Добірка наукової літератури з теми "Optical Phase Noise Measurement"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Optical Phase Noise Measurement".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Optical Phase Noise Measurement"

1

Horstman, Luke, and Jean-Claude Diels. "Intracavity Measurement Sensitivity Enhancement without Runaway Noise." Sensors 21, no. 24 (December 19, 2021): 8473. http://dx.doi.org/10.3390/s21248473.

Повний текст джерела
Анотація:
A method to increase the sensitivity of an intracavity differential phase measurement that is not made irrelevant by a larger increase of noise is explored. By introducing a phase velocity feedback by way of a resonant dispersive element in an active sensor in which two ultrashort pulses circulate, it is shown that the measurement sensitivity is elevated without significantly increasing the Petermann excess noise factor. This enhancement technique has considerable implications for any optical phase based measurement; from gyroscopes and accelerometers to magnetometers and optical index measurements. Here we describe the enhancement method in the context of past dispersion enhancement studies including the recent work surrounding non-Hermitian quantum mechanics, justify the method with a theoretical framework (including numerical simulations), and propose practical applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rodríguez-García, M. A., and F. E. Becerra. "Adaptive Phase Estimation with Squeezed Vacuum Approaching the Quantum Limit." Quantum 8 (September 25, 2024): 1480. http://dx.doi.org/10.22331/q-2024-09-25-1480.

Повний текст джерела
Анотація:
Phase estimation plays a central role in communications, sensing, and information processing. Quantum correlated states, such as squeezed states, enable phase estimation beyond the shot-noise limit, and in principle approach the ultimate quantum limit in precision, when paired with optimal quantum measurements. However, physical realizations of optimal quantum measurements for optical phase estimation with quantum-correlated states are still unknown. Here we address this problem by introducing an adaptive Gaussian measurement strategy for optical phase estimation with squeezed vacuum states that, by construction, approaches the quantum limit in precision. This strategy builds from a comprehensive set of locally optimal POVMs through rotations and homodyne measurements and uses the Adaptive Quantum State Estimation framework for optimizing the adaptive measurement process, which, under certain regularity conditions, guarantees asymptotic optimality for this quantum parameter estimation problem. As a result, the adaptive phase estimation strategy based on locally-optimal homodyne measurements achieves the quantum limit within the phase interval of [0,π/2). Furthermore, we generalize this strategy by including heterodyne measurements, enabling phase estimation across the full range of phases from [0,π), where squeezed vacuum allows for unambiguous phase encoding. Remarkably, for this phase interval, which is the maximum range of phases that can be encoded in squeezed vacuum, this estimation strategy maintains an asymptotic quantum-optimal performance, representing a significant advancement in quantum metrology.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Krasionov, I. I., and L. V. Il’ichev. "Noise-oriented quantum optical gyrometry." Quantum Electronics 52, no. 2 (February 1, 2022): 127–29. http://dx.doi.org/10.1070/qel17979.

Повний текст джерела
Анотація:
Abstract By the example of an optical gyroscope scheme, a new method for improving the accuracy of phase measurements is considered. In the rotation-recording Mach – Zehnder interferometer, a two-mode squeezed vacuum is used as an input state. This does not allow realising the traditional scheme, since the average value of the difference signal at the output is always zero. However, it is shown that information about the magnitude of the rotation angular velocity of the instrument reference frame is contained in the noise level of the difference signal. The possibility of reaching the Heisenberg limit of the measurement accuracy is demonstrated.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Shi, Jingzhan, Fangzheng Zhang, De Ben, and Shilong Pan. "Photonic-assisted single system for microwave frequency and phase noise measurement." Chinese Optics Letters 18, no. 9 (2020): 092501. http://dx.doi.org/10.3788/col202018.092501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chen, Jia-Qi, Chao Chen, Jing-Jing Sun, Jian-Wei Zhang, Zhao-Hui Liu, Li Qin, Yong-Qiang Ning, and Li-Jun Wang. "Linewidth Measurement of a Narrow-Linewidth Laser: Principles, Methods, and Systems." Sensors 24, no. 11 (June 5, 2024): 3656. http://dx.doi.org/10.3390/s24113656.

Повний текст джерела
Анотація:
Narrow-linewidth lasers mainly depend on the development of advanced laser linewidth measurement methods for related technological progress as key devices in satellite laser communications, precision measurements, ultra-high-speed optical communications, and other fields. This manuscript provides a theoretical analysis of linewidth characterization methods based on the beat frequency power spectrum and laser phase noise calculations, and elaborates on existing research of measurement technologies. In addition, to address the technical challenges of complex measurement systems that commonly rely on long optical fibers and significant phase noise jitter in the existing research, a short-delay self-heterodyne method based on coherent envelope spectrum demodulation was discussed in depth to reduce the phase jitter caused by 1/f noise. We assessed the performance parameters and testing conditions of different lasers, as well as the corresponding linewidth characterization methods, and analyzed the measurement accuracy and error sources of various methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fischer, Marc, Marcus Petz, and Rainer Tutsch. "Statistical characterization of evaluation strategies for fringe projection systems by means of a model-based noise prediction." Journal of Sensors and Sensor Systems 6, no. 1 (April 6, 2017): 145–53. http://dx.doi.org/10.5194/jsss-6-145-2017.

Повний текст джерела
Анотація:
Abstract. For optical 3-D measurement systems, camera noise is the dominant uncertainty factor when optically cooperative surfaces are measured in a stable and controlled environment. In industrial applications repeated measurements are seldom executed for this kind of measurement system. This leads to statistically suboptimal results in subsequent evaluation steps as the important information about the quality of individual measurement points is lost. In this work it will be shown that this information can be recovered for phase measuring optical systems with a model-based noise prediction. The capability of this approach will be demonstrated exemplarily for a fringe projection system and it will be shown that this method is indeed able to generate an individual estimate for the spatial stochastic deviations resulting from image sensor noise for each measurement point. This provides a valuable tool for a statistical characterization and comparison of different evaluation strategies, which is demonstrated exemplarily for two different triangulation procedures.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bengalskii, Danil M., Danil R. Kharasov, Edgard A. Fomiryakov, Sergei P. Nikitin, Oleg E. Nanii, and Vladimir N. Treshchikov. "Characterization of Laser Frequency Stability by Using Phase-Sensitive Optical Time-Domain Reflectometry." Photonics 10, no. 11 (November 4, 2023): 1234. http://dx.doi.org/10.3390/photonics10111234.

Повний текст джерела
Анотація:
A new method to measure laser phase noise and frequency stability based on the phase-sensitive optical time-domain reflectometry is proposed. In this method, the laser under test is utilized in a phase-sensitive optical time-domain reflectometer, which employs phase-modulated dual pulses and acts as an optical frequency discriminator: laser frequency fluctuations are deduced from the analysis of the reflectometer data corresponded to phase fluctuations along the vibration-damped and thermally insulated fiber spool. The measurement results were validated by comparison with direct optical heterodyning of the tested and more coherent reference lasers. The use of dual pulses generated by an acousto-optic modulator makes it easy to adjust the time delay during measurements, which distinguishes favorably the proposed method from standard optical frequency discriminators. The method is suitable for testing highly coherent lasers and qualifying their parameters such as linear drift rate, random frequency walk rate, white frequency noise (which is directly related to laser instantaneous linewidth), and flicker noise level.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

van Ardenne, A., and W. Melis. "Quasi-optical measurement of carcinotron phase noise at 350 GHz." Electronics Letters 24, no. 23 (1988): 1411. http://dx.doi.org/10.1049/el:19880964.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Xu, Hao, Haitao Wu, Dong Hou, Haoyuan Lu, Zhaolong Li, and Jianye Zhao. "Yoctosecond Timing Jitter Sensitivity in Tightly Synchronized Mode-Locked Ti:Sapphire Lasers." Photonics 9, no. 8 (August 12, 2022): 569. http://dx.doi.org/10.3390/photonics9080569.

Повний текст джерела
Анотація:
Higher sensitivity in timing jitter measurement has great importance in studies related to precise measurements. Timing jitter noise floors contribute one of the main parts in existing measurements. In this article, a phase error signal is obtained by superposition of outputs of two optical heterodyne discrimination apparatus to suppress the noise floor. Excess phase noise of the electrical amplifier is avoided. We demonstrate 2.6 × 10−14 fs2/Hz (~160 ys/√Hz) timing jitter noise floor between two identical 99 MHz repetition-rate mode-locked Ti:sapphire lasers after their repetition rates are tightly synchronized. The performance is extensible to reach an integrated timing jitter resolution of one attosecond.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Duong, Chen, and Chen. "Absolute Depth Measurement Using Multiphase Normalized Cross-Correlation for Precise Optical Profilometry." Sensors 19, no. 21 (October 28, 2019): 4683. http://dx.doi.org/10.3390/s19214683.

Повний текст джерела
Анотація:
In a multifrequency phase-shifting (MFPS) algorithm, the temporal phase unwrapping algorithm can extend the unambiguous phase range by transforming the measurement range from a short fringe pitch into an extended synthetic pitch of two different frequencies. However, this undesirably amplifies the uncertainty of measurement, with each single-frequency phase map retaining its measurement uncertainty, which is carried over to the final unwrapped phase maps in fringe-order calculations. This article analyzes possible causes and proposes a new absolute depth measurement algorithm to minimize the propagation of measurement uncertainty. Developed from normalized cross-correlation (NCC), the proposed algorithm can minimize wrong fringe-order calculations in the MFPS algorithm. The experimental results demonstrated that the proposed measurement method could effectively calibrate the wrong fringe order. Moreover, some extremely low signal-to-noise ratio (SNR) regions of a captured image could be correctly reconstructed (for surface profiles). The present findings confirmed measurement precision at one standard deviation below 5.4 µm, with an absolute distance measurement of 16 mm. The measurement accuracy of the absolute depth could be significantly improved from an unacceptable level of measured errors down to 0.5% of the overall measuring range. Additionally, the proposed algorithm was capable of extracting the absolute phase map in other optical measurement applications, such as distance measurements using interferometry.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Optical Phase Noise Measurement"

1

Mukherjee, Shambo. "Development of a Fabry-Pérot optical interferometer with low thermal and accelerometric sensitivities." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCD023.

Повний текст джерела
Анотація:
Cette thèse explore le développement d'un laser transportable à largeur de raie ultra fine intégrant une cavité Fabry-Pèrot de haute finesse. La cavité est fabriquée à partir d'un verre ULE à très faible expansion thermique avec des miroirs en silice fondue contactés optiquement, visant à minimiser les perturbations thermiques et mécaniques et à améliorer la stabilité de la fréquence. Une nouvelle méthode numérique de stabilisation de fréquence utilisant une plateforme FPGA est introduite, visant une stabilité relative de fréquence de 1e-15 à une seconde. Cette approche contraste avec les systèmes analogiques traditionnels en offrant une stabilité accrue et une complexité réduite. L'étude examine également plusieurs limitations des lasers ultra-stables comme le bruit de phase, le bruit thermique, etc. et plusieurs approches pour atténuer ces sources de bruit. En outre, un système de distribution de fréquences optiques utilisant des boucles à verrouillage de phase basé sur un FPGA et des liaisons par fibre optique est détaillé, garantissant une transmission stable du signal sur des distances de laboratoire
This thesis explores the development of a transportable, ultra-narrow linewidth laser integrating a high-finesse Fabry-Pèrot cavity made from ultra-low expansion glass with optically contacted Fused Silica mirrors, aiming to minimize thermal and mechanical perturbations and enhance frequency stability. A novel digital frequency stabilization method using an FPGA-based platform is introduced, targeting a fractional frequency stability of 1e-1 5 at 1-second integration. This approach contrasts traditional analog systems by offering increased stability and reduced complexity. The study also examines several limitations of ultra stable lasers like phase noise, thermal noise etc. and several approaches to mitigate these type of noise. Additionally, an optical frequency dissemination system using FPGA-based phaselocked loops and optical fiber links is detailed, ensuring stable signal transmission over laboratory distances
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Grobbelaar, Johannes Jacobus. "Phase noise measurement." Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/6806.

Повний текст джерела
Анотація:
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2011.
ENGLISH ABSTRACT: The objective of the thesis is the development of a phase noise measuring system that makes use of crosscorrelation and averaging to measure below the system hardware noise floor. Various phase noise measurement techniques are considered after which the phase demodulation method is chosen to be implemented. The full development cycle of the hardware is discussed, as well as the post processing that is performed on the measured phase noise.
AFRIKAANSE OPSOMMING: Die doel van hierdie tesis is die ontwikkeling van ’n faseruis meetstelsel wat gebruik maak van kruiskorrelasie en vergemiddeling om onder die ruisvloer van die meetstelsel se hardeware te meet. Verskeie faseruis meettegnieke word ondersoek en die fase demodulasie metode word gekies om geïmplementeer te word. Die volle ontwikkelingsiklus van die hardeware word bespreek, sowel as die naverwerking wat toegepas is op die gemete faseruis.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pham, Toan Thang. "Advances in opto-electronic oscillator operation for sensing and component characterization." Thesis, Cachan, Ecole normale supérieure, 2015. http://www.theses.fr/2015DENS0013/document.

Повний текст джерела
Анотація:
L'oscillateur optoélectronique (OEO) a été introduit pour la première fois en 1996 par S. Yao et L. Maleki, en tant qu'oscillateur microondes à très faible bruit de phase et obtenu par synthèse directe. Les développements de l'OEO concernent les applications en photonique microondes, télécommunications optiques, radar et traitement du signal. Mais l'OEO devrait aussi pouvoir être utilisé dans le domaine des capteurs. Dans cette thèse nous étudiants plusieurs aspects de l'OEO pour son application à la mesure d'indice de réfraction d'un liquide. Compte tenu de sa structure l'OEO dépend fortement des conditions ambiantes d'utilisation. S'il n'est pas bien optimisé ni contrôlé, il ne peut pas fonctionner correctement sur une longue durée. Nous avons étudié les influences de la température sur le modulateur électrooptique (EOM) et sur le comportement global de l'OEO. Un contrôle de température réduit de façon significative le phénomène de dérive de l'EOM. Afin de la supprimer complètement, nous avons mis au point une instrumentation construite autour d'une carte DSP, permettant de détecter et compenser la dérive du point de fonctionnement optique de l'EOM tout en contrôlant simultanément sa température. Une première technique est basée sur un signal de test, basse fréquence, appliqué à l'électrode DC du modulateur. Une deuxième solution consiste à travailler sur la puissance optique en sortie du modulateur. En combinant les deux on peut profiter des avantages de ces deux méthodes. Utilisant ainsi l'OEO nous avons testé plusieurs configurations pour mesurer l'indice de réfraction de quatre solutions chimiques bien connues, nous avons obtenu une variance de 3 pour mille. Les résultats sont en assez bon accord avec les publications correspondantes. Enfin nous avons aussi introduit une nouvelle méthode pour améliorer les mesures d'indice de réfraction faites à long terme en suivant, grâce à un analyseur vectoriel de réseau, les évolutions au cours du temps du temps de propagation dans la fibre optique. En introduisant à partir de cette mesure une correction aux mesures de la fréquence d'oscillation il est possible de réduire les fluctuations de cette fréquence à seulement 606 Hz, sur une durée de 62 h, ce que l'on peut comparer aux 8 GHz de l'oscillateur. Ainsi le rapport signal à bruit, peut être grandement amélioré lors de la mesure d'indice de réfraction et il doit être possible de diminuer la limite de détection des variations de l'indice de réfraction au cours du temps
The optoelectronic oscillator (OEO) was first introduced in 1996 by S. Yao and L. Maleki as a very low phase noise microwave oscillator working in direct synthesis. The OEO developments concern applications in microwave photonics, optical telecommunication, radar and high speed signal processing systems but it should also be used in the sensing domain. In this thesis, we study several aspects to apply the OEO to liquid refractive index measurement. Because of its structure the OEO is very dependent on the ambient conditions. If the OEO is not optimized and controlled, it cannot operate well for long duration. We have analyzed the influences of temperature on the electrooptic modulator (EOM) and the global OEO behavior. Temperature control can significantly reduce the drift phenomena of the EOM. In order to totally remove this drift, we have developed a complete digital system, based on a DSP kit, to detect and compensate automatically the EOM optical bias point drift and to control simultaneously its temperature. The first technique is based on a dither signal at low frequency, injected to DC electrode of the EOM. The second one is based on the average optical output power of the EOM. A combination of these two techniques can take advantages from both of them. Using like that the OEO, we have tested several configurations to measure the refractive index of four classical chemical solutions leading to a standard deviation of 3 per thousand. The results are in rather good agreement with previous publications. Finally, we have introduced a new method to improve the long-term refractive index measurement by monitoring, with a vector network analyzer, the variations of the optical delay in the fiber loop of the OEO. Introducing by this way a correction to the long-term frequency measurement it is possible to reduce the oscillation frequency fluctuations to only 606 Hz, compared to the 8 GHz of the oscillator, for a duration of 62 hours. Therefore the signal-to-noise ratio in the refractive index measurement can be enhanced and so the detection resolution of the refractive index variations during time
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Azizoḡlu, Murat. "Phase noise in coherent optical communications." Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/13463.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1991.
Includes bibliographical references (p. 201-206).
by Murat Azizoğlu.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dove, Justin (Justin Michael). "Phase-noise limitations on nonlinear-optical quantum computing." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/89857.

Повний текст джерела
Анотація:
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
19
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 57-58).
Flying in the face of the long-sought-after goal of building optical quantum computers, we show that traditional approaches leveraging nonlinear-optical cross phase modulation (XPM) to construct the critical element, the cphase gate - a gate which seeks to impart a [pi]-radian phase shift on a single photon pulse, conditioned on the presence of a second single photon pulse - are doomed to fail. The traditional story told in common textbooks fails to account for the continuous-time nature of the real world. Previous work addressing this fact - finding that that the proper continuous-time theory introduces fidelity-degrading phase noise that precludes such proposals - was limited in scope to the case of co-propagating pulses with equal group velocities. This left room for criticism that a high-fidelity cphase gate might be constructed using XPM with pulses that pass through each other. In our work, we build such a continuous-time quantum theory of XPM for pulses that pass through each other and evaluate its consequences. We find that fundamental aspects of the real world prevent one from constructing a perfect cphase gate, even in theory, and we show that the best we can do seems to fall far short of what is needed for quantum computation, even if we are extremely optimistic.
by Justin Dove.
S.M.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Farhoudi, Ramtin. "Study of phase noise in optical coherent systems." Doctoral thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/25706.

Повний текст джерела
Анотація:
Le bruit de phase est un problème important dans la conception de systèmes cohérents optiques. Bien que le bruit de phase soit étudié énormément dans les communications sans fil, certains aspects de bruit de phase sont nouveaux dans des systèmes cohérents optiques. Dans cette thèse, nous explorons les statistiques de bruit de phase dans les systèmes optiques cohérentes et proposons une nouvelle technique pour améliorer la robustesse du système envers le bruit de phase. Notre première contribution traite de l’étude des statistiques de bruit de phase en présence de compensation électronique de la dispersion chromatique (CD) dans des systèmes cohérents. Nous montrons que le modèle proposé précédemment pour l’interaction de CD avec bruit de phase doit être modifié à cause d’un modèle trop simple pour la récupération de phase. Nous dérivons une expression plus précise pour le bruit de phase estimé par la récupération de phase avec décision dirigée (DD), et utilisons cette expression pour modifier les statistiques de décision pour les symboles reçus. Nous calculons le taux d’erreur binaire (BER) pour le format de transmission DQPSK semi-analytiquement en utilisant nos statistiques de décision modifiées et montrons que pour la récupération de phase idéale, le BER semi-analytique est bien assorti avec le BER simulé avec la technique Monte-Carlo (MC). Notre deuxième contribution est l’adaptation d’une technique de codage MLCM pour les systèmes cohérents limités par le bruit de phase et le bruit blanc additif Gaussien (AWGN). Nous montrons que la combinaison d’une constellation optimisée pour le bruit de phase avec MLCM offre un système robuste à complexité modérée. Nous vérifions que la performance de MLCM dans des systèmes cohérents avec constellations 16-aires se détériorés par le bruit de phase non-linéaire et de Wiener. Pour le bruit de phase non-linéaire, notre conception de MLCM démontre une performance supérieure par rapport àune conception de MLCM déjà présente dans la littérature. Pour le bruit de phase de Wiener, nous comparons deux format de transmission, constellations carrées et optimisée pour bruit de phase, et deux techniques de codage, MLCM et codage à débit uniforme. Nos résultats expérimentaux pour BER après codage suivent les mêmes tendances que le BER simulé et confirment notre conception.
Phase noise is an important issue in designing today’s optical coherent systems. Although phase noise is studied heavily in wireless communications, some aspects of phase noise are novel in optical coherent systems. In this thesis we explore phase noise statistics in optical coherent systems and propose a novel technique to increase system robustness toward phase noise. Our first contribution deals with the study of phase noise statistics in the presence of electronic chromatic dispersion (CD) compensation in coherent systems. We show that previously proposed model for phase noise and CD interaction must be modified due to an overly simple model of carrier phase recovery. We derive a more accurate expression for the estimated phase noise of decision directed (DD) carrier phase recovery, and use this expression to modify the decision statistics of received symbols. We calculate bit error rate (BER) of a differential quadrature phase shift keying (DQPSK) system semi-analytically using our modified decision statistics and show that for ideal DD carrier phase recovery the semi-analytical BER matches the BER simulated via Monte-Carlo (MC) technique. We show that the semi-analytical BER is a lower bound of simulated BER from Viterbi-Viterbi (VV) carrier phase recovery for a wide range of practical system parameters. Our second contribution is concerned with adapting a multi-level coded modulation (MLCM) technique for phase noise and additive white Gaussian noise (AWGN) limited coherent system. We show that the combination of a phase noise optimized constellation with MLCM offers a phase-noise robust system at moderate complexity. We propose a numerical method to design set-partitioning (mapping bits to symbols) and optimizing code rates for minimum block error rate (BLER).We verify MLCM performance in coherent systems of 16-ary constellations impaired by nonlinear and Wiener phase noise. For nonlinear phase noise, superior performance of our MLCM design over a previously designed MLCM system is demonstrated in terms of BLER. For Wiener phase noise, we compare optimized and square 16-QAM constellations assuming either MLCM or uniform rate coding. We compare post forward error correction (FEC) BER in addition to BLER by both simulation and experiment and show that superior BLER performance is translated into post FEC BER. Our experimental post FEC BER results follow the same trends as simulated BER, validating our design.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

McBride, Roy. "Phase measurement and phase control in fibre-optic interferometers." Thesis, Heriot-Watt University, 1998. http://hdl.handle.net/10399/1219.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ichikawa, Hiroyuki. "Optical beam array generation with phase gratings." Thesis, Heriot-Watt University, 1991. http://hdl.handle.net/10399/807.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kakkar, Aditya. "Frequency Noise in Coherent Optical Systems: Impact and Mitigation Methods." Doctoral thesis, KTH, Optik och Fotonik, OFO, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-207072.

Повний текст джерела
Анотація:
The increase in capacity demand along with the advancement in digital signal processing (DSP) have recently revived the interest in coherent optical communications and led to its commercialization. However, design and development of robust DSP algorithms for example for carrier phase recovery (CPR) becomes complex as we opt for high order modulation formats such as 16QAM and beyond. Further, electrical-domain dispersion compensation (EDC), while providing many advantages, makes the system more susceptible to laser frequency noise (FN). For instance, in coherent optical links with post-reception EDC, while the transmitter frequency noise causes only phase impairment, the local oscillator (LO) FN in these systems results in a noise enhancement in both amplitude and phase. This noise is commonly known as equalization enhanced phase noise (EEPN). It results in asymmetric requirements for transmitter laser and LO laser. Further, the system design in the presence of lasers with non-white frequency noise becomes increasingly challenging for increased capacity-distance product. The main contributions of this thesis are, firstly, an experimentally validated theory of coherent optical links with lasers having general non-white frequency noise spectrum and corresponding system/laser design criteria and mitigation technique. Secondly, low complexity and high phase noise tolerant CPR for high order modulation formats. The general theory propounded in this thesis elucidates the origin of the laser frequency noise induced noise enhancement in coherent optical links with different DSP configurations. The thesis establishes the existence of multiple frequency noise regimes and shows that each regime results in different set of impairments. The influence of the impairments due to some regimes can ideally be reduced by optimizing the corresponding mitigation algorithms, while other regimes cause irretrievable impairments. Experimentally validated theoretical boundaries of these regimes and corresponding criteria applicable to system/laser design are provided. Further, an EEPN mitigation method and its two possible implementations are proposed and discussed. The thesis also demonstrates an intrinsic limitation of the conventional Blind Phase Search (BPS) algorithm due to angular quantization and provides methods to overcome it. Finally, this thesis proposes and demonstrates single stage and multi-stage carrier phase recovery algorithms for compensation of phase impairments due to the two lasers for higher order circular and square modulations. The proposed methods outperform the state of art algorithms both in performance and in complexity.

QC 20170516


European project ICONE gr. #608099
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Boivin, David. "Optical phase-modulated systems: numerical estimation and experimental measurement of phase jitter." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-11072006-110448/.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2007.
Bennett, Gisele, Committee Member ; Rhodes, William, Committee Member ; McLaughlin, Steven, Committee Member ; Barry, John, Committee Co-Chair ; Chang, Gee-Kung, Committee Chair ; Chapman, Michael, Committee Member.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Optical Phase Noise Measurement"

1

Walid, Qaqish, and Lewis Research Center, eds. Optical strain measurement system development: Phase I. [Cleveland, Ohio]: National Aeronautics and Space Administration, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Harry, Gregory, Timothy P. Bodiya, and Riccardo DeSalvo, eds. Optical Coatings and Thermal Noise in Precision Measurement. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511762314.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

United States. National Aeronautics and Space Administration., ed. Advanced one-dimensional optical strain measurement system--phase IV. [Washington, DC: National Aeronautics and Space Administration, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

United States. National Aeronautics and Space Administration., ed. Advanced one-dimensional optical strain measurement system--phase IV. [Washington, DC]: National Aeronautics and Space Administration, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Center, Lewis Research, ed. Compact simultaneous-beam optical strain measurement system: Phase V. [Cleveland, Ohio]: Lewis Research Center, National Aeronautics and Space Administration, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

United States. National Aeronautics and Space Administration., ed. Advanced one-dimensional optical strain measurement system--phase IV. [Washington, DC: National Aeronautics and Space Administration, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Center, Lewis Research, ed. Compact simultaneous-beam optical strain measurement system: Phase V. [Cleveland, Ohio]: Lewis Research Center, National Aeronautics and Space Administration, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

United States. National Aeronautics and Space Administration., ed. Advanced one-dimensional optical strain measurement system--phase IV. [Washington, DC]: National Aeronautics and Space Administration, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Center, Lewis Research, ed. Compact simultaneous-beam optical strain measurement system: Phase V. [Cleveland, Ohio]: Lewis Research Center, National Aeronautics and Space Administration, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

S, Preisser John, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., eds. Location of noise sources using a phase-slope method. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Optical Phase Noise Measurement"

1

Haus, Hermann A. "Phase-Sensitive Amplification and Squeezing." In Electromagnetic Noise and Quantum Optical Measurements, 379–416. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04190-1_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Haus, Hermann A. "Classical and Quantum Analysis of Phase-Insensitive Systems." In Electromagnetic Noise and Quantum Optical Measurements, 241–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04190-1_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Weng, Jing-Feng, and Yu-Lung Lo. "Filters with Noise/Phase Jump Detection Scheme for Image Reconstruction." In Optical Measurements, Modeling, and Metrology, Volume 5, 273–78. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0228-2_33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lee, Dicky, and Ngai C. Wong. "Quantum Phase Diffusion Noise Measurements in a CW Optical Parametric Oscillator." In Coherence and Quantum Optics VII, 423–24. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9742-8_85.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hall, Michael J. W. "Phase and Noise." In Quantum Communications and Measurement, 53–59. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1391-3_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Barnett, Stephen M., and David T. Pegg. "Quantum Optical Phase." In Quantum Communication, Computing, and Measurement, 415–22. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5923-8_44.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ke, Xizheng, and Chenghu Ke. "Atmospheric-Turbulence Noise-Measurement Experiment." In Optical Wireless Communication Theory and Technology, 121–57. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-7550-7_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

de Groot, Peter. "Phase Shifting Interferometry." In Optical Measurement of Surface Topography, 167–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-12012-1_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ghandehari, Masoud, Sridhar Krishnaswamy, and Surendra Shah. "Phase Measurement Interferometry for Mapping Fracture." In Optical Phenomenology and Applications, 209–22. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70715-0_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pegg, D. T., J. A. Vaccaro, and S. M. Barnett. "Quantum-Optical Phase and Its Measurement." In Springer Proceedings in Physics, 153–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79101-7_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Optical Phase Noise Measurement"

1

Ryu, Shiro. "Phase Noise Measurement with Delay Interferometer During Fast Polarization Fluctuation." In 2024 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 1–2. IEEE, 2024. http://dx.doi.org/10.1109/cleo-pr60912.2024.10676923.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sterczewski, Lukasz A., and Haochen Tian. "Phase noise in free-running dual-comb spectroscopy [invited]." In CLEO: Science and Innovations, SF3O.3. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sf3o.3.

Повний текст джерела
Анотація:
Dual-comb spectroscopy is becoming a pillar of precise optical measurements. Here we study the impact of the laser source timing jitter and carrier-envelope fluctuations on the shape of molecular absorption lines probed using this technique.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mazelanik, Mateusz, Sebastian Borówka, and Michał Parniak. "LO-free microwave receiver based on Rydberg atoms and nonlinear interferometry." In CLEO: Applications and Technology, JW2A.121. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jw2a.121.

Повний текст джерела
Анотація:
We propose a new optically-biased Rydberg-atoms detection of microwave fields, that allows truly all-optical operation, while retaining most of the sensitivity. We tackle the issue of laser phase noise, emerging in this type of detection, by facilitating separate measurement of this noise in a nonlinear process.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hrabina, Jan, Martin Čížek, Lenka Pravdová, Ondřej Číp, Peter Barcík, Zdeněk Kolka, and Petr Skryja. "Free space optical link phase noise measurement." In 22nd Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics, edited by Waclaw Urbańczyk and Jan Masajada. SPIE, 2022. http://dx.doi.org/10.1117/12.2664641.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

He, Yao, and Rongzhu Zhang. "Measurement of phase noise through beat frequency." In 4th International Symposium on Advanced Optical Manufacturing and testing technologies: Optical Test and Measurement Technology and Equipment, edited by Yudong Zhang, James C. Wyant, Robert A. Smythe, and Hexin Wang. SPIE, 2009. http://dx.doi.org/10.1117/12.828287.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Peng, Huanfa, Naijing Liu, Qijun Liang, Guangyu Gao, Yankun Li, Xiaopeng Xie, and Zhangyuan Chen. "Laser Phase Noise Measurement by Using Offset Optical Phase Locked Loop." In 2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF). IEEE, 2020. http://dx.doi.org/10.1109/ifcs-isaf41089.2020.9234838.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ogu, Ryota, Daiki Tanimura, Chao Zhang, Fumihiko Ito, Yuichi Yoshimura, Hiroyuki Aoshika, and Michio Imai. "110-m range, 600-Hz refresh rate dynamic strain measurement by using phase-noise-compensated OFDR." In Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofs.2023.f1.5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kato, Takashi, Tamaki Morito, Yasuhisa Nekoshima, and Kaoru Minoshima. "Background noise canceling technique in optical measurement using phase-controlled optical frequency comb." In Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.cthp6e_01.

Повний текст джерела
Анотація:
Noise canceling technique using phase-controlled optical frequency comb was proposed in an optical pulse interferometric measurement. By precisely controlling the ratio of the two frequency parameters of the comb, broadband background noise is canceled.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kokuyama, Wataru, Sho Okubo, Masato Wada, Keisuke Nakamura, and Hajime Inaba. "Time-domain phase noise measurement in the optical frequency region." In 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016). IEEE, 2016. http://dx.doi.org/10.1109/cpem.2016.7540521.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ryu, Shiro. "Optical Phase Noise and Polarization Fluctuation Measurement with Delay Interferometer." In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_at.2023.jtu2a.60.

Повний текст джерела
Анотація:
In this paper, we report experimental results that a delay interferometer can measure the signal light's optical phase noise and polarization fluctuation in the single-mode fibers with reasonable accuracy.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Optical Phase Noise Measurement"

1

Blevins, Matthew, Gregory Lyons, Carl Hart, and Michael White. Optical and acoustical measurement of ballistic noise signatures. Engineer Research and Development Center (U.S.), January 2021. http://dx.doi.org/10.21079/11681/39501.

Повний текст джерела
Анотація:
Supersonic projectiles in air generate acoustical signatures that are fundamentally related to the projectile’s shape, size, and velocity. These characteristics influence various mechanisms involved in the generation, propagation, decay, and coalescence of acoustic waves. To understand the relationships between projectile shape, size, velocity, and the physical mechanisms involved, an experimental effort captured the acoustic field produced by a range of supersonic projectiles using both conventional pressure sensors and a schlieren imaging system. The results of this ongoing project will elucidate those fundamental mechanisms, enabling more sophisticated tools for detection, classification, localization, and tracking. This paper details the experimental setup, data collection, and preliminary analysis of a series of ballistic projectiles, both idealized and currently in use by the U.S. Military.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Okusaga, Olukayode K. Photonic Delay-line Phase Noise Measurement System. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada553302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Getaneh, Mesfin. Phase Noise Measurement in PEP II and the Linac. Office of Scientific and Technical Information (OSTI), September 2003. http://dx.doi.org/10.2172/815643.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Taylor, A. J., G. Omenetto, G. Rodriguez, C. W. Siders, J. L. W. Siders, and C. Downer. Determination of Optical-Field Ionization Dynamics in Plasmas through the Direct Measurement of the Optical Phase Change. Office of Scientific and Technical Information (OSTI), July 1999. http://dx.doi.org/10.2172/759189.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Obarski, Gregory E., and Jolene D. Splett. Measurement assurance program for the spectral density of relative intensity noise of optical fiber sources near 1550 nm. Gaithersburg, MD: National Institute of Standards and Technology, 2000. http://dx.doi.org/10.6028/nist.sp.250-57.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

McKinney, Jason D., and John Diehl. Measurement of Chromatic Dispersion using the Baseband Radio-Frequency Response of a Phase-Modulated Analog Optical Link Employing a Reference Fiber. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada472284.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Svedeman. L51729 Gas Scrubber Performance Evaluation - Measurement Methods. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 1995. http://dx.doi.org/10.55274/r0010420.

Повний текст джерела
Анотація:
Scrubbers and separators are used in natural gas pipelines to remove solid and liquid materials from the gas stream. Failure to remove the entrained materials from the gas can result in equipment damage, increased pressure drop due to liquid accumulation, flow measurement errors, and corrosion. The performance of separators is rarely tested after a separator is installed because there is a lack of test instrumentation and it is difficult to conduct tests at the high pressures. The only indicators of poor separator performance are recurring problems in downstream equipment or the detection of accumulated materials in downstream piping. Instrumentation is needed that can verify separator performance when the unit is installed and to periodically monitor separator performance. The report documents results of instrument tests. The objectives of the instrument evaluations were to verify that the instruments could be used to measure particles penetrating a separator, to provide a comparative evaluation of the instruments, and to identify any measurement problems that could be encountered in field testing. One important result was that the separator minimum removable drop size increased as the operating pressure increased. This trend is not generally known, since there is a lack of test results for pressures above atmospheric pressure. The separator performance test results are documented in this report. Two different particle measuring instruments were evaluated for documenting separator performance. The two instruments were the video imaging system with automatic image analysis and the laser-based phase Doppler particle measuring system. The instruments were evaluated in laboratory tests that were conducted on a commercially available vane-type separator. The objectives of the instrument evaluations were to verify that the instruments could be used to measure particles penetrating a separator, to provide a comparative evaluation of the two instruments, and to identify any measurement problems that could be encountered in field testing. The video imaging system has a number of attractive attributes, but it was not able to measure the small diameter drops at the separator exit. The primary limitation was that the optical system could not clearly image the small drops (in the range from 5 to 30 um). The phase Doppler particle measuring system was capable of measuring all of the parameters needed to document the separator performance. Based on the instrument evaluations, future efforts on developing measurement methods for documenting separator performance should focus on adapting the phase Doppler system to field testing.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hart, Carl, Gregory Lyons, and Michael White. Spherical shock waveform reconstruction by heterodyne interferometry. Engineer Research and Development Center (U.S.), May 2024. http://dx.doi.org/10.21079/11681/48471.

Повний текст джерела
Анотація:
The indirect measurement of shock waveforms by acousto-optic sensing requires a method to reconstruct the field from the projected data. Under the assumption of spherical symmetry, one approach is to reconstruct the field by the Abel inversion integral transform. When the acousto-optic sensing modality measures the change in optical phase difference time derivative, as for a heterodyne Mach–Zehnder interferometer, e.g., a laser Doppler vibrometer, the reconstructed field is the fluctuating refractive index time derivative. A technique is derived that reconstructs the fluctuating index directly by assuming plane wave propagation local to a probe beam. With synthetic data, this approach is compared to the Abel inversion integral transform and then applied to experimental data of laser-induced shockwaves. Time waveforms are reconstructed with greater accuracy except for the tail of the waveform that maps spatially to positions near a virtual origin. Furthermore, direct reconstruction of the fluctuating index field eliminates the required time integration and results in more accurate shock waveform peak values, rise times, and positive phase duration.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Panek, Jeffrey, Adrian Huth, and Benjamin Shwaiko. PR-312-22200-Z01 Isolation Valve - Improved GHG Leak Detection Summary of Initial Testing Results. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), July 2024. http://dx.doi.org/10.55274/r0000077.

Повний текст джерела
Анотація:
This project investigated and evaluated commercially available optical IR and acoustic technologies. The IR cameras were used to detect a temperature differential across the valve indicating a Joule-Thompson (JT) pressure drop and leak through the valve. Direct acoustically coupled instruments were used to detect "noise" generated from turbulence associated with through-valve leakage. In addition, other instruments were explored that had the potential to detect turbulence-induced vibrations. During the instrumentation evaluation, fugitive leak screening and detection methods for assessing through-valve leakage were also explored. IES completed a one-week laboratory and yard testing exercise on a single two- and eight-inch valve at the SoCal Gas Situation City facility in Pico Rivera, CA in November 2022. Noteworthy findings included the inability to detect a leak from valves that were previously in-service and known leakers. The reason for this has been hypothesized as improper valve stop position and/or debris in the valve that was removed to protect flow-rate measurement instrumentation in the test apparatus. Several instances of newly commissioned leaking valves have been shown to suffer from incorrect valve positioning and/or electronic transducer signal set points. Additional testing and data collection are needed to complete the initial test campaign. Outdoor testing could not be completed during the week due to resource limitations that precluded testing more than one eight-inch valve. The initial laboratory testing included one 2-inch test valve that had no discernable usage. An additional 2-inch valve was screened prior to lab testing, however neither valve produced a leak under the conditions in the lab (both valves failed prior to commissioning).
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tire Experimental Characterization Using Contactless Measurement Methods. SAE International, August 2021. http://dx.doi.org/10.4271/2021-01-1114.

Повний текст джерела
Анотація:
In the frame of automotive Noise Vibration and Harshness (NVH) evaluation, inner cabin noise is among the most important indicators. The main noise contributors can be identified in engine, suspensions, tires, powertrain, brake system, etc. With the advent of E-vehicles and the consequent absence of the Internal Combustion Engine (ICE), tire/road noise has gained more importance, particularly at mid-speed driving and in the spectrum up to 300 Hz. At the state of the art, the identification and characterization of Noise and Vibration sources rely on pointwise sensors (microphones, accelerometers, strain gauges). Optical methods such as Digital Image Correlation (DIC) and Laser Doppler Vibrometer (LDV) have recently received special attention in the NVH field because they can be used to obtain full-field measurements. Moreover, these same techniques could also allow to characterize the tire behavior in operating conditions, which would be practically impossible to derive with standard techniques. In this paper we will demonstrate how non-contact full-field measurement techniques can be used to reliably and robustly characterize the tire behavior up to 300 Hz, focusing on static conditions. Experimental modal analysis will extract the modal characteristic of the tire in both free-free and statically preloaded boundary conditions, using both DIC and LDV. The extracted natural frequencies, damping ratios and full-field mode shapes will be used on one side to improve the accuracy of tire models (either by deriving FRF based models or updating FE ones) but also as a reference for future investigation on the tire behavior characterization in rotating conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії