston Grant, Margaret O. Parsley, and Ian J. Bolding. "Optoacoustic theranostics." In Photons Plus Ultrasound: Imaging and Sensing 2018, edited by Alexander A. Oraevsky and Lihong V. Wang. SPIE, 2018. http://dx.doi.org/10.1117/12.2294053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Paltauf, Günther. "Dual-wavelength optoacoustic imaging." In European Conference on Biomedical Optics. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/ecbo.2003.5143_41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Oberheide, Uwe, Birte Jansen, Ingo Bruder, Holger Lubatschowski, Herbert Welling, and Wolfgang Ertmer. "Optoacoustic imaging for ophthalmology." In European Conference on Biomedical Optics, edited by Albert-Claude Boccara and Alexander A. Oraevsky. SPIE, 2001. http://dx.doi.org/10.1117/12.446668.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Paltauf, Guenther. "Dual-wavelength optoacoustic imaging." In European Conference on Biomedical Optics 2003, edited by Albert-Claude Boccara. SPIE, 2003. http://dx.doi.org/10.1117/12.500444.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jaeger, M., K. G. Held, H. G. Akarcay, and M. Frenz. "Multimodal biomedical optoacoustic imaging." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cleo_at.2016.ath3n.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Carp, Stefan A., and Vasan Venugopalan. "3D interferometric optoacoustic imaging." In Biomedical Optics 2005, edited by Alexander A. Oraevsky and Lihong V. Wang. SPIE, 2005. http://dx.doi.org/10.1117/12.591134.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rui, Min, Sankar Narashimhan, Wolfgang Bost, Frank Stracke, Eike Weiss, Robert Lemor, and Michael C. Kolios. "Gigahertz optoacoustic imaging for cellular imaging." In BiOS, edited by Alexander A. Oraevsky and Lihong V. Wang. SPIE, 2010. http://dx.doi.org/10.1117/12.841479.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Patrikeev, I., H. P. Brecht, Y. Y. Petrov, I. Y. Petrova, D. S. Prough, and R. O. Esenaliev. "Optoacoustic imaging of blood vessels." In Medical Imaging, edited by Stanislav Y. Emelianov and Stephen A. McAleavey. SPIE, 2007. http://dx.doi.org/10.1117/12.711176.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Esenaliev, Rinat O. "25 years of biomedical optoacoustics: From idea to optoacoustic imaging and theranostics." In Photons Plus Ultrasound: Imaging and Sensing 2019, edited by Alexander A. Oraevsky and Lihong V. Wang. SPIE, 2019. http://dx.doi.org/10.1117/12.2511785.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Optoacoustic Imaging"

1

Modgil, Dimple. System Design, Algorithm Development, and Verification for Optoacoustic Molecular Imaging of Protease Expression in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, May 2009. http://dx.doi.org/10.21236/ada506325.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії