Добірка наукової літератури з теми "Optical phase locked loops"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Optical phase locked loops".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Optical phase locked loops"

1

Naglič, L., L. Pavlovič, B. Batagelj, and M. Vidmar. "Improved phase detector for electro-optical phase-locked loops." Electronics Letters 44, no. 12 (2008): 758. http://dx.doi.org/10.1049/el:20080069.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Satyan, Naresh, Wei Liang, Firooz Aflatouni, Amnon Yariv, Anthony Kewitsch, George Rakuljic, and Hossein Hashemi. "Phase-Controlled Apertures Using Heterodyne Optical Phase-Locked Loops." IEEE Photonics Technology Letters 20, no. 11 (June 2008): 897–99. http://dx.doi.org/10.1109/lpt.2008.922335.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

XU Nan, 许楠, 刘立人 LIU Liren, 刘德安 LIU Dean, and 周煜 ZHOU Yu. "Optical Phase Locked Loops in Inter-Satellites Coherent Optical Communications." Laser & Optoelectronics Progress 45, no. 4 (2008): 25–33. http://dx.doi.org/10.3788/lop20084504.0025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kim, J., F. X. Kärtner, and F. Ludwig. "Balanced optical-microwave phase detectors for optoelectronic phase-locked loops." Optics Letters 31, no. 24 (November 22, 2006): 3659. http://dx.doi.org/10.1364/ol.31.003659.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Liang, Wei, Naresh Satyan, Firooz Aflatouni, Amnon Yariv, Anthony Kewitsch, George Rakuljic, and Hossein Hashemi. "Coherent beam combining with multilevel optical phase-locked loops." Journal of the Optical Society of America B 24, no. 12 (November 8, 2007): 2930. http://dx.doi.org/10.1364/josab.24.002930.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhao Xin, 赵馨, 董岩 Dong Yan, 刘洋 Liu Yang, 宋延嵩 Song Yansong, and 常帅 Chang Shuai. "Optical Phase Locked Loop Technology Based on Multistage Compound Loops." Acta Optica Sinica 38, no. 5 (2018): 0506002. http://dx.doi.org/10.3788/aos201838.0506002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhang, Zhao. "CMOS phase-locked loops in ISSCC 2023." Journal of Semiconductors 44, no. 5 (May 1, 2023): 050205. http://dx.doi.org/10.1088/1674-4926/44/5/050205.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

., Madhumita Bhattacharya. "A SCHEME FOR OPTICAL PULSE GENERATION USING OPTOELECTRONIC PHASE LOCKED LOOPS." International Journal of Research in Engineering and Technology 03, no. 03 (March 25, 2014): 349–52. http://dx.doi.org/10.15623/ijret.2014.0303064.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tsyrulnikova, L. A., B. P. Sudeev, and A. R. Safin. "Wave Analogs of Media Based on Phase Locked Loops." Journal of the Russian Universities. Radioelectronics 23, no. 3 (July 21, 2020): 32–40. http://dx.doi.org/10.32603/1993-8985-2020-23-3-32-40.

Повний текст джерела
Анотація:
Introduction. At present, phase locked loops (PLLs) are widely used: from optimal signal detection and frequency synthesis to automatic control of phase distribution in phased scanned arrays. One of the simplest structures is a multi-stage (chain) PLL, which may contain a specially selected multi-connected control circuit. Such cascaded PLLs have wide application in solving a number of tasks of the theory of optimal estimates, multi-position phase telegraphy, in synchronizing of many tunable generators while preserving specified phase relations between their oscillations, etc. PLLs are actively used in radio physics both in analog and digital versions. One of the promising directions for collective PLLs development is the study of ensembles of neuromorphic networks based on PLL. Aim. To obtain wave analogues characterizing the collective PLL not as a discrete network, but as a continuous (distributed) media. Materials and methods. An unidirectional model (without mutual control circuits) of the cascade structure of the PLL. Results. Wave analogues of cascade-coupled phase synchronization systems that do not contain mutual control circuits were found. A solution of equations of wave analogues was found. A proof of validity of the obtained approximate solution in comparison with the exact one was presented. Conclusion. It was shown that by selecting a filter in a control circuit of each single-circuit circuit with different transmission coefficients, it is possible to obtain various types of continuous media or wave analogues of chain structures based on phase synchronization systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bhattacharya, Madhumita, Anuj Kumar Saw, and Taraprasad Chattopadhyay. "Optical Comb Generation for DWDM Applications using Multiple Optoelectronic Phase Locked Loops." IETE Journal of Research 50, no. 5 (September 2004): 331–35. http://dx.doi.org/10.1080/03772063.2004.11665522.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Optical phase locked loops"

1

Boyd, Richard L. (Richard Lyman). "An optical phase locked loop for semiconductor lasers." Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/35943.

