Добірка наукової літератури з теми "Optical information processing system"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Optical information processing system".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Optical information processing system"

1

S ,, Madhusudhan, Channakeshava K.R ,, and Dr T. Rangaswamy. "Content-Based Image Retrieval System for Optical Fiber Sensor Information Processing." International Journal of Engineering Research 3, no. 6 (June 1, 2014): 398–401. http://dx.doi.org/10.17950/ijer/v3s6/607.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Picton, P. D. "Electro-optical system design for information processing." Microelectronics Journal 23, no. 6 (September 1992): 483. http://dx.doi.org/10.1016/0026-2692(92)90084-e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kupchenko, L. F., V. D. Karlov, A. S. Rybiak, О. А. Goorin та А. V. Ponomar. "Aсtive electro-optical system of targets detection with dynamic spectral processing of optical radiation". Semiconductor Physics, Quantum Electronics and Optoelectronics 24, № 02 (16 червня 2021): 218–26. http://dx.doi.org/10.15407/spqeo24.02.218.

Повний текст джерела
Анотація:
The issues discussed in this paper provide for further development of studies in the sphere of imaging spectroscopy and laser vision. In terms of forming the information fields (radiation fields), the electro-optical systems are subdivided into the passive and active ones. Passive electro-optical systems use the information fields formed by natural radiation sources, whereas the active ones suggest using artificial sources. Comparative analysis of mathematical and physical issues of designing the electro-optical systems with dynamic spectral processing of optical radiation of the passive and active types has been performed. It has been shown that the controlled dynamic spectral processing of optical radiation can be implemented within the passive and active electro-optical systems on the basis of the same algorithm that represents operation of the optical processor performing the mathematical operation of dot product. The authors have developed the block diagram of an active electro-optical system with dynamic spectral processing. The algorithm for optimal detection of optical signals has been developed using basics of the signal detection theory. Mathematical modeling of target detection against an inhomogeneous background has been performed. It has been shown that the optimal dynamic spectral processing of optical radiation in active electro-optical system enables to separate the desired optical signal by suppressing the background signal.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Idesawa, Masanori. "Information Processing in Visual System - Optical Illusion and Visual Mechanism." Journal of Robotics and Mechatronics 13, no. 6 (December 20, 2001): 569–74. http://dx.doi.org/10.20965/jrm.2001.p0569.

Повний текст джерела
Анотація:
Human beings obtain big amount of information from the external world through their visual system. Automated system such as robot must provide the visual functions for their flexible operations in 3-D circumstances. In order to realize the visual function artificially, we would be better to learn from the human visual mechanism. Optical illusions would be a pure reflection of the human visual mechanism; they can be used for investigating human visual mechanism. New types of optical illusion with binocular viewing are introduced and investigated.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhao, Lan, and Tao Zeng. "Target Recognition Application of Real-Time Optical Information Processing System." Applied Mechanics and Materials 536-537 (April 2014): 197–200. http://dx.doi.org/10.4028/www.scientific.net/amm.536-537.197.

Повний текст джерела
Анотація:
This paper focuses on the visual tracking algorithm in optical imaging surveillance and tracking system. The tracking particle filter framework deemed find sparse representation problem, can effectively overcome the visual tracking algorithm appears in noise, occlusion, background interference and complex situations such as illumination changes. Morphological methods using digital occlusion area is detected to determine whether the date is added to the template tracking results set, thereby updating the control template, to effectively prevent the drift tracking results.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

KUROKAWA, Takashi. "VCSEL Applications to Optical Information Processing Systems." Review of Laser Engineering 29, no. 12 (2001): 784–88. http://dx.doi.org/10.2184/lsj.29.784.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Efron, Uzi. "Optical Information Processing: Systems, Materials, And Devices." Optical Engineering 26, no. 5 (May 1, 1987): 265367. http://dx.doi.org/10.1117/12.7974084.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Roy Frieden, B. "Information and estimation in image processing." Proceedings, annual meeting, Electron Microscopy Society of America 45 (August 1987): 14–17. http://dx.doi.org/10.1017/s0424820100125142.

Повний текст джерела
Анотація:
Despite the skill and determination of electro-optical system designers, the images acquired using their best designs often suffer from blur and noise. The aim of an “image enhancer” such as myself is to improve these poor images, usually by digital means, such that they better resemble the true, “optical object,” input to the system. This problem is notoriously “ill-posed,” i.e. any direct approach at inversion of the image data suffers strongly from the presence of even a small amount of noise in the data. In fact, the fluctuations engendered in neighboring output values tend to be strongly negative-correlated, so that the output spatially oscillates up and down, with large amplitude, about the true object. What can be done about this situation? As we shall see, various concepts taken from statistical communication theory have proven to be of real use in attacking this problem. We offer below a brief summary of these concepts.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wei Wei, 韦玮, 陈伟民 Chen Weimin, 黄尚廉 Huang Shanglian, 王宁 Wang Ning, 金珠 Jin Zhu, and 王宁 Zhu Yong. "Optimal Design for Optical Information Processing of Projection System Based on Grating Light Modulators." Acta Optica Sinica 30, no. 1 (2010): 186–91. http://dx.doi.org/10.3788/aos20103001.0186.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Berezhnoy, Anatoly A. "Electro-optical and photorefractive devices for optical information processing systems." Optical Engineering 36, no. 6 (June 1, 1997): 1675. http://dx.doi.org/10.1117/1.601193.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Optical information processing system"

1

Lord, Angus. "Localised states in nonlinear optical systems." Thesis, University of Strathclyde, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248315.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yu, Donggang, and dyu@venus it swin edu au. "Processing and recognition of document and GIS images." Swinburne University of Technology, 2005. http://adt.lib.swin.edu.au./public/adt-VSWT20050812.095914.

Повний текст джерела
Анотація:
In intelligent document processing system and geographical information systems (GIS), the image processing and recognition play an important role. This thesis deals with various problems in processing images in documents and GIS: image smoothing, filling, linearization and extraction of contour features, extraction of structural points, separation and recognition of spurious segments in handwritten digits, reconstruction and recognition of broken digits, and separation and recognition of colour document and GIS images. These approaches are also called Optical Character Recognition (OCR). A new smoothing technique is developed to smooth follow contours of image. With the new smoothing algorithms, spurious pixels (points) of contours are removed based on smooth patterns, and smooth followed contours are found. Also, skeletons of image can be smoothed between neighboring �end� and �junction� points. Smooth following makes linearization of smoothed contours possible based on Freeman codes. A new filling algorithm of contours, project filling, is described based on two kinds of structural patterns. By this method, any complicated contours of images can be filled correctly. Different from other linearization methods, linearization and feature extraction of smoothed contours are based on difference chain codes. Curvature and bend angles of linearized are found. The convexity and concavity of linearized are described. In this way, a series of description features of contours is formed. Structural points are new and useful features to describe morphological structures between neighboring linearized lines. Extraction of structural points is based on structural patterns which are determined by element chain codes. Also, extension Freeman codes are used in this thesis. Structural points make description and recognition of contours possible. In order to recognize handwritten digits in document processing systems, separation of spurious segments, reconstruction of broken digits and recognition of handwritten digits are investigated. Experiments with large number of testing data set show satisfactory results for these algorithms. Separation and recognition of colour document and GIS images are discussed. Object images of document and GIS images are extracted based on the description of shape structures, prior knowledge and color information, which are associated with each other. Color images can be described by a limited number of colors in color document and GIS images. Therefore, separation of color image is done by color reduction method, and recognition of object images is based on structure patterns, prior knowledge and colour information. It can be seen that specific information should be considered in many practical problems to achieve better processing results.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jaisimha, M. Y. "Compound document retrieval in noisy environments /." Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/6007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Torzynski, Marc. "Reseaux de neurones formels : proprietes du modele de hopfield, realisations electroniques et optiques." Université Louis Pasteur (Strasbourg) (1971-2008), 1988. http://www.theses.fr/1988STR13230.

Повний текст джерела
Анотація:
On etudie un modele neuro-mimetique de traitement d'information, susceptible d'etre utilise comme une memoire associative. En premiere partie, on etudie les proprietes du modele et l'on quantifie la capacite memoire. Par simulation numerique, la tolerance du reseau a ses propres deficiences et ses facultes d'associativite. On montre theoriquement plusieurs points relatifs a l'information a l'aide d'une approche probabiliste du modele. En seconde partie, on etudie les possibilites d'implantation du modele
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chaudhury, Souma. "Quantum Control and Quantum Chaos in Atomic Spin Systems." Diss., The University of Arizona, 2008. http://hdl.handle.net/10150/195449.

Повний текст джерела
Анотація:
Laser-cooled atoms offer an excellent platform for testing new ideas of quantum control and measurement. I will discuss experiments where we use light and magnetic fields to drive and monitor non-trivial quantum dynamics of a large spin-angular momentum associated with an atomic hyperfine ground state. We can design Hamiltonians to generate arbitrary spin states and perform a full quantum state reconstruction of the results. We have implemented and verified time optimal controls to generate a broad variety of spin states, including spin-squeezed states useful for metrology. Yields achieved are of the range 0.8-0.9.We present a first experimental demonstration of the quantum kicked top, a popular paradigm for quantum and classical chaos. We make `movies' of the evolving quantum state which provides a direct observation of phase space dynamics of this system. The spin dynamics seen in the experiment includes dynamical tunneling between regular islands, rapid spreading of states throughout the chaotic sea, and surprisingly robust signatures of classical phase space structures. Our data show differences between regular and chaotic dynamics in the sensitivity to perturbations of the quantum kicked top Hamiltonian and in the average electron-nuclear spin entanglement during the first 40 kicks. The difference, while clear, is modest due to the small size of the spin.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Братова, Дар'я Романівна. "Формування вейвлет вікон для фільтрації оптичної інформації". Master's thesis, КиЇв, 2019. https://ela.kpi.ua/handle/123456789/30424.

Повний текст джерела
Анотація:
Дисертаційна робота присвячена розробці методу для оптичної обробки інформації. В інженерній практиці для дослідження різноманітних сигналів природного та штучного походження застосовуються різні класи перетворень – Фур’є, Лапласа тощо. З 80-х років минулого століття для частотночасового аналізу нестаціонарних сигналів переважно використовують вейвлетперетворення (ВП). Першими це зробили Морле та Гроссман, займаючись аналізом сейсмічних даних та когерентними квантовими станами відповідно. Математичні засади ВП було закладено Мейєром, який показав існування відповідних функцій (вейвлетів), що утворюють ортогональний базис в просторі L2(R), тобто в просторі дійсних функцій, квадрат котрих є інтегрованим. Добеші здійснила перехід від неперервного до дискретного ВП та розробила клас вейвлетів, що мають максимальну гладкість при фіксованій довжині свого носія. Наразі область застосування ВП – наближення функцій і сигналів, їх фільтрація та стиснення, пошук в сигналі певних особливостей тощо. Магістерська дисертація складається з чотирьох розділів. У першому розділі проаналізовано основні переваги і недоліки вейвлет та Фур’є перетворень та особливості їх використання. Також приведено приклади основних типів вейвлетів. У другому розділі приведено загальну класифікацію вейвлетів та кожного з загальних окремо. Окрім цього розглянуто узагальнені характеристики різноманітних вейвлетів та методи їх розрахунку. Третій розділ присвячено розробці метода формування вейвлет вікон для фільтраціі оптичної інформації. В третьому підрозділі продемонстровані результати аналізу експериментальних робіт попередників, які показують можливість створення синтезованих цифрових нелінійних голограм у якості вейвлет-фільтрів. Четвертий розділ присвячено розробці стартап-проекту «Формування вейвлет вікон для фільтрації оптичної інформації» і аналізу перспектив входження розробки на ринок з маркетологічної точки зору.
The dissertation is dedicated to developing a method for optical information processing. In engineering practice, different classes of transformation - Fourier, Laplace, etc. - are used to investigate the various signals of natural and artificial origin. Since the 1980s, wavelet transform (WF) has been predominantly used for frequency analysis of unsteady signals. Morle and Grossman were the first to do so, analyzing seismic data and coherent quantum states, respectively. The mathematical foundations of the WT were laid down by Meyer, who showed the existence of corresponding functions (wavelets) forming an orthogonal basis in the space L2 (R), that is, in the space of real functions whose square is integrated. Dobeshi made the transition from continuous to discrete WT and developed a class of wavelets that have maximum smoothness at a fixed length of their carrier. Currently, the scope of the WT is the approximation of functions and signals, their filtering and compression, searching for a signal of certain features, and more. The master's thesis consists of four sections. The first section analyzes the main advantages and disadvantages of wavelet and Fourier transforms and the features of their use. Examples of the main types of wavelets are also given. The second section provides a general classification of wavelets and each of them in general. In addition, the general characteristics of various wavelets and their calculation methods are considered. The third section is devoted to the development of a method of forming wavelet windows for filtering optical information. The third section presents the results of an analysis of the previous experimental works that show the possibility of creating synthesized digital nonlinear holograms as wavelet filters. The fourth section is devoted to the development of a startup project "Formation of wavelet windows for filtering optical information" and to analyze the prospects of entering the market from a marketing point of view.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Potter, Duncan J. "Phase-only optical information processing." Thesis, University of Edinburgh, 1993. http://hdl.handle.net/1842/845.

Повний текст джерела
Анотація:
Historically, much scientific work has been performed with two optical systems - the telescope and the microscope. Although Galileo was probably not the first to invent the refracting telescope, his rapid development of the instrument from 1609 results in his association as the father of the telescope today. Certainly he was the first human to view the giant moons of the planet Jupiter - Io, Ganymede, Callisto and Europa - and thus dare to venture our world was not the centre of the universe, and save our race from another thousand years of mysticism. A year later, in 1610, Galileo invented the microscope and this led to the new field of science called 'microscopy' to open up the previously unsuspected world of the ultra small. Tiny life forms no larger than a pinhead were revealed, and with instrumental improvements by later scientists the existance of bacteria proven. This discovery prompted the sterilisation of surgical equipment taken for granted today, saving countless millions of lives since then through freedom from bacterial infection. It is beyond doubt that the new world opened by the invention of the microscope inspired the scientists of that time to seek yet greater magnification and sharper images, to delve deeper into this tiny world. Yet technical improvement in the design of the microscope wase hampered by the lack of a proper theory of image formation. Not until the late nineteenth century, when ABBE and RAYLEIGH provided the foundations of the present day diffraction theory of imaging was the microcope properly understood. The work of this thesis has its roots in the developments of the early twentieth century microscopists. For many years they had observed tiny, transparent organisms and sought ways to improve the visibility of these creatures so that their nature might better be understood. The problem was solved by F.Zernike in 1935 (1, 425 for ref.) when he considered the way the organisms altered the phase of the illuminating light field. By the correct positioning of a thin phase-plate in the back focal plane of the microscope lens, Zernike demonstrated that optical thickness variations of the organism may be rendered visible as intensity variations. In this thesis , the light distribution in the back focal plane of such a lens that results from a transparent object is analysed in detail. From the expression derived by Zernike to explain the operating principle of his invention, we evaluate alternative formulations of the problem and proceed to a full analytical expression for the light field . Though mathematically awkward, it is shown the expression is not unworkable and several useful results are derived. In place of a microscope the study is based on imaging in a modern image processing bench, the physical principles involved being identical. Zernike introduced the idea of image modification through the use of a basic form of phase filter. The second half of this thesis develops this idea to show the use of much more intricate phase filters, which may be used to 'recognise' particular objects. Filter design is followed by experimental results on a special type of phase object, the programmeable Spatial Light Modulator.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Le, Jeannic Hanna. "Optical Hybrid Quantum Information processing." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066596/document.

Повний текст джерела
Анотація:
Approche hybride du traitement quantique de l'information La dualité onde-particule a conduit à deux façons d'encoder l'information quantique, les approches continues et discrètes. L'approche hybride a récemment émergé, et consiste à utiliser les concepts et boites à outils des deux approches, afin de venir à bout des limitations intrinsèques à chaque champ. Dans ce travail de thèse, nous allons dans une première partie utiliser des protocoles hybrides de façon à générer des états quantiques non-gaussiens de la lumière. A l'aide d'oscillateurs paramétriques optiques, et de détecteur de photons supraconducteurs, nous pouvons générer des photons uniques extrêmement purs très efficacement, ainsi que des états chats de Schrödinger, qui permettent d'encoder l'information en variables continues. Nous montrons également en quoi des opérations de variables continues peuvent aider cette génération. La méthode utilisée, basée sur la génération " d'états-noyaux " rend en outre ces états plus robustes à la décohérence. Dans une seconde partie, dans le contexte d'un réseau hétérogène, basé sur différents encodages, relier de façon quantique les deux mondes, nécessite l'existence d'intrication hybride de la lumière. Nous introduisons la notion d'intrication hybride, entre des états continus et discrets, et nous en montrons une première application qui est la génération à distance de bit quantique continu. Nous implémentons ainsi également une plateforme polyvalente permettant la génération d'états " micro-macro " intriqués
In quantum information science and technology, two traditionally-separated ways of encoding information coexist -the continuous and the discrete approaches, resulting from the wave-particle duality of light. The first one is based on quadrature components, while the second one involves single photons. The recent optical hybrid approach aims at using both discrete and continuous concepts and toolboxes to overcome the intrinsic limitations of each field. In this PhD work, first, we use hybrid protocols in order to realize the quantum state engineering of various non-Gaussian states of light. Based on optical parametric oscillators and highly-efficient superconducting-nanowire single-photon detectors, we demonstrate the realization of a high-brightness single-photon source and the quantum state engineering of large optical Schrödinger cat states, which can be used as a continuous-variable qubit. We show how continuous-variable operations such as squeezing can help in this generation. This method based on so-called core states also enables to generate cat states that are more robust to decoherence. Second, in the context of heterogeneous networks based on both encodings, bridging the two worlds by a quantum link requires hybrid entanglement of light. We introduce optical hybrid entanglement between qubits and qutrits of continuous and discrete types, and demonstrate as a first application the remote state preparation of continuous-variable qubits. Our experiment is also a versatile platform to study squeezing-induced micro-macro entanglement
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Deng, Zhijie. "Novel optical devices for information processing." Texas A&M University, 2003. http://hdl.handle.net/1969.1/5863.

Повний текст джерела
Анотація:
Optics has the inherent advantages of parallelism and wide bandwidths in processing information. However, the need to interface with electronics creates a bottleneck that eliminates many of these advantages. The proposed research explores novel optical devices and techniques to overcome some of these bottlenecks. To address parallelism issues we take a specific example of a content-addressable memory that can recognize images. Image recognition is an important task that in principle can be done rapidly using the natural parallelism of optics. However in practice, when presented with incomplete or erroneous information, image recognition often fails to give the correct answer. To address this problem we examine a scheme based on free-space interconnects implemented with diffractive optics. For bandwidth issues, we study possible ways to eliminate the electronic conversion bottleneck by exploring all-optical buffer memories and all-optical processing elements. For buffer memories we examine the specific example of slow light delay lines. Although this is currently a popular research topic, there are fundamental issues of the delay-time-bandwidth product that must be solved before slow light delay lines can find practical applications. For all-optical processing we examine the feasibility of constructing circuit elements that operate directly at optical frequencies to perform simple processing tasks. Here we concentrate on the simplest element, a sub-wavelength optical wire, along with a grating coupler to interface with conventional optical elements such as lenses and fibers. Even such a simple element as a wire has numerous potential applications. In conclusion, information processing by all-optical devices are demonstrated with an associative memory using diffractive optics, an all-optical delay line using room temperature slow light in photorefractive crystals, and a subwavelength optical circuit by surface plasmon effects.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Clark, Alex S. "Quantum information processing in optical fibres." Thesis, University of Bristol, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.557975.

Повний текст джерела
Анотація:
The use of quantum particles provides unprecedented improvements for some computational tasks and has applications in provably secure communications. The choice of quantum particles for such processes is wide but single photons are a promising candidate due to their extremely low decoherence and light speed trans- mission. Current technology for the generation and processing of single photons is of exceptional experimental interest and forms the basis of my investigations in this thesis. I show the background theory of quantum information and communication, with a general analysis of qubits and optical quantum gates before looking more specifically at different sources of photonic qubits and the generation of photons. I then show recent improvements in photon generation using photonic crystal fi- bres (PCFs), most especially the use of cross-polar phase matching solutions that allow the generation of pure state photons via four wave mixing effects in a X(3} nonlinear medium. These therefore require no spectral filtering to be used for quantum information tasks, thereby improving collection rates and experimental integration times which are crucial when performing multi-photon experiments. The optimization of the parameters for such a source are achieved through the use of an analytical model, and the purity of the photons are tested through the use of quantum interference effects. I move on to show the construction and character- ization of a common two qubit gate, namely the controlled-NOT gate, in optical fibres using fibre based sources and describe it's usefulness and integrability into quantum communication networks. I then calculate bounds on the average gate fidelity of 0.83 < Fave < 0.91 and create a model to show the main sources of error in the controlled-NOT gate operation. If the PCF used in the above sources is pumped in opposite directions in a Sagnac loop configuration, pairs of photons are generated in a maximally entangled Bell state where the polarization of one photon is perfectly correlated with the other photon of the pair. If two such pairs are generated in separate sources and one photon from each pair mixed on a polarizing beam splitter, a fusion operation is performed that entangles those two photons creating a four photon cluster state where all photons are entangled. This cluster state is a universal resource for measurement based quantum computing. In this thesis I show the generation and characterisation of such a cluster state and describe its use to perform a universal set of gates through single qubit measurements. I finally describe future experiments using PCFs and cluster states.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Optical information processing system"

1

Electro-optical system design for information processing. New York: McGraw-Hill, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Casasent, David Paul. Optical metrology for industrialization of optical information processing. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Berikashvili, Valeriy. The coherent optics and optical information processing. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/999893.

Повний текст джерела
Анотація:
Presented in the textbook materials relate to the disclosure of the common features of radio and optical telecommunication systems. In detail the device and principles of operation of gas, solid and semiconductor lasers, photodetectors, key photoelectric devices, phototransistors, of photothyristors. The studied display device. Great attention is paid to the elemental basis of fiber-optical systems of collecting and information transfer. Meets the requirements of Federal state educational standards of higher education of the last generation. For students in the areas of "Photonics and Optoinformatics", "Instrumentation" and "optical engineering".
Стилі APA, Harvard, Vancouver, ISO та ін.
4

SC-213, RTCA (Firm). Minimum aviation system performance standards (MASPS) for enhanced vision systems, synthetic vision systems, combined vision systems, and enhanced flight vision systems. Washington, DC: RTCA, Inc., 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

International Conference on Holography, Optical Recording, and Processing of Information (2005 Varna, Bulgaria). Holography 2005: International Conference on Holography, Optical Recording, and Processing of Information. Edited by Denisi︠u︡k I︠U︡ N, Sŭĭnov Vent︠s︡eslav, Stoykova Elena, T︠S︡entralna laboratorii︠a︡ za optichen zapis i obrabotka na informat︠s︡ii︠a︡ta (Bŭlgarska akademii︠a︡ na naukite), Society of Photo-optical Instrumentation Engineers. Bulgaria Chapter., and Society of Photo-optical Instrumentation Engineers. Bellingham, Wash: SPIE--the International Society for Optical Engineering, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

United Nations. Advisory Committee for the Co-ordination of Information Systems. Optical storage: An overview of the technology and its use within the United Nations system. New York: United Nations, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Facility, NASA Scientific and Technical Information. Full-scale system impact analysis: Digital document storage project : final. Linthicum Heights, MD: RMS Associates, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Arantza, Illarramendi, ed. Ontology-based query processing for global information systems. Boston: Kluwer Academic Publishers, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jean-Pierre, Goedgebuer, Rozanov N. N, Turit͡s︡yn S. K, Akhmanov Alexander S, Panchenko Vladislav I͡A︡kovlevich, Rossiĭskai͡a︡ akademii͡a︡ nauk, Moskovskiĭ gosudarstvennyĭ universitet im. M.V. Lomonosova., European Physical Society, and Society of Photo-optical Instrumentation Engineers., eds. Optical information, data processing and storage, and laser communication technologies: International Conference on Lasers, Applications, and Technologies 2002 ; 22-27 June 2002, Moscow, Russia. Bellingham, Wash: SPIE, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Guoguang, Mu, Jin Guofan, Sincerbox Glenn T. 1937-, Chen Jiabi, He Anzhi, Hsu Dahsiung, Zhongguo guang xue xue hui., and Society of Photo-optical Instrumentation Engineers., eds. International Conference on Holography and Optical Information Processing: (ICHOIP '96) : 26-28 August, 1996, Nanjing, China. Bellingham, Wash: SPIE--the International Society for Optical Engineering, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Optical information processing system"

1

Yatagai, Toyohiko. "Linear System." In Fourier Theory in Optics and Optical Information Processing, 63–70. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003121916-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Walker, A. C., M. R. Taghizadeh, E. J. Restall, B. Robertson, and J. M. Miller. "Holographic Interconnect Components for Optical Processing Systems." In Optical Information Technology, 85–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78140-7_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cattarelli, Martine. "Optical Mapping of the Olfactory System Activity Using Voltage-Sensitive Dyes." In Chemosensory Information Processing, 315–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75127-1_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Petrov, Mikhail P., Sergei I. Stepanov, and Anatoly V. Khomenko. "Holography, and Optical Information Processing Systems." In Photorefractive Crystals in Coherent Optical Systems, 16–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-540-47056-4_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, Ding. "Adaptation-Oriented Near-Optimal Control and Robust Synthesis of an Overhead Crane System." In Neural Information Processing, 42–50. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70136-3_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhang, Xiaoguang, Lixia Xi, Gaoyan Duan, Li Yu, Zhongyuan Yu, and Bojun Yang. "An Intelligent PSO-Based Control Algorithm for Adaptive Compensation Polarization Mode Dispersion in Optical Fiber Communication Systems." In Neural Information Processing, 1090–100. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11893257_119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wang, Bin, and Dongbin Zhao. "The Optimal Control of Discrete-Time Delay Nonlinear System with Dual Heuristic Dynamic Programming." In Neural Information Processing, 664–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34475-6_80.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Diez, S., H. J. Ehrke, U. Feiste, R. Ludwig, E. Patzak, C. Schmidt, and H. G. Weber. "All-Optical Semiconductor Switching Devices for Applications in Optical Communication Systems." In Unconventional Optical Elements for Information Storage, Processing and Communications, 173–82. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4096-6_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Vainos, N. A. "Laser Materials Processing for Optoelectronics and Information Systems." In Unconventional Optical Elements for Information Storage, Processing and Communications, 247–56. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4096-6_28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Barabanova, E., K. Vytovtov, V. M. Vishnevskiy, and V. Podlazov. "Model of Optical Non-blocking Information Processing System for Next-Generation Telecommunication Networks." In Communications in Computer and Information Science, 188–98. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-36625-4_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Optical information processing system"

1

Shen, Xuan-Jing, and Qing-Ji Qian. "An opt-electronic hybrid expert system: a model and its hardware support system." In ICO20:Optical Information Processing, edited by Yunlong Sheng, Songlin Zhuang, and Yimo Zhang. SPIE, 2006. http://dx.doi.org/10.1117/12.668338.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Feng, Gui-Lan, Wei-Jian Tian, You-Shan Qu, and Wei Ge. "Image mosaics system based on TMS320DM642." In ICO20:Optical Information Processing, edited by Yunlong Sheng, Songlin Zhuang, and Yimo Zhang. SPIE, 2006. http://dx.doi.org/10.1117/12.668302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhu, Hao, and Wenyao Liu. "Implementation of a novel algorithm on ADCP signal processing system." In ICO20:Optical Information Processing, edited by Yunlong Sheng, Songlin Zhuang, and Yimo Zhang. SPIE, 2006. http://dx.doi.org/10.1117/12.667934.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kazakov, Vasily I., Sergey N. Mosentsov, and Oleg D. Moskaletz. "Influence of aperture lens system on optical information processing." In SPIE Optical Engineering + Applications, edited by Abdul A. S. Awwal, Khan M. Iftekharuddin, Mohammad A. Matin, Mireya García Vázquez, and Andrés Márquez. SPIE, 2015. http://dx.doi.org/10.1117/12.2187468.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Song, Hua-Jun, Ming Zhu, Shuo Hu, and Mei-Li Shen. "Target track system design based on circular projection." In ICO20:Optical Information Processing, edited by Yunlong Sheng, Songlin Zhuang, and Yimo Zhang. SPIE, 2006. http://dx.doi.org/10.1117/12.668298.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Shen, Xuan-Jing, Qing-Ji Qian, and Ping-Ping Liu. "Design of an opt-electronic knowledge-based system." In ICO20:Optical Information Processing, edited by Yunlong Sheng, Songlin Zhuang, and Yimo Zhang. SPIE, 2006. http://dx.doi.org/10.1117/12.667930.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Shchepakin, K., and E. Minakov. "Bichannel radio-optical measuring system." In Optical Information Processing: International Conference, edited by Yuri V. Gulyaev and Dennis R. Pape. SPIE, 1994. http://dx.doi.org/10.1117/12.165940.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jing, Zhenguo, and Qingxu Yu. "Multiplexed optical fiber extrinsic Fabry-Perot interferometric sensor system." In ICO20:Optical Information Processing, edited by Yunlong Sheng, Songlin Zhuang, and Yimo Zhang. SPIE, 2006. http://dx.doi.org/10.1117/12.668407.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yang, Yongcai, Junsan Ma, Rimin Pan, and Xiang Yu. "On-line measurement system of displacement with PSD sensor." In ICO20:Optical Information Processing, edited by Yunlong Sheng, Songlin Zhuang, and Yimo Zhang. SPIE, 2006. http://dx.doi.org/10.1117/12.668414.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Liu, Zhi. "Research on application of several tracking detectors in APT system." In ICO20:Optical Information Processing, edited by Yunlong Sheng, Songlin Zhuang, and Yimo Zhang. SPIE, 2006. http://dx.doi.org/10.1117/12.668300.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Optical information processing system"

1

Tanguay, Armand R. Devices and Systems for Nonlinear Optical Information Processing. Fort Belvoir, VA: Defense Technical Information Center, November 1988. http://dx.doi.org/10.21236/ada203034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Leith, E. N. White Light Optical Information Processing. Fort Belvoir, VA: Defense Technical Information Center, May 1985. http://dx.doi.org/10.21236/ada160311.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Casasent, David, and C. L. Wilson. Optical metrology for industrialization of optical information processing. Gaithersburg, MD: National Institute of Standards and Technology, 1997. http://dx.doi.org/10.6028/nist.ir.6060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yu, Francis T. White-Light Optical Information Processing and Holography. Fort Belvoir, VA: Defense Technical Information Center, July 1985. http://dx.doi.org/10.21236/ada170224.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tsai, Chen S. Integrated Acoustooptic Device Modules for Optical Information Processing. Fort Belvoir, VA: Defense Technical Information Center, July 1988. http://dx.doi.org/10.21236/ada198061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Schafer, Ronald W. Two-Dimensional Signal Processing, Optical Information Storage and Processing, and Electromagnetic Measurements. Fort Belvoir, VA: Defense Technical Information Center, May 1994. http://dx.doi.org/10.21236/ada281937.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dodin, I. Y., and N. J. Fisch. Dynamic Volume Holography and Optical Information Processing by Raman Scattering. Office of Scientific and Technical Information (OSTI), September 2002. http://dx.doi.org/10.2172/809839.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Case, Steven K. Gordon Research Conference on Holography and Optical Information Processing (1987). Fort Belvoir, VA: Defense Technical Information Center, February 1987. http://dx.doi.org/10.21236/ada179703.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Schafer, Ronald W. Multidimensional Digital Signal Processing Optical Devices for Information Processing and Electromagnetic Analysis and Measurement. Fort Belvoir, VA: Defense Technical Information Center, July 1996. http://dx.doi.org/10.21236/ada384663.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

I.Y. Dodin and N.J. Fisch. Storing, Retrieving, and Processing Optical Information by Raman Backscattering in Plasmas. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/793016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії