Добірка наукової літератури з теми "Optical Phase Noise Measurement"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Optical Phase Noise Measurement".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Optical Phase Noise Measurement"
Horstman, Luke, and Jean-Claude Diels. "Intracavity Measurement Sensitivity Enhancement without Runaway Noise." Sensors 21, no. 24 (December 19, 2021): 8473. http://dx.doi.org/10.3390/s21248473.
Повний текст джерелаRodríguez-García, M. A., and F. E. Becerra. "Adaptive Phase Estimation with Squeezed Vacuum Approaching the Quantum Limit." Quantum 8 (September 25, 2024): 1480. http://dx.doi.org/10.22331/q-2024-09-25-1480.
Повний текст джерелаKrasionov, I. I., and L. V. Il’ichev. "Noise-oriented quantum optical gyrometry." Quantum Electronics 52, no. 2 (February 1, 2022): 127–29. http://dx.doi.org/10.1070/qel17979.
Повний текст джерелаShi, Jingzhan, Fangzheng Zhang, De Ben, and Shilong Pan. "Photonic-assisted single system for microwave frequency and phase noise measurement." Chinese Optics Letters 18, no. 9 (2020): 092501. http://dx.doi.org/10.3788/col202018.092501.
Повний текст джерелаChen, Jia-Qi, Chao Chen, Jing-Jing Sun, Jian-Wei Zhang, Zhao-Hui Liu, Li Qin, Yong-Qiang Ning, and Li-Jun Wang. "Linewidth Measurement of a Narrow-Linewidth Laser: Principles, Methods, and Systems." Sensors 24, no. 11 (June 5, 2024): 3656. http://dx.doi.org/10.3390/s24113656.
Повний текст джерелаFischer, Marc, Marcus Petz, and Rainer Tutsch. "Statistical characterization of evaluation strategies for fringe projection systems by means of a model-based noise prediction." Journal of Sensors and Sensor Systems 6, no. 1 (April 6, 2017): 145–53. http://dx.doi.org/10.5194/jsss-6-145-2017.
Повний текст джерелаBengalskii, Danil M., Danil R. Kharasov, Edgard A. Fomiryakov, Sergei P. Nikitin, Oleg E. Nanii, and Vladimir N. Treshchikov. "Characterization of Laser Frequency Stability by Using Phase-Sensitive Optical Time-Domain Reflectometry." Photonics 10, no. 11 (November 4, 2023): 1234. http://dx.doi.org/10.3390/photonics10111234.
Повний текст джерелаvan Ardenne, A., and W. Melis. "Quasi-optical measurement of carcinotron phase noise at 350 GHz." Electronics Letters 24, no. 23 (1988): 1411. http://dx.doi.org/10.1049/el:19880964.
Повний текст джерелаXu, Hao, Haitao Wu, Dong Hou, Haoyuan Lu, Zhaolong Li, and Jianye Zhao. "Yoctosecond Timing Jitter Sensitivity in Tightly Synchronized Mode-Locked Ti:Sapphire Lasers." Photonics 9, no. 8 (August 12, 2022): 569. http://dx.doi.org/10.3390/photonics9080569.
Повний текст джерелаDuong, Chen, and Chen. "Absolute Depth Measurement Using Multiphase Normalized Cross-Correlation for Precise Optical Profilometry." Sensors 19, no. 21 (October 28, 2019): 4683. http://dx.doi.org/10.3390/s19214683.
Повний текст джерелаДисертації з теми "Optical Phase Noise Measurement"
Mukherjee, Shambo. "Development of a Fabry-Pérot optical interferometer with low thermal and accelerometric sensitivities." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCD023.
Повний текст джерелаThis thesis explores the development of a transportable, ultra-narrow linewidth laser integrating a high-finesse Fabry-Pèrot cavity made from ultra-low expansion glass with optically contacted Fused Silica mirrors, aiming to minimize thermal and mechanical perturbations and enhance frequency stability. A novel digital frequency stabilization method using an FPGA-based platform is introduced, targeting a fractional frequency stability of 1e-1 5 at 1-second integration. This approach contrasts traditional analog systems by offering increased stability and reduced complexity. The study also examines several limitations of ultra stable lasers like phase noise, thermal noise etc. and several approaches to mitigate these type of noise. Additionally, an optical frequency dissemination system using FPGA-based phaselocked loops and optical fiber links is detailed, ensuring stable signal transmission over laboratory distances
Grobbelaar, Johannes Jacobus. "Phase noise measurement." Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/6806.
Повний текст джерелаENGLISH ABSTRACT: The objective of the thesis is the development of a phase noise measuring system that makes use of crosscorrelation and averaging to measure below the system hardware noise floor. Various phase noise measurement techniques are considered after which the phase demodulation method is chosen to be implemented. The full development cycle of the hardware is discussed, as well as the post processing that is performed on the measured phase noise.
AFRIKAANSE OPSOMMING: Die doel van hierdie tesis is die ontwikkeling van ’n faseruis meetstelsel wat gebruik maak van kruiskorrelasie en vergemiddeling om onder die ruisvloer van die meetstelsel se hardeware te meet. Verskeie faseruis meettegnieke word ondersoek en die fase demodulasie metode word gekies om geïmplementeer te word. Die volle ontwikkelingsiklus van die hardeware word bespreek, sowel as die naverwerking wat toegepas is op die gemete faseruis.
Pham, Toan Thang. "Advances in opto-electronic oscillator operation for sensing and component characterization." Thesis, Cachan, Ecole normale supérieure, 2015. http://www.theses.fr/2015DENS0013/document.
Повний текст джерелаThe optoelectronic oscillator (OEO) was first introduced in 1996 by S. Yao and L. Maleki as a very low phase noise microwave oscillator working in direct synthesis. The OEO developments concern applications in microwave photonics, optical telecommunication, radar and high speed signal processing systems but it should also be used in the sensing domain. In this thesis, we study several aspects to apply the OEO to liquid refractive index measurement. Because of its structure the OEO is very dependent on the ambient conditions. If the OEO is not optimized and controlled, it cannot operate well for long duration. We have analyzed the influences of temperature on the electrooptic modulator (EOM) and the global OEO behavior. Temperature control can significantly reduce the drift phenomena of the EOM. In order to totally remove this drift, we have developed a complete digital system, based on a DSP kit, to detect and compensate automatically the EOM optical bias point drift and to control simultaneously its temperature. The first technique is based on a dither signal at low frequency, injected to DC electrode of the EOM. The second one is based on the average optical output power of the EOM. A combination of these two techniques can take advantages from both of them. Using like that the OEO, we have tested several configurations to measure the refractive index of four classical chemical solutions leading to a standard deviation of 3 per thousand. The results are in rather good agreement with previous publications. Finally, we have introduced a new method to improve the long-term refractive index measurement by monitoring, with a vector network analyzer, the variations of the optical delay in the fiber loop of the OEO. Introducing by this way a correction to the long-term frequency measurement it is possible to reduce the oscillation frequency fluctuations to only 606 Hz, compared to the 8 GHz of the oscillator, for a duration of 62 hours. Therefore the signal-to-noise ratio in the refractive index measurement can be enhanced and so the detection resolution of the refractive index variations during time
Azizoḡlu, Murat. "Phase noise in coherent optical communications." Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/13463.
Повний текст джерелаIncludes bibliographical references (p. 201-206).
by Murat AzizoÄlu.
Ph.D.
Dove, Justin (Justin Michael). "Phase-noise limitations on nonlinear-optical quantum computing." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/89857.
Повний текст джерелаThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
19
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 57-58).
Flying in the face of the long-sought-after goal of building optical quantum computers, we show that traditional approaches leveraging nonlinear-optical cross phase modulation (XPM) to construct the critical element, the cphase gate - a gate which seeks to impart a [pi]-radian phase shift on a single photon pulse, conditioned on the presence of a second single photon pulse - are doomed to fail. The traditional story told in common textbooks fails to account for the continuous-time nature of the real world. Previous work addressing this fact - finding that that the proper continuous-time theory introduces fidelity-degrading phase noise that precludes such proposals - was limited in scope to the case of co-propagating pulses with equal group velocities. This left room for criticism that a high-fidelity cphase gate might be constructed using XPM with pulses that pass through each other. In our work, we build such a continuous-time quantum theory of XPM for pulses that pass through each other and evaluate its consequences. We find that fundamental aspects of the real world prevent one from constructing a perfect cphase gate, even in theory, and we show that the best we can do seems to fall far short of what is needed for quantum computation, even if we are extremely optimistic.
by Justin Dove.
S.M.
Farhoudi, Ramtin. "Study of phase noise in optical coherent systems." Doctoral thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/25706.
Повний текст джерелаPhase noise is an important issue in designing today’s optical coherent systems. Although phase noise is studied heavily in wireless communications, some aspects of phase noise are novel in optical coherent systems. In this thesis we explore phase noise statistics in optical coherent systems and propose a novel technique to increase system robustness toward phase noise. Our first contribution deals with the study of phase noise statistics in the presence of electronic chromatic dispersion (CD) compensation in coherent systems. We show that previously proposed model for phase noise and CD interaction must be modified due to an overly simple model of carrier phase recovery. We derive a more accurate expression for the estimated phase noise of decision directed (DD) carrier phase recovery, and use this expression to modify the decision statistics of received symbols. We calculate bit error rate (BER) of a differential quadrature phase shift keying (DQPSK) system semi-analytically using our modified decision statistics and show that for ideal DD carrier phase recovery the semi-analytical BER matches the BER simulated via Monte-Carlo (MC) technique. We show that the semi-analytical BER is a lower bound of simulated BER from Viterbi-Viterbi (VV) carrier phase recovery for a wide range of practical system parameters. Our second contribution is concerned with adapting a multi-level coded modulation (MLCM) technique for phase noise and additive white Gaussian noise (AWGN) limited coherent system. We show that the combination of a phase noise optimized constellation with MLCM offers a phase-noise robust system at moderate complexity. We propose a numerical method to design set-partitioning (mapping bits to symbols) and optimizing code rates for minimum block error rate (BLER).We verify MLCM performance in coherent systems of 16-ary constellations impaired by nonlinear and Wiener phase noise. For nonlinear phase noise, superior performance of our MLCM design over a previously designed MLCM system is demonstrated in terms of BLER. For Wiener phase noise, we compare optimized and square 16-QAM constellations assuming either MLCM or uniform rate coding. We compare post forward error correction (FEC) BER in addition to BLER by both simulation and experiment and show that superior BLER performance is translated into post FEC BER. Our experimental post FEC BER results follow the same trends as simulated BER, validating our design.
McBride, Roy. "Phase measurement and phase control in fibre-optic interferometers." Thesis, Heriot-Watt University, 1998. http://hdl.handle.net/10399/1219.
Повний текст джерелаIchikawa, Hiroyuki. "Optical beam array generation with phase gratings." Thesis, Heriot-Watt University, 1991. http://hdl.handle.net/10399/807.
Повний текст джерелаKakkar, Aditya. "Frequency Noise in Coherent Optical Systems: Impact and Mitigation Methods." Doctoral thesis, KTH, Optik och Fotonik, OFO, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-207072.
Повний текст джерелаQC 20170516
European project ICONE gr. #608099
Boivin, David. "Optical phase-modulated systems: numerical estimation and experimental measurement of phase jitter." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-11072006-110448/.
Повний текст джерелаBennett, Gisele, Committee Member ; Rhodes, William, Committee Member ; McLaughlin, Steven, Committee Member ; Barry, John, Committee Co-Chair ; Chang, Gee-Kung, Committee Chair ; Chapman, Michael, Committee Member.
Книги з теми "Optical Phase Noise Measurement"
Walid, Qaqish, and Lewis Research Center, eds. Optical strain measurement system development: Phase I. [Cleveland, Ohio]: National Aeronautics and Space Administration, 1987.
Знайти повний текст джерелаHarry, Gregory, Timothy P. Bodiya, and Riccardo DeSalvo, eds. Optical Coatings and Thermal Noise in Precision Measurement. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511762314.
Повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Advanced one-dimensional optical strain measurement system--phase IV. [Washington, DC: National Aeronautics and Space Administration, 1992.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Advanced one-dimensional optical strain measurement system--phase IV. [Washington, DC]: National Aeronautics and Space Administration, 1992.
Знайти повний текст джерелаCenter, Lewis Research, ed. Compact simultaneous-beam optical strain measurement system: Phase V. [Cleveland, Ohio]: Lewis Research Center, National Aeronautics and Space Administration, 1994.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Advanced one-dimensional optical strain measurement system--phase IV. [Washington, DC: National Aeronautics and Space Administration, 1992.
Знайти повний текст джерелаCenter, Lewis Research, ed. Compact simultaneous-beam optical strain measurement system: Phase V. [Cleveland, Ohio]: Lewis Research Center, National Aeronautics and Space Administration, 1994.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Advanced one-dimensional optical strain measurement system--phase IV. [Washington, DC]: National Aeronautics and Space Administration, 1992.
Знайти повний текст джерелаCenter, Lewis Research, ed. Compact simultaneous-beam optical strain measurement system: Phase V. [Cleveland, Ohio]: Lewis Research Center, National Aeronautics and Space Administration, 1994.
Знайти повний текст джерелаS, Preisser John, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., eds. Location of noise sources using a phase-slope method. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1985.
Знайти повний текст джерелаЧастини книг з теми "Optical Phase Noise Measurement"
Haus, Hermann A. "Phase-Sensitive Amplification and Squeezing." In Electromagnetic Noise and Quantum Optical Measurements, 379–416. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04190-1_12.
Повний текст джерелаHaus, Hermann A. "Classical and Quantum Analysis of Phase-Insensitive Systems." In Electromagnetic Noise and Quantum Optical Measurements, 241–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04190-1_8.
Повний текст джерелаWeng, Jing-Feng, and Yu-Lung Lo. "Filters with Noise/Phase Jump Detection Scheme for Image Reconstruction." In Optical Measurements, Modeling, and Metrology, Volume 5, 273–78. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0228-2_33.
Повний текст джерелаLee, Dicky, and Ngai C. Wong. "Quantum Phase Diffusion Noise Measurements in a CW Optical Parametric Oscillator." In Coherence and Quantum Optics VII, 423–24. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9742-8_85.
Повний текст джерелаHall, Michael J. W. "Phase and Noise." In Quantum Communications and Measurement, 53–59. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1391-3_5.
Повний текст джерелаBarnett, Stephen M., and David T. Pegg. "Quantum Optical Phase." In Quantum Communication, Computing, and Measurement, 415–22. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5923-8_44.
Повний текст джерелаKe, Xizheng, and Chenghu Ke. "Atmospheric-Turbulence Noise-Measurement Experiment." In Optical Wireless Communication Theory and Technology, 121–57. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-7550-7_4.
Повний текст джерелаde Groot, Peter. "Phase Shifting Interferometry." In Optical Measurement of Surface Topography, 167–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-12012-1_8.
Повний текст джерелаGhandehari, Masoud, Sridhar Krishnaswamy, and Surendra Shah. "Phase Measurement Interferometry for Mapping Fracture." In Optical Phenomenology and Applications, 209–22. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70715-0_17.
Повний текст джерелаPegg, D. T., J. A. Vaccaro, and S. M. Barnett. "Quantum-Optical Phase and Its Measurement." In Springer Proceedings in Physics, 153–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79101-7_16.
Повний текст джерелаТези доповідей конференцій з теми "Optical Phase Noise Measurement"
Ryu, Shiro. "Phase Noise Measurement with Delay Interferometer During Fast Polarization Fluctuation." In 2024 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 1–2. IEEE, 2024. http://dx.doi.org/10.1109/cleo-pr60912.2024.10676923.
Повний текст джерелаSterczewski, Lukasz A., and Haochen Tian. "Phase noise in free-running dual-comb spectroscopy [invited]." In CLEO: Science and Innovations, SF3O.3. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sf3o.3.
Повний текст джерелаMazelanik, Mateusz, Sebastian Borówka, and Michał Parniak. "LO-free microwave receiver based on Rydberg atoms and nonlinear interferometry." In CLEO: Applications and Technology, JW2A.121. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jw2a.121.
Повний текст джерелаHrabina, Jan, Martin Čížek, Lenka Pravdová, Ondřej Číp, Peter Barcík, Zdeněk Kolka, and Petr Skryja. "Free space optical link phase noise measurement." In 22nd Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics, edited by Waclaw Urbańczyk and Jan Masajada. SPIE, 2022. http://dx.doi.org/10.1117/12.2664641.
Повний текст джерелаHe, Yao, and Rongzhu Zhang. "Measurement of phase noise through beat frequency." In 4th International Symposium on Advanced Optical Manufacturing and testing technologies: Optical Test and Measurement Technology and Equipment, edited by Yudong Zhang, James C. Wyant, Robert A. Smythe, and Hexin Wang. SPIE, 2009. http://dx.doi.org/10.1117/12.828287.
Повний текст джерелаPeng, Huanfa, Naijing Liu, Qijun Liang, Guangyu Gao, Yankun Li, Xiaopeng Xie, and Zhangyuan Chen. "Laser Phase Noise Measurement by Using Offset Optical Phase Locked Loop." In 2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF). IEEE, 2020. http://dx.doi.org/10.1109/ifcs-isaf41089.2020.9234838.
Повний текст джерелаOgu, Ryota, Daiki Tanimura, Chao Zhang, Fumihiko Ito, Yuichi Yoshimura, Hiroyuki Aoshika, and Michio Imai. "110-m range, 600-Hz refresh rate dynamic strain measurement by using phase-noise-compensated OFDR." In Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofs.2023.f1.5.
Повний текст джерелаKato, Takashi, Tamaki Morito, Yasuhisa Nekoshima, and Kaoru Minoshima. "Background noise canceling technique in optical measurement using phase-controlled optical frequency comb." In Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.cthp6e_01.
Повний текст джерелаKokuyama, Wataru, Sho Okubo, Masato Wada, Keisuke Nakamura, and Hajime Inaba. "Time-domain phase noise measurement in the optical frequency region." In 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016). IEEE, 2016. http://dx.doi.org/10.1109/cpem.2016.7540521.
Повний текст джерелаRyu, Shiro. "Optical Phase Noise and Polarization Fluctuation Measurement with Delay Interferometer." In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_at.2023.jtu2a.60.
Повний текст джерелаЗвіти організацій з теми "Optical Phase Noise Measurement"
Blevins, Matthew, Gregory Lyons, Carl Hart, and Michael White. Optical and acoustical measurement of ballistic noise signatures. Engineer Research and Development Center (U.S.), January 2021. http://dx.doi.org/10.21079/11681/39501.
Повний текст джерелаOkusaga, Olukayode K. Photonic Delay-line Phase Noise Measurement System. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada553302.
Повний текст джерелаGetaneh, Mesfin. Phase Noise Measurement in PEP II and the Linac. Office of Scientific and Technical Information (OSTI), September 2003. http://dx.doi.org/10.2172/815643.
Повний текст джерелаTaylor, A. J., G. Omenetto, G. Rodriguez, C. W. Siders, J. L. W. Siders, and C. Downer. Determination of Optical-Field Ionization Dynamics in Plasmas through the Direct Measurement of the Optical Phase Change. Office of Scientific and Technical Information (OSTI), July 1999. http://dx.doi.org/10.2172/759189.
Повний текст джерелаObarski, Gregory E., and Jolene D. Splett. Measurement assurance program for the spectral density of relative intensity noise of optical fiber sources near 1550 nm. Gaithersburg, MD: National Institute of Standards and Technology, 2000. http://dx.doi.org/10.6028/nist.sp.250-57.
Повний текст джерелаMcKinney, Jason D., and John Diehl. Measurement of Chromatic Dispersion using the Baseband Radio-Frequency Response of a Phase-Modulated Analog Optical Link Employing a Reference Fiber. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada472284.
Повний текст джерелаSvedeman. L51729 Gas Scrubber Performance Evaluation - Measurement Methods. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 1995. http://dx.doi.org/10.55274/r0010420.
Повний текст джерелаHart, Carl, Gregory Lyons, and Michael White. Spherical shock waveform reconstruction by heterodyne interferometry. Engineer Research and Development Center (U.S.), May 2024. http://dx.doi.org/10.21079/11681/48471.
Повний текст джерелаPanek, Jeffrey, Adrian Huth, and Benjamin Shwaiko. PR-312-22200-Z01 Isolation Valve - Improved GHG Leak Detection Summary of Initial Testing Results. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), July 2024. http://dx.doi.org/10.55274/r0000077.
Повний текст джерелаTire Experimental Characterization Using Contactless Measurement Methods. SAE International, August 2021. http://dx.doi.org/10.4271/2021-01-1114.
Повний текст джерела