Повний текст джерела
Анотація:
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1988.
Title as it appeared in MIT Graduate list, June, 1988: An optical phase locked loop.
Includes bibliographical references.
by Richard L. Boyd.
M.S.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Beaudoin, Francis. "Design and implementation of a gigabit-rate optical, receiver and a digital frequency-locked loop for phase-locked loop based applications." Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=79996.

Повний текст джерела
Анотація:
The large demand for high-bandwidth communication systems has brought down the cost of optical system components. To be competitive in a crowded market, implementation of the different systems of an optical transceiver on a single chip has become mandatory.
CMOS technologies, especially state-of-the-art processes like the 0.18mum CMOS, permit integration of huge amounts of transistors per millimeter square. Furthermore, deep-submicron CMOS processes have similar RF performances to their traditional bipolar equivalent. It is therefore a small footstep to go to congregate high-speed analog circuits with digital cores on a single die.
This thesis addresses two of the building blocks found in an optical communication receiver, namely the analog front-end receiver and a digital frequency-acquisition based clock-and-data recovery circuit. The latter reduces the headcount of bulky passive components needed in the implementation of the loop filter by porting the analog loop to the digital domain. This circuit has been successfully fabricated and tested.
Finally, an optical front-end, comprising a transimpedance amplifier and a limiting amplifier is proposed and fabricated using a standard 0.18mum CMOS process. The speed of this circuit has been pushed up to 5Gb/s. Different techniques have been employed to increase the effective bandwidth of the input amplifier, namely the use of a constant-k filter.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kassa, Wosen Eshetu. "Modélisation électrique de laser semi-conducteurs pour les communications à haut débit de données." Thesis, Paris Est, 2015. http://www.theses.fr/2015PEST1016/document.

Повний текст джерела
Анотація:
Cette distinction est également valable pour le genre des individus (homme/femme). L'étude menée a montré que l'approche utilisant l'information spectrale des contours des phalanges permet une identification par seulement trois phalanges, à un taux EER (Equal Error Rate) inférieur à 0.24 %. Par ailleurs, il a été constaté « de manière surprenante » que la technique fondée sur les rapports de vraisemblance entre les phalanges permet d'atteindre un taux d'identification de 100 % et un taux d'EER de 0.37 %, avec une seule phalange. Hormis l'aspect identification/authentification, notre étude s'est penchée sur l'optimisation de la dose de rayonnement permettant une identification saine des individus. Ainsi, il a été démontré qu'il était possible d'acquérir plus de 12500/an d'images radiographiques de la main, sans pour autant dépasser le seuil administratif de 0.25 mSvL'avancement de la communication numérique optique dans les réseaux longue distance et d'accès a déclenché les technologies émergentes dans le domaine micro-ondes / ondes millimétriques. Ces systèmes hybrides sont fortement influencés non seulement par les déficiences de liens optiques mais aussi des effets de circuits électriques. Les effets optiques et électriques peuvent être ainsi étudiés en même temps en utilisant des outils assistés par ordinateur en développant des modèles de circuit équivalent de l'ensemble des composants de liaison tels que les lasers à semi-conducteurs, modulateurs, photo-détecteurs et fibre optique. Dans cette thèse, les représentations de circuit des composants de liaison photoniques sont développées pour étudier des architectures différentes. Depuis la source de lumière optique est le principal facteur limitant de la liaison optique, une attention particulière est accordée aux caractéristiques, y compris les plus importants de simples lasers en mode semi-conducteurs. Le modèle de circuit équivalent de laser qui représente l'enveloppe du signal optique est modifié pour inclure les propriétés de bruit de phase du laser. Cette modification est particulièrement nécessaire d'étudier les systèmes où le bruit de phase optique est important. Ces systèmes comprennent des systèmes de télécommande hétérodynes optiques et des systèmes auto-hétérodynes optiques. Les résultats de mesure des caractéristiques de laser sont comparés aux résultats de simulation afin de valider le modèle de circuit équivalent dans des conditions différentes. Il est démontré que le modèle de circuit équivalent peut prédire avec précision les comportements des composants pour les simulations au niveau du système. Pour démontrer la capacité du modèle de circuit équivalent de la liaison photonique pour analyser les systèmes micro-ondes / ondes millimétriques, le nouveau modèle de circuit du laser avec les modèles comportementaux des autres composants sont utilisés pour caractériser différents radio sur fibre (RoF) liens tels que la modulation d'intensité - détection directe (IM-DD) et les systèmes RoF hétérodynes optique. Signal sans fil avec des spécifications conformes à la norme de IEEE 802.15.3c pour la bande de fréquence à ondes millimétriques est transmis sur les liens RoF. La performance du système est analysée sur la base de l'évaluation de l'EVM. L'analyse montre que l'analyse efficace des systèmes de photonique micro-ondes / ondes millimétriques est obtenue en utilisant des modèles de circuit qui nous permet de prendre en compte les comportements à la fois électriques et optiques en même temps
The advancement of digital optical communication in the long-haul and access networks has triggered emerging technologies in the microwave/millimeter-wave domain. These hybrid systems are highly influenced not only by the optical link impairments but also electrical circuit effects. The optical and electrical effects can be well studied at the same time using computer aided tools by developing equivalent circuit models of the whole link components such as semiconductor lasers, modulators, photo detectors and optical fiber. In this thesis, circuit representations of the photonic link components are developed to study different architectures. Since the optical light source is the main limiting factor of the optical link, particular attention is given to including the most important characteristics of single mode semiconductor lasers. The laser equivalent circuit model which represents the envelope of the optical signal is modified to include the laser phase noise properties. This modification is particularly necessary to study systems where the optical phase noise is important. Such systems include optical remote heterodyne systems and optical self-heterodyne systems. Measurement results of the laser characteristics are compared with simulation results in order to validate the equivalent circuit model under different conditions. It is shown that the equivalent circuit model can precisely predict the component behaviors for system level simulations. To demonstrate the capability of the equivalent circuit model of the photonic link to analyze microwave/millimeter-wave systems, the new circuit model of the laser along with the behavioral models of other components are used to characterize different radio-over-fiber (RoF) links such as intensity modulation – direct detection (IM-DD) and optical heterodyne RoF systems. Wireless signal with specifications complying with IEEE 802.15.3c standard for the millimeter-wave frequency band is transmitted over the RoF links. The system performance is analyzed based on EVM evaluation. The analysis shows that effective analysis of microwave/millimeter-wave photonics systems is achieved by using circuit models which allows us to take into account both electrical and optical behaviors at the same time
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pinheiro, Ricardo Bressan. "Projeto de filtros tipo \"só-pólo\" para malhas de sincronismo de fase de alta frequência." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/3/3139/tde-30112010-153611/.

Повний текст джерела
Анотація:
Apresenta-se a evolução dos sitemas de comunicação, com ênfase especial nos sistemas com tecnologia óptica. Discute-se a necessidade contínua do aumento de capacidade de tais sistemas de comunicação, e a consequente repercussão sobre os futuros sistemas ópticos. Em vista da necessidade do aumento de capacidade dos futuros sistemas de comunicação óptica, apresentam-se em seguida duas propostas recentes da literatura, sendo uma referente à realização de um gerador de pulsos ópticos estreitos, e a outra referente à implementação de um extrator de relógio realizado com técnicas ópticas. Apresenta-se um breve resumo da teoria das malhas de sincronismo de fase, ou PLLs, mostrando como as duas propostas discutidas realizam funções típicas desses sistemas. Ressalta-se a necessidade dos PLLs de sistemas ópticos possuirem ganhos de malha (parâmetro K) elevados. Após a caracterização dos requisitos necessários para PLLs de futuros sistemas ópticos, e após um resumo de alguns conceitos necessários da teoria de redes e filtros elétricos, apresentam-se dois tipos de projeto de filtros para aqueles PLLs. As duas formas de projeto tem como objetivo viabilizar o uso de filtros de tipo e ordem arbitrários. Um tipo de projeto visa a realização da função de transferência do PLL com a curva de resposta igual à de um filtro escolhido. O outro tipo de projeto parte da realização do filtro de loop do PLL com as características de um tipo de filtro escolhido, e define métodos para ajustar a função de transferência resultante para esse PLL. Apresentam-se algoritmos para o cálculo de parâmetros importantes nos dois procedimentos. Após a discussão dos dois pontos de vista de projeto, apresentam-se exemplos de realização de PLLs de acordo com as técnicas apresentadas. Para cada exemplo, mostram-se as curvas de resposta em frequência tanto do PLL como do correspondente filtro de loop, bem como o lugar das raízes e a resposta de captura do PLL obtido. O processo de captura foi estudado por simulações que procuram reproduzir o mais fielmente possível as condições reais de implementação, sem entretanto considerar efeitos de ruído. Finalmente, mencionam-se brevemente possíveis linhas de pesquisa futuras, sendo o foco principal o uso de filtros com pólos e zeros finitos.
The evolution of communication systems is discussed, with emphasis on optical technology. Special consideration is given to the continuous need for increasing the capacity of such systems, and the impact over future optical communication. In view of the great demands imposed over the capacity of future optical systems, an overview is presented of two recent proposals found in the literature, one of such proposals being the implementation of a generator of short optical pulses, and the other being a clock extractor device realized through the use of optical techniques. A brief review is made of phase-locked loop (or PLL) theory, to show how the discussed proposals could be used to realize tipical functions found in these systems. The very high loop gains (the so-called parameter K) that must be used in PLLs of optical communication systems are emphasized. After discussion of the necessary characteristics for PLLs of future optical systems, and also after a review of some concepts of the theory of electrical networks and filters, two design procedures for filters to be used in such PLLs are presented. Both designs have the goal of allowing the use of loop filters with any type and order. The first type of design has the objective to realize a PLL transfer function that has a frequency response identical to the response of a chosen type of filter. The other design starts with a chosen type of filter for a PLL loop filter, arriving to an suitable PLL transfer function. Some algorithms for determination of important design parameters are also presented. After the discussion of the two types of design, some examples of PLLs obtained by such methods are presented. For each example, frequency response curves are presented for the PLL and the respective loop filter, as well as the root locus and the capture response for the PLL so obtained. The capture process was studied through the use of simulations with parameters intended to approximate real implementation conditions, although noise effects are not considered. Finally, some possible research lines are discussed, whose main focus is on filters with finite poles and zeros.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Terlemez, Bortecene. "Oscillation Control in CMOS Phase-Locked Loops." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/4841.

Повний текст джерела
Анотація:
Recent advances in voltage-controlled oscillator (VCO) design and the trend of CMOS processing indicate that the oscillator control is quickly becoming one of the forefront problems in high-frequency and low-phase-noise phase-locked loop (PLL) design. This control centric study explores the limitations and challenges in high-performance analog charge-pump PLLs when they are extended to multiple gigahertz applications. Several problems with performance enhancement and precise oscillator control using analog circuits in low-voltage submicron CMOS processes, coupled with the fact that analog (or semi-digital) oscillators having various advantages over their digitally controlled counterparts, prompted the proposal of the digitally-controlled phase-locked loop. This research, then, investigates a class of otherwise analog PLLs that use a digital control path for driving a current-controlled oscillator. For this purpose, a novel method for control digitization is described where trains of pulses code the phase/frequency comparison information rather than the duration of the pulses: Pulse-Stream Coded Phase-Locked Loop (psc-PLL). This work addresses issues significant to the design of future PLLs through a comparative study of the proposed digital control path topology and improved cutting-edge charge-pump PLLs.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gdeisat, Munther Ahmad. "Fringe pattern demodulation using digital phase locked loops." Thesis, Liverpool John Moores University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.521754.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Souder, William Dai Foster. "A low power 10 GHz phase locked loop for radar applications implemented in 0.13 um SiGe technology." Auburn, Ala, 2009. http://hdl.handle.net/10415/1631.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bordonalli, Aldario Chrestani. "Optical injection phase-lock loops." Thesis, University College London (University of London), 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244183.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ratcliff, Marcus Dai Foster. "Phase locked loop analysis and design." Auburn, Ala, 2008. http://hdl.handle.net/10415/1452.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Eklund, Robert. "Linearization of Voltage-Controlled Oscillators in Phase-Locked Loops." Thesis, Linköping University, Department of Science and Technology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5366.

Повний текст джерела
Анотація:

This is a thesis report done as part of the Master of Science in Electronics Design Engineering given at Linköping University, Campus Norrköping. The thesis work is done at Ericsson AB in the spring of 2005. The thesis describes a method of removing variations in the tuning sensitivity of voltage-controlled crystal oscillators due to different manufacturing processes. These variations results in unwanted variations in the modulation bandwidth of the phase-locked loop the oscillator is used in. Through examination of the theory of phase-locked loops it is found that the bandwidth of the loop is dependent on the tuning sensitivity of the oscillator.

A method of correcting the oscillator-sensitivity by amplifying or attenuating the control-voltage of the oscillator is developed. The size of the correction depends on the difference in oscillator-sensitivity compared to that of an ideal oscillator. This error is measured and the correct correction constant calculated.

To facilitate the measurements and correction extra circuits are developed and inserted in the loop. The circuits are both analog and digital. The analog circuits are mounted on an extra circuit board and the digital circuits are implemented in VHDL in an external FPGA.

Tests and theoretical calculations show that the method is valid and able to correct both positive and negative variations in oscillator-sensitivity of up to a factor ±2.5 times. The bandwidth of the loop can be adjusted between 2 to 15 Hz (up to ±8 dB, relative an unmodified loop).

Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Optical phase locked loops"

1

Natarajan, S. Phase error statistics of a phase-locked loop synchronized direct detection optical PPM communication system: Technical report. Urbana, Ill: Electro-Optic Systems Laboratory, Dept. of Electrical and Computer Engineering, College of Engineering, University of Illinois, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Stephens, Donald R. Phase-locked loops for wireless communications: Digital, analog, and optical implementations. 2nd ed. New York: Kluwer Academic, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Stephens, Donald R. Phase-locked loops for wireless communications: Digital, analog, and optical implementations. 2nd ed. Boston: Kluwer Academic, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Stephens, Donald R. Phase-locked loops for wireless communications: Digital, analog, and optical implementations. 2nd ed. Boston: Kluwer Academic, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

S, Gardner Chester, and United States. National Aeronautics and Space Administration., eds. Phase locked loop synchonization for direct detection optical PPM communication systems: Technical report. Urbana, Ill: Electro-Optic Systems Laboratory, Dept. of Electrical and Computer Engineering, College of Engineering, University of Illinois, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ruggles, Stephen L. Phase-lock-loop application for fiber optic receiver. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

W, Wills Robert, and Langley Research Center, eds. Phase-lock-loop application for fiber optic receiver. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

W, Wills Robert, and Langley Research Center, eds. Phase-lock-loop application for fiber optic receiver. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Brennan, Paul V. Phase-Locked Loops. London: Macmillan Education UK, 1996. http://dx.doi.org/10.1007/978-1-349-14006-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Encinas, J. B. Phase Locked Loops. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-3064-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Optical phase locked loops"

1

Fang, Zujie, Haiwen Cai, Gaoting Chen, and Ronghui Qu. "Optical Phase Locked Loop and Frequency Transfer." In Optical and Fiber Communications Reports, 235–66. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5257-6_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nishikido, J., and A. Himeno. "An Optical Phase-Locked Loop Using an Acousto-optic Frequency Shifter." In Photonic Switching II, 274–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-76023-5_55.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Camatel, S., V. Ferrero, R. Gaudino, and P. Poggiolini. "2.5 Gbps 2-PSK Ultra-Dense WDM Homodyne Coherent Detection Using a Sub-Carrier Based Optical Phase-Locked Loop." In Optical Networks and Technologies, 357–63. Boston, MA: Springer US, 2005. http://dx.doi.org/10.1007/0-387-23178-1_44.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pederson, Donald O., and Kartikeya Mayaram. "Phase-Locked Loops." In Analog Integrated Circuits for Communication, 479–520. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-2128-7_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sobot, Robert. "Phase-Locked Loops." In Wireless Communication Electronics, 253–62. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-1117-8_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bergmans, Jan W. M. "Phase-Locked Loops." In Digital Baseband Transmission and Recording, 591–624. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-2471-4_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Barry, John R., Edward A. Lee, and David G. Messerschmitt. "Phase-Locked Loops." In Digital Communication, 701–25. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4615-0227-2_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Skorokhod, Anatoli V., Frank C. Hoppensteadt, and Habib Salehi. "Phase-Locked Loops." In Applied Mathematical Sciences, 343–75. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-0-387-22446-6_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lee, Edward A., and David G. Messerschmitt. "Phase-Locked Loops." In Digital Communication, 523–47. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1303-5_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pederson, Donald O., and Kartikeya Mayaram. "Phase-Locked Loops." In Analog Integrated Circuits for Communication, 485–523. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-68030-9_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Optical phase locked loops"

1

Tsang, Mankei, Jeffrey H. Shapiro, and Seth Lloyd. "Quantum Optical Temporal Phase Estimation by Homodyne Phase-Locked Loops." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/iqec.2009.itui6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Coldren, Larry A., Mingzhi Lu, Hyun-chul Park, Eli Bloch, John Parker, Leif A. Johansson, and Mark J. Rodwell. "New Opportunities for Optical Phase-locked Loops in Coherent Photonics." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/ofc.2013.oth3h.5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Langley, L. N. "Optical phase locked loops as signal sources for coherent optical beamforming." In IEE Colloquium on Fibre Optics in Microwave Systems and Radio Access. IEE, 1997. http://dx.doi.org/10.1049/ic:19970721.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kazovsky, L. G., and D. A. Atlas. "PSK Synchronous Heterodyne and Homodyne Experiments Using Optical Phase-Locked Loops." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 1990. http://dx.doi.org/10.1364/ofc.1990.pd11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lu, Mingzhi, Hyun-Chul Park, Eli Bloch, Leif A. Johansson, Mark J. Rodwell, and Larry A. Coldren. "A Highly-Integrated Optical Frequency Synthesizer Based on Phase-locked Loops." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/ofc.2014.w1g.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ristic, S., A. Bhardwaj, M. J. Rodwell, L. A. Coldren, and L. A. Johansson. "Integrated Optical Phase-Locked Loop." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/ofc.2009.pdpb3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ristic, S., A. Bhardwaj, M. J. Rodwell, L. A. Coldren, and L. A. Johansson. "Integrated Optical Phase-Locked Loop." In National Fiber Optic Engineers Conference. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/nfoec.2009.pdpb3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nejadmalayeri, Amir H., Hyunil Byun, Jungwon Kim, Douglas C. Trotter, Christopher DeRose, Anthony L. Lentine, William A. Zortman, Michael R. Watts, and Franz X. Kärtner. "Integrated optical phase locked loop." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/cleo_si.2011.cthy7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Taubman, Matthew S. "Optical frequency stabilization and optical phase locked loops: Golden threads of precision measurement." In 2013 American Control Conference (ACC). IEEE, 2013. http://dx.doi.org/10.1109/acc.2013.6580047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pengbo Shen, Davies, Shillue, D'Addario, and Payne. "Millimetre wave generation using an optical comb generator with optical phase-locked loops." In International Topical Meeting on Microwave Photonics MWP-02. IEEE, 2002. http://dx.doi.org/10.1109/mwp.2002.1158870.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Optical phase locked loops"

1

Seeds, Alwyn J., and Martyn Fice. Phase-locked Optical Signal Recovery. Fort Belvoir, VA: Defense Technical Information Center, January 2009. http://dx.doi.org/10.21236/ada524534.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Johansson, Leif, Larry Coldren, and Mark Rodwell. Phase-Locked Optical Generation of mmW/THz Signals. Fort Belvoir, VA: Defense Technical Information Center, November 2009. http://dx.doi.org/10.21236/ada517049.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії