Добірка наукової літератури з теми "One-dimensional and three-dimensional theory"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "One-dimensional and three-dimensional theory".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "One-dimensional and three-dimensional theory"

1

Kinjo, A. R., and K. Nishikawa. "Recoverable one-dimensional encoding of three-dimensional protein structures." Bioinformatics 21, no. 10 (February 18, 2005): 2167–70. http://dx.doi.org/10.1093/bioinformatics/bti330.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

McKeon, D. G. C. "A three-dimensional gauge theory." Canadian Journal of Physics 70, no. 5 (May 1, 1992): 301–4. http://dx.doi.org/10.1139/p92-049.

Повний текст джерела
Анотація:
We investigate a three-dimensional gauge theory modeled on Chern–Simons theory. The Lagrangian is most compactly written in terms of a two-index tensor that can be decomposed into fields with spins zero, one, and two. These all mix under the gauge transformation. The background-field method of quantization is used in conjunction with operator regularization to compute the real part of the two-point function for the scalar field.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Banach, Zbigniew, and Wieslaw Larecki. "One-dimensional maximum entropy radiation hydrodynamics: three-moment theory." Journal of Physics A: Mathematical and Theoretical 45, no. 38 (September 5, 2012): 385501. http://dx.doi.org/10.1088/1751-8113/45/38/385501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gladkov, S. O. "Theory of one-dimensional and quasi-one-dimensional heat conduction." Technical Physics 42, no. 7 (July 1997): 724–27. http://dx.doi.org/10.1134/1.1258707.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Le, K. C. "Three-dimensional continuum dislocation theory." International Journal of Plasticity 76 (January 2016): 213–30. http://dx.doi.org/10.1016/j.ijplas.2015.07.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Emanuel, G., and S. Mölder. "Three-dimensional curved shock theory." Shock Waves 32, no. 2 (January 29, 2022): 129–46. http://dx.doi.org/10.1007/s00193-021-01040-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

BRITTON, N. F., and J. WANIEWSKI. "One-Dimensional Theory of Haemofilters." Mathematical Medicine and Biology 4, no. 1 (1987): 59–68. http://dx.doi.org/10.1093/imammb/4.1.59.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Alekseev, Anton, and Pavel Mnëv. "One-Dimensional Chern-Simons Theory." Communications in Mathematical Physics 307, no. 1 (June 29, 2011): 185–227. http://dx.doi.org/10.1007/s00220-011-1290-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

FRÖHLICH, J., and C. KING. "TWO-DIMENSIONAL CONFORMAL FIELD THEORY AND THREE-DIMENSIONAL TOPOLOGY." International Journal of Modern Physics A 04, no. 20 (December 1989): 5321–99. http://dx.doi.org/10.1142/s0217751x89002296.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gaiotto, Davide, Gregory W. Moore, and Andrew Neitzke. "Four-Dimensional Wall-Crossing via Three-Dimensional Field Theory." Communications in Mathematical Physics 299, no. 1 (July 1, 2010): 163–224. http://dx.doi.org/10.1007/s00220-010-1071-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "One-dimensional and three-dimensional theory"

1

Yoon, Seok Ho. "Explicit class field theory : one dimensional and higher dimensional." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/50367/.

Повний текст джерела
Анотація:
This thesis investigates class field theory for one dimensional fields and higher dimensional fields. For one dimensional fields we cover the cases of local fields and global fields of positive characteristic. For higher dimensional fields we study the case of higher local fields of positive characteristic. The main content of the thesis is divided into two parts. The first part solves several problems directly related to Neukirch's axiomatic class field theory method. We first prove the famous Hilbert 90 Theorem in the case of tamely ramified extensions of local fields in an explicit way. This approach can be of use in understanding the role of the ring structure as opposed to the role of multiplication only in local class field theory. Next, we prove that for every local field, its `class field theory' is unique. Lastly, we establish the Neukirch axiom for global fields of positive characteristic, which leads to a new approach to class field theory for such fields, an approach that has not appeared in the previous literature. There are two main successful directions in higher local class field theory, one by Kato and another by Fesenko. While Kato used a technical cohomological method, Fesenko generalised the Neukirch method and gave the first proof of the existence theorem. In the second part of the thesis we deal with the third method in class field theory that works in positive characteristic only, the Kawada-Satake method. We generalise the classical Kawada-Satake method to higher local fields of positive characteristic. We correct substantial mistakes in a paper of Parshin on such class field theory. We develop the first complete presentation of the theory based on the generalised Kawada-Satake method using advanced properties of topological Milnor K-groups. These advanced properties include Fesenko's theorem about relations of topological and algebraic properties of Milnor K-groups.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Adams, Charles N. "Three dimensional image synthesis : theory and application /." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Jun%5FAdams.pdf.

Повний текст джерела
Анотація:
Thesis (M.S. in Electrical Engineering)--Naval Postgraduate School, June 2003.
Thesis advisor(s): Phillip E. Pace, Don Brutzman. Includes bibliographical references (p. 129-130). Also available online.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Góralski, Rafał. "Three-dimensional interactive maps : theory and practice." Thesis, University of South Wales, 2009. https://pure.southwales.ac.uk/en/studentthesis/threedimensional-interactive-maps(a6056f48-8ee0-475e-b5e4-7e7e66037c7d).html.

Повний текст джерела
Анотація:
Maps are among the oldest and the most popular forms of graphical communication, which have always been highly regarded for high efficiency of information transfer. Regardless of how efficient two-dimensional maps are, three-dimensional interactive maps offer significant improvements and benefits over their traditional counterparts. While the enabling technologies for three-dimensional (3D) mapping have been ready for some time, and the benefits are significant, one might expect that a wide adoption of threedimensional maps should already be happening. However, for some reason, the transition to 3D cartography is not happening as quickly and effectively, as would be allowed by the technological and social conditioning. In this work we discuss three-dimensional interactive maps in depth from both the theoretical and practical perspective, as well as show the benefits for a number of applications, and identify some of the factors that inhibit their popularization. We define 3D maps and threedimensional cartography, and discuss its relations with the broader discipline of geovisualization. We demonstrate that more 3D cartographic research would benefit users of maps, as well as those of GIS and geovisualization products. Three-dimensional maps are such a broad subject, and they encompass so many different things, that hard definitions are difficult. That is why we use a technical description and propose a set of functional factors that differentiate, describe and define threedimensional maps, instead of trying to provide a single narrow definition. We also discuss and validate various cartographic, functional, practical and technical aspects of three-dimensional maps, by a practical exercise of implementation of a 3D mapping platform. The platform developed, called the 3D Map Viewer, is used to demonstrate the usefulness of 3D maps, and discuss a number of applications where they offer benefits over the existing approaches. By applying our platform to different tasks we also prove that efficient 3D mapping products may be built today, without a need for further technological progress. We believe that the adoption of 3D cartography would benefit a widerange of users, and that it has a potential to stimulate progress in numerous disciplines of business, life and science. It is our objective to contribute to widespread recognition of three-dimensional maps’ usefulness, and to adhere to their continued development and popularization.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

McNeill, Mark D. "Three-dimensional strong acousto-optic interaction theory." Diss., Virginia Tech, 1996. http://hdl.handle.net/10919/40456.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Johansson, Bergholtz Emil. "One-dimensional theory of the quantum Hall system." Doctoral thesis, Stockholms universitet, Fysikum, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-7545.

Повний текст джерела
Анотація:
The quantum Hall (QH) system---cold electrons in two dimensions in a perpendicular magnetic field---is a striking example of a system where unexpected phenomena emerge at low energies. The low-energy physics of this system is effectively one-dimensional due to the magnetic field. We identify an exactly solvable limit of this interacting many-body problem, and provide strong evidence that its solutions are adiabatically connected to the observed QH states in a similar manner as the free electron gas is related to real interacting fermions in a metal according to Landau's Fermi liquid theory. The solvable limit corresponds to the electron gas on a thin torus. Here the ground states are gapped periodic crystals and the fractionally charged excitations appear as domain walls between degenerate ground states. The fractal structure of the abelian Haldane-Halperin hierarchy is manifest for generic two-body interactions. By minimizing a local k+1-body interaction we obtain a representation of the non-abelian Read-Rezayi states, where the domain wall patterns encode the fusion rules of the underlying conformal field theory. We provide extensive analytical and numerical evidence that the Laughlin/Jain states are continuously connected to the exact solutions. For more general hierarchical states we exploit the intriguing connection to conformal field theory and construct wave functions that coincide with the exact ones in the solvable limit. If correct, this construction implies the adiabatic continuation of the pertinent states. We provide some numerical support for this scenario at the recently observed fraction 4/11. Non-QH phases are separated from the thin torus by a phase transition. At half-filling, this leads to a Luttinger liquid of neutral dipoles which provides an explicit microscopic example of how weakly interacting quasiparticles in a reduced (zero) magnetic field emerge at low energies. We argue that this is also smoothly connected to the bulk state.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kim, Hyun Suk. "Two dimensional and three dimensional path planning in robotics." PDXScholar, 1988. https://pdxscholar.library.pdx.edu/open_access_etds/3814.

Повний текст джерела
Анотація:
A methodology for 2D and 3D collision free path planning algorithm in a structured environment is presented. The isolated free convex areas are represented as a nodes in a graph, and a graph traversal strategy that dynamically allocates costs to graph path is used. Modification of the algorithm for small computational time and optimality is discussed. The 3D path planning is done in the three orthogonal two-dimensional projections of a 3D environment. Collision checking to increase the optimality for 3D paths is done in each of the three orthogonal two-dimensional subspaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hanlon, Sebastien, and University of Lethbridge Faculty of Arts and Science. "Visualizing three-dimensional graph drawings." Thesis, Lethbridge, Alta. : University of Lethbridge, Faculty of Arts and Science, 2006, 2006. http://hdl.handle.net/10133/348.

Повний текст джерела
Анотація:
The GLuskap system for interactive three-dimensional graph drawing applies techniques of scientific visualization and interactive systems to the construction, display, and analysis of graph drawings. Important features of the system include support for large-screen stereographic 3D display with immersive head-tracking and motion-tracked interactive 3D wand control. A distributed rendering architecture contributes to the portability of the system, with user control performed on a laptop computer without specialized graphics hardware. An interface for implementing graph drawing layout and analysis algorithms in the Python programming language is also provided. This thesis describes comprehensively the work on the system by the author—this work includes the design and implementation of the major features described above. Further directions for continued development and research in cognitive tools for graph drawing research are also suggested.
viii, 110 leaves : ill. (some col.) ; 29 cm.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Seifert, Christian. "Measure-perturbed one-dimensional Schrödinger operators." Doctoral thesis, Universitätsbibliothek Chemnitz, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-102766.

Повний текст джерела
Анотація:
In this Dissertation thesis the spectral theory of Schrödinger operators modeling quasicrystals in dimension one ist investigated. We allow for a large class of measures as potentials covering also point interactions. The main results can be stated as follows: If the potential can be very well approximated by periodic potentials, then the correspondig Schrödinger operator does not have any eigenvalues. If the potential is aperiodic and satisfies a certain finite local complexity condition, the absolutely continuous spectrum is absent. We also prove Cantor spectra of zero Lebesgue measure for a large class of (a randomized version of) the operator.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wu, Si. "Magnetic Properties of Quasi-One-Dimensional Organic Conductors." Diss., The University of Arizona, 2010. http://hdl.handle.net/10150/195205.

Повний текст джерела
Анотація:
In the past three decades, quasi-low-dimensional organic materials have attracted intense interests, both experimentally and theoretically. Due to their reduced dimensionality and relatively low carrier concentration, many organic materials exhibit strong electron correlations and numerous instabilities of the normal metallic state. The energy scales of such instabilities are often so low that the ground states can be changed by applying a reasonably strong magnetic field. Therefore, magnetic field is an effective tool for the study of quasi-low-dimensional organic materials. In this thesis, we will investigate two of these magnetic field related phenomena. In the first part, we will present our unified theory of angular magnetoresistance oscillations observed in organic conductors. We will demonstrate that, in spite of the absence of Landau level quantization for open Fermi surfaces in a magnetic field, a new quantum effect - Bragg reflections of electrons moving in the extended Brillouin zone - determines unusual magnetic properties of these materials. We will demonstrate that, at commensurate directions of a magnetic field, the electron motion shows 1D→2D dimensional crossover and leads to strong resistivity minima. We will present an analytic expression for interlayer resistivity, by both linear response formalism and solving the Boltzmann kinetic equation in the extended Brillouin zone. In two limiting cases, our general solution reduces to the results previously obtained for the LMA effects and LNL oscillations. We demonstrate that our theoretical results are in good qualitative and quantitative agreement with the existing measurements of resistivity in (TMTSF)₂ClO₄ conductor. In the second part, we will develop a theory for the recently observed high magnetic field high resistance state in (Per)₂Pt(mnt)₂. We demonstrate that the Pauli spinsplitting effects in a magnetic field improve nesting properties of a realistic quasi-onedimensional electron spectrum. As a result, a high resistance Peierls charge-density wave (CDW) phase is stabilized in high enough magnetic fields in (Per)₂Pt(mnt)₂ conductor. We show that, in low and very high magnetic fields, the Pauli spin-splitting effects lead to a stabilization of a soliton wall superlattice (SWS) CDW phase, which is characterized by periodically arranged soliton and anti-soliton walls. We suggest experimental studies of the predicted first order phase transitions between the Peierls and SWS phases to discover a unique SWS phase. It is important that, in the absence of a magnetic field and in a limit of very high magnetic fields, the suggested model is equivalent to the exactly solvable model of Brazovskii, Dzyaloshinskii, and Kirova.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yong, Xuerong. "The channel capacity of one and two-dimensional constrained codes /." View Abstract or Full-Text, 2002. http://library.ust.hk/cgi/db/thesis.pl?COMP%202002%20YONG.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Hong Kong University of Science and Technology, 2002.
Includes bibliographical references (leaves 105-110). Also available in electronic version. Access restricted to campus users.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "One-dimensional and three-dimensional theory"

1

One-dimensional stable distributions. Provindence, R.I: American Mathematical Society, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

A three-dimensional theory of law. Leiden: Martinus Nijhoff Publishers, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tella, María José Falcón y. A three-dimensional theory of law. Leiden: Martinus Nijhoff Publishers, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Belitskii, Genrich. One-dimensional Functional Equations. Basel: Birkhäuser Basel, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

One dimensional spline interpolation algorithms. Wellesley, Mass: A K Peters, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Duke, Emerson H., and Stephen R. Aguirre. 3D imaging: Theory, technology, and applications. Edited by Duke Emerson H and Aguirre Stephen R. Hauppauge, N.Y: Nova Science Publishers, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Scheuzger, Peter Daniel. Unconventional magnetoresistance of two-dimensional and three-dimensional electron systems. Konstanz: Hartung-Gorre, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ghrist, Robert W. Knots and links in three-dimensional flows. Berlin: Springer, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

1937-, Tkachenko V., ed. One-dimensional functional equations. Basel: Birkhäuser, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Allanson, Oliver. Theory of One-Dimensional Vlasov-Maxwell Equilibria. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97541-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "One-dimensional and three-dimensional theory"

1

Shvydkoy, Roman. "One-Dimensional Theory." In Nečas Center Series, 143–73. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68147-0_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dyszlewicz, Janusz. "Three-dimensional problems." In Micropolar Theory of Elasticity, 21–108. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-45286-7_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Slaughter, William S. "Three-Dimensional Problems." In The Linearized Theory of Elasticity, 331–86. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0093-2_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Betounes, David. "One-Dimensional Systems." In Differential Equations: Theory and Applications, 115–55. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-4971-7_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rodrigues, Ana. "Topological theory of chaos." In One-Dimensional Dynamical Systems, 51–66. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003144618-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Monin, A. S. "Three-Dimensional Models." In An Introduction to the Theory of Climate, 224–48. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4506-7_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Monin, A. S. "One-Dimensional Models." In An Introduction to the Theory of Climate, 197–210. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4506-7_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bauchau, O. A., and J. I. Craig. "Three-dimensional beam theory." In Structural Analysis, 223–59. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2516-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Maceri, Aldo. "The Three-Dimensional Problem." In Theory of Elasticity, 1–125. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11392-5_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bertram, Albrecht, and Rainer Glüge. "ONE-DIMENSIONAL MATERIAL THEORY." In Solid Mechanics, 1–42. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19566-7_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "One-dimensional and three-dimensional theory"

1

Stern, Adrian, Yair Rivenson, Joseph Rosen, and Bahram Javidi. "Compressive sensing techniques applied in holography: theory and examples." In Digital Holography and Three-Dimensional Imaging. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/dh.2012.dsu2c.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, Wei, Juan Zhao, and Mitsuo Takeda. "Exploring the Unified Theory of Polarization and Coherence by Using Coherence Tensor Holography." In Digital Holography and Three-Dimensional Imaging. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/dh.2020.hf2g.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

de Pedro, Luis. "Three-dimensional transformation recognition using four-dimensional tensor theory." In Robotics - DL tentative, edited by David P. Casasent. SPIE, 1992. http://dx.doi.org/10.1117/12.135105.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Insinna, Massimiliano, Simone Salvadori, Francesco Martelli, Giorgio Peroni, Gilles Simon, Antonio Dipace, and Raffaele Squarcini. "One-Dimensional Prediction and Three-Dimensional CFD Simulation of the Fluid Dynamics of Regenerative Pumps." In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-76416.

Повний текст джерела
Анотація:
Regenerative pumps, also referred to as “peripheral” or “side channel” pumps, are characterized by a specific speed that contextualize them between rotary positive displacement and purely radial centrifugal pumps. Although regenerative pumps are not widely distributed, they are interesting for many industrial applications. In fact, for a given flow rate they operate at lower rotational speed with respect to purely radial pumps. Furthermore, they are less affected by mechanical problems with respect to positive displacement pumps. The energy transfer mechanism is the same of centrifugal pumps, but the presence of the side channel imposes to the fluid to pass several times through the impeller, thus obtaining higher pressure rise (as for multi-stage machines) with respect to classical purely radial pumps. Unfortunately, the complexity of the flow field, the large amount of wetted surface and a disadvantageous inflow/outflow configuration contribute to limit the maximum value of hydraulic efficiency, which is also very sensitive to the design choices. Moreover, the intrinsic complexity of the helical flow path makes the theoretical performance estimation a challenging task. It is worth underlining that an accurate performance prediction using one-dimensional models would allow to accelerate greatly the design process, with a non-negligible reduction of demanding three-dimensional Computational Fluid Dynamics (CFD) campaigns. The aim of the present work is to deeply investigate the fluid dynamics of regenerative pumps and to understand how accurately the fundamental physical phenomena can be reproduced by one-dimensional theory. To comply with these aims, a systematic post-processing of the results of several steady and unsteady three-dimensional CFD simulations is exploited for the validation of the in-house one-dimensional tool DART (Design and Analysis tool for Regenerative Turbomachinery), developed at the University of Florence. The theory underlying DART is detailed, and the assumptions of the model are verified by means of comparison with the numerical results underlining the key aspects to be considered for a reliable prediction of the pump performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Khodja Ammar, Farid, and Mustapha Mokhtar-Kharroubi. "Exponential stability of one-dimensional hyperbolic systems." In Control Systems: Theory, Numerics and Applications. Trieste, Italy: Sissa Medialab, 2006. http://dx.doi.org/10.22323/1.018.0005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Stokoe, Robert, Patrick A. Stockton, Ali Pezeshki, and Randy A. Bartels. "Theory and applications of structured light single pixel imaging." In Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXV, edited by Thomas G. Brown, Carol J. Cogswell, and Tony Wilson. SPIE, 2018. http://dx.doi.org/10.1117/12.2289087.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yu Ling-juan and Zhang Yun-hua. "One-dimensional spectrum extrapolation for circular SAR imaging." In EM Theory (ISAPE - 2010). IEEE, 2010. http://dx.doi.org/10.1109/isape.2010.5696554.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kovalenko, Aleksey, Mikhail I. Polikarpov, Sergey N. Syritsyn, and Valentin I. Zakharov. "Geometry of three dimensional vacuum domains in four dimensional SU(2) gluodynamics." In XXIIIrd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2005. http://dx.doi.org/10.22323/1.020.0328.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Svetitsky, Benjamin, Ohad Raviv, and Yigal Shamir. "Beta function of three-dimensional QED." In The 32nd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2015. http://dx.doi.org/10.22323/1.214.0051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kastner, Raphael, and Nader Engheta. "Half-Order Three-Dimensional Curl Operator." In 2019 URSI International Symposium on Electromagnetic Theory (EMTS). IEEE, 2019. http://dx.doi.org/10.23919/ursi-emts.2019.8931488.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "One-dimensional and three-dimensional theory"

1

Pevey, R. E. Benchmarking report for WIGGLE: A one-dimensional transient diffusion theory code. Office of Scientific and Technical Information (OSTI), November 1990. http://dx.doi.org/10.2172/6398033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Joseph, Anosh. Lattice formulation of three-dimensional N=4 gauge theory with fundamental matter fields. Office of Scientific and Technical Information (OSTI), June 2013. http://dx.doi.org/10.2172/1086767.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Le, T. T. Verification, validation, and benchmarking report for TRIMHX: A three dimensional hexagonal transient diffusion theory code. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/10157236.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Xi, Ziieng-Min. Charged Vortex and Duality in Three-Dimensional Abelian Gauge Theory with a Chern-Simons Term. Office of Scientific and Technical Information (OSTI), February 1990. http://dx.doi.org/10.2172/1449164.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Schulze-Berge, S., S. Crowley, and Liu Chen. Theory of field line resonances of standing shear Alfven waves in three-dimensional inhomogeneous plasmas. Office of Scientific and Technical Information (OSTI), May 1991. http://dx.doi.org/10.2172/5837937.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Le, T. L. Verification, validation, and benchmarking report for TRIMHX: A three dimensional hexagonal transient diffusion theory code. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/6800670.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Billaux, D., J. C. S. Long, and J. E. Jr Peterson. CHANGE: A numerical model for three-dimensional modelling of channelized flow in rock: Theory and design. Office of Scientific and Technical Information (OSTI), March 1990. http://dx.doi.org/10.2172/6644982.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

ZOTOVA, V. A., E. G. SKACHKOVA, and T. D. FEOFANOVA. METHODOLOGICAL FEATURES OF APPLICATION OF SIMILARITY THEORY IN THE CALCULATION OF NON-STATIONARY ONE-DIMENSIONAL LINEAR THERMAL CONDUCTIVITY OF A ROD. Science and Innovation Center Publishing House, April 2022. http://dx.doi.org/10.12731/2227-930x-2022-12-1-2-43-53.

Повний текст джерела
Анотація:
The article describes the methodological features of the analytical solution of the problem of non-stationary one-dimensional linear thermal conductivity of the rod. The authors propose to obtain a solution to such problems by the method of finite differences using the Fourier similarity criterion. This approach is especially attractive because the similarity theory in the vast majority of cases makes it possible to do without expensive experiments and obtain simple solutions for a wide range of problems.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tsai, Frank, Navid Jafari, Ye-Hong Chen, and Jack Cadigan. Three-dimensional underseepage evaluation for Profit Island vicinity levee, north of Baton Rouge, Louisiana. Engineer Research and Development Center (U.S.), May 2022. http://dx.doi.org/10.21079/11681/44220.

Повний текст джерела
Анотація:
This project developed a three-dimensional (3D) seepage model to evaluate efficiency of 84 relief wells and factors of safety (FoS) along the Profit Island vicinity levee (PIVL), north of Baton Rouge, Louisiana. The PIVL model was built based on US Geological Survey MODFLOW-USG. Moreover, a 3D seepage model of RocScience RS3 was also built for a specific study of relief well experiments conducted by the US Army Corps of Engineers in the 1930s and 1940s. The PIVL model was calibrated with measured piezometric head data and relief well flow rates in 1997. Six flood scenarios were conducted: the extreme flood (56 feet), design flood (52.4 feet), 1997 flood (50 feet), 2008 flood (49.22 feet), 2017 flood (45.55 feet), and 2018 flood (49.1 feet). The modeling results show that FoS are all above 1.5 given relief wells at the 1997 design condition. FoS calculated by the blanket theory are more conservative than those by the PIVL model because designed discharge rates were not observed in the field. In comparison with measured flow rates in 2008, the PIVL modeling result indicates potential clogging at many relief wells. New piezometric data and well discharge data are recommended to re-evaluate factors of safety.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Deutsch, Steven. Analysis of a Three-Dimensional Corner Flow with One Rough Surface. Fort Belvoir, VA: Defense Technical Information Center, October 2000. http://dx.doi.org/10.21236/ada383119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії