Добірка наукової літератури з теми "Optimisation de la géométrie"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Optimisation de la géométrie".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Optimisation de la géométrie"
Sehaqui, Rachid, Meryem Sijelmassi, and Jaâfar Khalid Naciri. "Amélioration du transfert thermique par optimisation de la géométrie d'une conduite de révolution." Mécanique & Industries 6, no. 2 (March 2005): 189–93. http://dx.doi.org/10.1051/meca:2005019.
Повний текст джерелаBlanc, Xavier, and Claude Le Bris. "Optimisation de géométrie dans le cadre des théories de type Thomas—Fermi pour les cristaux périodiques." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 329, no. 6 (September 1999): 551–56. http://dx.doi.org/10.1016/s0764-4442(00)80060-9.
Повний текст джерелаBeuf, Aurélien, Florence Raynal, Jean-Noël Gence, and Philippe Carrière. "Optimisation du protocole de mélange et de la géométrie d’une chambre d’hybridation de puces à ADN." La Houille Blanche, no. 6 (December 2007): 39–44. http://dx.doi.org/10.1051/lhb:2007080.
Повний текст джерелаCouzon, F., L. Gulyayeva Nsair, and A. S. Russel Robillard. "Optimisation des doses en radio-pédiatrie lors des cystographies et TOGD." Radioprotection 53, no. 2 (April 2018): 123–31. http://dx.doi.org/10.1051/radiopro/2018010.
Повний текст джерелаBarkatou, M., and A. Henrot. "Un résultat d'existence en optimisation de forme en utilisant une propriété géométrique de la normale." ESAIM: Control, Optimisation and Calculus of Variations 2 (1997): 105–23. http://dx.doi.org/10.1051/cocv:1997105.
Повний текст джерелаDroin, Laurent, Maurice Amram, and Vick J. Chvojka. "Optimisation Géométrique de Guides d'Ondes Utilisés comme Filtres Passe-bas pour le Controle des Bruits de Basses Fréquences." Applied Acoustics 19, no. 4 (1986): 285–303. http://dx.doi.org/10.1016/0003-682x(86)90003-4.
Повний текст джерелаBouziani, Mourad, and Jacynthe Pouliot. "Optimisation de la mise à jour des bases de données géospatiales Proposition d'une procédure automatisée d'appariement géométrique d'objets linéaires." Revue internationale de géomatique 18, no. 1 (March 26, 2008): 113–37. http://dx.doi.org/10.3166/geo.18.113-137.
Повний текст джерелаDal'bo, Françoise. "Une géométrie sans métrique la géométrie affine." Séminaire de théorie spectrale et géométrie S9 (1991): 77–79. http://dx.doi.org/10.5802/tsg.117.
Повний текст джерелаVoisin, Claire. "Géométrie algébrique." La lettre du Collège de France, no. 41 (November 1, 2016): 9. http://dx.doi.org/10.4000/lettre-cdf.3175.
Повний текст джерелаVoisin, Claire. "Géométrie algébrique." L’annuaire du Collège de France, no. 117 (September 1, 2019): 23–27. http://dx.doi.org/10.4000/annuaire-cdf.13806.
Повний текст джерелаДисертації з теми "Optimisation de la géométrie"
Abril, Bucero Marta. "Matrices de moments, géométrie algébrique réelle et optimisation polynomiale." Thesis, Nice, 2014. http://www.theses.fr/2014NICE4118/document.
Повний текст джерелаThe objective of this thesis is to compute the optimum of a polynomial on a closed basic semialgebraic set and the points where this optimum is reached. To achieve this goal we combine border basis method with Lasserre's hierarchy in order to reduce the size of the moment matrices in the SemiDefinite Programming (SDP) problems. In order to verify if the minimum is reached we describe a new criterion to verify the flat extension condition using border basis. Combining these new results we provide a new algorithm which computes the optimum and the minimizers points. We show several experimentations and some applications in different domains which prove the perfomance of the algorithm. Theorethically we also prove the finite convergence of a SDP hierarchie contructed from a Karush-Kuhn-Tucker ideal and its consequences in particular cases. We also solve the particular case where the minimizers are not KKT points using Fritz-John Variety
Gurtner, Gérald. "Géométrie, topologie et optimisation des réseaux et structures cellulaires." Paris 7, 2011. http://www.theses.fr/2011PA077165.
Повний текст джерелаSome particular networks of very different essences - electrical, thermal, fluidic, mecanic - exhibit, in a first approximation, some strong mathematical analogies, allowing us to conduct a common analysis of their emergent properties - electrical, thermal or fluidic conductivity, and elastic moduli. With a variationnal approach, we established absolute bounds on these quantifies as well as a set of geometrical necessary and sufficient conditions (NSC) to reach them. These conditions lead to new optimal structures, both in two and three dimensions. Thanks to a numerical program, which allowed us to verify these predictions, we then characterized the bending/streching transition which appears in fibrous networks. With the help of the NSC, we computed analytically some statistic, microscopic features of these networks, which might be of importance in the future to understand this phenomenon, as our analyze suggests it. Moreover, we used the programm to investigate the problem of the junctions' energy and showed the presence of several transitions, described by power laws. Finally, we calculated the macroscopic characteristics of some networks close to the optimality, and introduced a new average quantity based on the NSC which seemed to be of importance to quantify this deviation from optimality
Olaru, Sorin. "La commande des systèmes dynamiques sous contraintes Interaction optimisation-géométrie-commande." Habilitation à diriger des recherches, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00641658.
Повний текст джерелаKhoury, Ibrahim. "Optimisation de la géométrie de l'outillage pour les procédés de forgeage." Troyes, 2008. http://www.theses.fr/2008TROY0012.
Повний текст джерелаIn the forging field, numerical simulation allows reducing the use of the experimental investigation and tests required in a real tryout process. In The LASMIS laboratory a finite element package has been developed to solve elasto-visco-plasticity problems with ductile damage in large deformation. In the optimisation of forming process, several research teams approached the optimization of performs. They don’t take into account the apparition of damage during the simulation of the forging process. The thesis objective is to identify the pertinent geometric parameters of axisymetric parts which allow the minimisation of the forging energy. The two major criteria’s are the correct filling and the absence of damage appearance. In this work, two automatic procedures are introduced to test the filling by comparing geometry of the rough forged and the machined one. Then a procedure has been set to localize if the damage occurs in zones that will be machined or in zones that are inside the machined forged part. Then, a semi automatic optimization method is described in order to study the effect of the geometric parameters on the forging energy with the constraint of maximal value of damage to be kept out of the final machined part. The originality of this work is the study of the effect of the geometrical parameters with technological significations on the forging energy and the appearance and the localization of the damage in the forged part
Ghidossi, Rémy. "Membranes céramiques : optimisation de la géométrie par simulation numérique et application industrielle." Aix-Marseille 1, 2006. http://www.theses.fr/2006AIX11015.
Повний текст джерелаCatapano, Anita. "Stiffness and strength optimisation of the anisotropy distribution for laminated structures." Paris 6, 2013. http://www.theses.fr/2013PA066062.
Повний текст джерелаIn this thesis we deal with the problem of determining the best distribution of the anisotropy for a laminated structure that has to be simultaneously the stiffest and the strongest one. The work has been divided into three main parts. In the first part we presented all the concepts and tools that we have used to develop the research. In the second part we have proposed a tensor invariant formulation, through the polar method, of different polynomial failure criteria for orthotropic sheets. Then, we considered the problem of determining the optimal material orientation to maximise strength by the minimisation of the failure index. The last part of the thesis is dedicated to the development of a new strategy to optimise simultaneously the stiffness and strength of a laminated structure. Our approach is inspired from an already existing hierarchical strategy for the only stiffness maximisation. First of all we defined a new laminate level failure criterion valid for an equivalent homogenised plate. Then, conscious of having two functional, the complementary energy and the laminate failure index, to be minimised at the same time, we proved that the first step of the strategy can be stated as two problems characterised by two functional that are sequentially minimised, preserving only the orthotropy direction. In the first step of the strategy we developed three different algorithms to determine the optimal distribution of material parameters for a given structure. Finally we dealt with the problem of determining the laminate stacking sequence satisfying the optimal distribution of material parameters issued from the first step of the hierarchical strategy
Jartoux, Bruno. "On combinatorial approximation algorithms in geometry." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1078/document.
Повний текст джерелаThe analysis of approximation techniques is a key topic in computational geometry, both for practical and theoretical reasons. In this thesis we discuss sampling tools for geometric structures and geometric approximation algorithms in combinatorial optimization. Part I focuses on the combinatorics of geometric set systems. We start by discussing packing problems in set systems, including extensions of a lemma of Haussler, mainly the so-called shallow packing lemma. For said lemma we also give an optimal lower bound that had been conjectured but not established in previous work on the topic. Then we use this lemma, together with the recently introduced polynomial partitioning technique, to study a combinatorial analogue of the Macbeath regions from convex geometry: Mnets, for which we unify previous existence results and upper bounds, and also give some lower bounds. We highlight their connection with epsilon-nets, staples of computational and combinatorial geometry, for example by observing that the unweighted epsilon-net bound of Chan et al. (SODA 2012) or Varadarajan (STOC 2010) follows directly from our results on Mnets. Part II deals with local-search techniques applied to geometric restrictions of classical combinatorial optimization problems. Over the last ten years such techniques have produced the first polynomial-time approximation schemes for various problems, such as that of computing a minimum-sized hitting set for a collection of input disks from a set of input points. In fact, it was shown that for many of these problems, local search with radius Θ(1/epsilon²) gives a (1 + epsilon)-approximation with running time n^{O(1/epsilon²)}. However the question of whether the exponent of n could be decreased to o(1/epsilon²) was left open. We answer it in the negative: the approximation guarantee of local search cannot be improved for any of these problems. The key ingredient is a new lower bound on locally expanding planar graphs, which is then used to show the impossibility results
Boisson, Viviane. "Etude de la géométrie optimale des périphéries des jonctions Planar." Lyon 1, 1985. http://www.theses.fr/1985LYO19019.
Повний текст джерелаBus, Norbert. "The use of geometric structures in graphics and optimization." Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1117/document.
Повний текст джерелаReal-world data has a large geometric component, showing significant geometric patterns. How to use the geometric nature of data to design efficient methods has became a very important topic in several scientific fields, e.g., computational geometry, discrete geometry, computer graphics, computer vision. In this thesis we use geometric structures to design efficient algorithms for problems in two domains, computer graphics and combinatorial optimization. Part I focuses on a geometric data structure called well-separated pair decomposition and its usage for one of the most challenging problems in computer graphics, namely efficient photo-realistic rendering. One solution is the family of many-lights methods that approximate global illumination by individually computing illumination from a large number of virtual point lights (VPLs) placed on surfaces. Considering each VPL individually results in a vast number of calculations. One successful strategy the reduce computations is to group the VPLs into a small number of clusters that are treated as individual lights with respect to each point to be shaded. We use the well-separated pair decomposition of points as a basis for a data structure for pre-computing and compactly storing a set of view independent candidate VPL clusterings showing that a suitable clustering of the VPLs can be efficiently extracted from this data structure. We show that instead of clustering points and/or VPLs independently what is required is to cluster the product-space of the set of points to be shaded and the set of VPLs based on the induced pairwise illumination. Additionally we propose an adaptive sampling technique to reduce the number of visibility queries for each product-space cluster. Our method handles any light source that can be approximated with virtual point lights (VPLs), highly glossy materials and outperforms previous state-of-the-art methods. Part II focuses on developing new approximation algorithms for a fundamental NP-complete problem in computational geometry, namely the minimum hitting set problem with particular focus on the case where given a set of points and a set of disks, we wish to compute the minimum-sized subset of the points that hits all disks. It turns out that efficient algorithms for geometric hitting set rely on a key geometric structure, called epsilon-net. We give an algorithm that uses only Delaunay triangulations to construct epsilon-nets of size 13.4/epsilon and we provide a practical implementation of a technique to calculate hitting sets in near-linear time using small sized epsilon-nets. Our results yield a 13.4 approximation for the hitting set problem with an algorithm that runs efficiently even on large data sets. For smaller datasets, we present an implementation of the local search technique along with tight approximation bounds for its approximation factor, yielding an (8 + epsilon)-approximation algorithm with running time O(n^{2.34})
Renaud, Denis. "Caractérisation du propulseur PEGASES : diagnostics du filtre magnétique et du faisceau : optimisation de la géométrie." Thesis, Orléans, 2016. http://www.theses.fr/2016ORLE2018/document.
Повний текст джерелаThe PEGASES ion thruster differs from standard electric propulsion technologies through its use of electronegative gases, such as SF₆, as a propellant. Its operation relies on the trapping of electrons using a magnetic field and the creation of a plasma dominated by positive and negative ions. These ions are alternately accelerated to produce thrust, and later undergo a recombination to ensure beam neutrality. This thruster eliminates the need for an electron-producing neutralizer, which is a standard feature in other sources such as the Hall thruster. This thesis is divided into three parts. The first describes the development and implementation of a new EXB probe for the study of the ion beam properties, the identification of the beam chemical composition and the verification of the presence of negative and positive ion species. The second part concerns the design and application of a new laser photodetachment diagnostic for the measurement of the negative ion fraction. Lastly, a new ion-ion thruster with a circular geometry, known as AIPE, has been designed, constructed and successfully tested. This prototype eliminates the plasma asymmetry present in PEGASES and reveals the importance of the magnetic filter to source operation
Книги з теми "Optimisation de la géométrie"
Grötschel, Martin. Geometric algorithms and combinatorial optimization. Berlin: Springer-Verlag, 1988.
Знайти повний текст джерелаGrötschel, Martin. Geometric algorithms and combinatorial optimization. 2nd ed. Berlin: Springer-Verlag, 1993.
Знайти повний текст джерелаOptimal transport: Old and new. Berlin: Springer, 2009.
Знайти повний текст джерелаDupont, Pascal. Introduction à la géométrie: Géométrie linéaire & géométrie différentielle. Bruxelles: De Boeck Université, 2002.
Знайти повний текст джерелаPostnikov, M. Leçons de géométrie: Géométrie différentielle. Moscú, URSS: Editorial Mir, 1990.
Знайти повний текст джерелаHiriart-Urruty, Jean-Baptiste. L' optimisation. Paris: Presses universitaires de France, 1996.
Знайти повний текст джерелаKorte, Bernhard, Jens Vygen, Jean Fonlupt, and Alexandre Skoda. Optimisation combinatoire. Paris: Springer Paris, 2010. http://dx.doi.org/10.1007/978-2-287-99037-3.
Повний текст джерела1970-, Denis Jean-Sébastien, ed. Géométrie fantôme. Montréal: Poètes de brousse, 2011.
Знайти повний текст джерелаPham, D. T., and D. Karaboga. Intelligent Optimisation Techniques. London: Springer London, 2000. http://dx.doi.org/10.1007/978-1-4471-0721-7.
Повний текст джерелаDolgui, Alexandre, Jerzy Soldek, and Oleg Zaikin, eds. Supply Chain Optimisation. Boston, MA: Springer US, 2005. http://dx.doi.org/10.1007/b101812.
Повний текст джерелаЧастини книг з теми "Optimisation de la géométrie"
Ostrowski, Alexander. "Géométrie." In Collected Mathematical Papers, 141–42. Basel: Birkhäuser Basel, 1985. http://dx.doi.org/10.1007/978-3-0348-9336-7_5.
Повний текст джерелаOstrowski, Alexander. "Géométrie." In Collected Mathematical Papers, 143–45. Basel: Birkhäuser Basel, 1985. http://dx.doi.org/10.1007/978-3-0348-9336-7_6.
Повний текст джерелаSerre, Jean-Pierre. "Géométrie algébrique et géométrie analytique." In Springer Collected Works in Mathematics, 402–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-39816-2_32.
Повний текст джерелаSerre, Jean-Pierre. "Géométrie algébrique." In Springer Collected Works in Mathematics, 187–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-37726-6_56.
Повний текст джерелаAbbes, Ahmed. "Géométrie formelle." In Éléments de Géométrie Rigide, 117–211. Basel: Springer Basel, 2010. http://dx.doi.org/10.1007/978-3-0348-0012-9_2.
Повний текст джерелаAbbes, Ahmed. "Géométrie rigide." In Éléments de Géométrie Rigide, 243–321. Basel: Springer Basel, 2010. http://dx.doi.org/10.1007/978-3-0348-0012-9_4.
Повний текст джерелаRoy, Marie-Françoise. "Géométrie Algébrique Réelle." In Development of Mathematics, 1950–2000, 939–65. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8968-1_32.
Повний текст джерелаLichnerowicz, André. "Géométrie et relativité." In Development of Mathematics 1900–1950, 431–41. Basel: Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-9114-1_9.
Повний текст джерелаCapderou, Michel. "Géométrie de l’ellipse." In Satellites : de Kepler au GPS, 1–22. Paris: Springer Paris, 2012. http://dx.doi.org/10.1007/978-2-287-99050-2_1.
Повний текст джерелаWoodford, C., and C. Phillips. "Optimisation." In Numerical Methods with Worked Examples: Matlab Edition, 169–95. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-1366-6_8.
Повний текст джерелаТези доповідей конференцій з теми "Optimisation de la géométrie"
Welschinger, Jean-Yves. "Invariants Entiers en Géométrie Énumérative Réelle." In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0068.
Повний текст джерелаLetot, Christophe, Iman Soleimanmeigouni, Iman Arasteh, Alireza Ahmadi, and Pierre Dehombreux. "Comparaison des processus gamma et Wiener pour modéliser la dégradation de géométrie de voies ferroviaires." In Congrès Lambda Mu 20 de Maîtrise des Risques et de Sûreté de Fonctionnement, 11-13 Octobre 2016, Saint Malo, France. IMdR, 2016. http://dx.doi.org/10.4267/2042/61723.
Повний текст джерелаBhola, Monish. "Effets de la macro et de la nano-géométrie sur la stabilité primaire des implants." In 59ème Congrès de la SFMBCB. Les Ulis, France: EDP Sciences, 2012. http://dx.doi.org/10.1051/sfmbcb/20125901003.
Повний текст джерелаMaumela, Tshifhiwa, Fulufhelo Nelwamondo, and Tshilidzi Marwala. "Portfolio Optimisation Using Ulimisana Optimisation Algorithm." In 2022 8th International Conference on Control, Decision and Information Technologies (CoDIT). IEEE, 2022. http://dx.doi.org/10.1109/codit55151.2022.9803923.
Повний текст джерелаCirmirakis, D., and J. K. Pollard. "Rowing optimisation." In 2009 IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). IEEE, 2009. http://dx.doi.org/10.1109/idaacs.2009.5343005.
Повний текст джерелаBranke, Juergen. "Simulation optimisation." In GECCO '18: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3205651.3207887.
Повний текст джерелаBranke, Juergen. "Simulation Optimisation." In GECCO '16: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2908961.2926995.
Повний текст джерелаBranke, Juergen. "Simulation optimisation." In GECCO '19: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3319619.3323385.
Повний текст джерелаPauley, Michael, and Jonathan H. Manton. "Optimisation geometry and its implications for optimisation algorithms." In 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). IEEE, 2017. http://dx.doi.org/10.1109/camsap.2017.8313169.
Повний текст джерелаRezaee Jordehi, Ahmad, Jasronita Jasni, Noor Izzri Abdul Wahab, and Mohd Zainal Abidin Abd Kadir. "Particle swarm optimisation applications in FACTS optimisation problem." In 2013 IEEE 7th International Power Engineering and Optimization Conference (PEOCO). IEEE, 2013. http://dx.doi.org/10.1109/peoco.2013.6564541.
Повний текст джерелаЗвіти організацій з теми "Optimisation de la géométrie"
Horrocks, Ian, and Stephan Tobies. Optimisation of Terminological Reasoning. Aachen University of Technology, 1999. http://dx.doi.org/10.25368/2022.99.
Повний текст джерелаToutin, Th. Évaluation de la géométrie des images RADARSAT : premiers résultats. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1997. http://dx.doi.org/10.4095/219005.
Повний текст джерелаJob, P. K., R. Blair, and L. Price. Optimisation studies for scintillator plate calorimeter. Office of Scientific and Technical Information (OSTI), December 1990. http://dx.doi.org/10.2172/10184695.
Повний текст джерелаKepser, Stephan, and Jörn Richts. Optimisation Techniques for Combining Constraint Solvers. Aachen University of Technology, 1996. http://dx.doi.org/10.25368/2022.72.
Повний текст джерелаDixon, L. C., and R. C. Price. Optimisation Algorithms for Highly Parallel Computer Architectures. Fort Belvoir, VA: Defense Technical Information Center, December 1990. http://dx.doi.org/10.21236/ada235911.
Повний текст джерелаNobile, F., Q. Ayoul-Guilmard, S. Ganesh, M. Nuñez, A. Kodakkal, C. Soriano, and R. Rossi. D6.5 Report on stochastic optimisation for wind engineering. Scipedia, 2022. http://dx.doi.org/10.23967/exaqute.2022.3.04.
Повний текст джерелаAyoul-Guilmard, Q., F. Nobile, S. Ganesh, M. Nuñez, A. Kodakkal, R. Rossi, and C. Soriano. D6.4 Report on stochastic optimisation for unsteady problems. Scipedia, 2021. http://dx.doi.org/10.23967/exaqute.2021.2.003.
Повний текст джерелаAyoul-Guilmard, Q., S. Ganesh, F. Nobile, R. Rossi, and C. Soriano. D6.3 Report on stochastic optimisation for simple problems. Scipedia, 2021. http://dx.doi.org/10.23967/exaqute.2021.2.001.
Повний текст джерелаLi, Pengcheng, Bin Jia, and Hao Wang. BUCKLING BEHAVIOR AND OPTIMISATION ANALYSIS OF PRESTRESSED STAYED STEEL COLUMN. The Hong Kong Institute of Steel Construction, December 2018. http://dx.doi.org/10.18057/icass2018.p.060.
Повний текст джерелаCAEIRO, Maria Helena, Amílcar SOARES, Vasily DEMYANOV, and Mike CHRISTIE. Optimisation of a geostatistical non-stationary model in history matching. Cogeo@oeaw-giscience, September 2011. http://dx.doi.org/10.5242/iamg.2011.0260.
Повний текст джерела