Добірка наукової літератури з теми "Ocean field"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Ocean field".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Ocean field"

1

O'Dor, Ron, and Víctor Ariel Gallardo. "How to Census Marine Life: ocean realm field projects." Scientia Marina 69, S1 (June 30, 2005): 181–99. http://dx.doi.org/10.3989/scimar.2005.69s1181.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Irrgang, C., J. Saynisch, and M. Thomas. "Impact of variable seawater conductivity on motional induction simulated with an ocean general circulation model." Ocean Science 12, no. 1 (January 15, 2016): 129–36. http://dx.doi.org/10.5194/os-12-129-2016.

Повний текст джерела
Анотація:
Abstract. Carrying high concentrations of dissolved salt, ocean water is a good electrical conductor. As seawater flows through the Earth's ambient geomagnetic field, electric fields are generated, which in turn induce secondary magnetic fields. In current models for ocean-induced magnetic fields, a realistic consideration of seawater conductivity is often neglected and the effect on the variability of the ocean-induced magnetic field unknown. To model magnetic fields that are induced by non-tidal global ocean currents, an electromagnetic induction model is implemented into the Ocean Model for Circulation and Tides (OMCT). This provides the opportunity to not only model ocean-induced magnetic signals but also to assess the impact of oceanographic phenomena on the induction process. In this paper, the sensitivity of the induction process due to spatial and temporal variations in seawater conductivity is investigated. It is shown that assuming an ocean-wide uniform conductivity is insufficient to accurately capture the temporal variability of the magnetic signal. Using instead a realistic global seawater conductivity distribution increases the temporal variability of the magnetic field up to 45 %. Especially vertical gradients in seawater conductivity prove to be a key factor for the variability of the ocean-induced magnetic field. However, temporal variations of seawater conductivity only marginally affect the magnetic signal.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shang, E. C., and Y. Y. Wang. "Ocean acoustic field simulations for monitoring large-scale ocean structures." Computer Physics Communications 65, no. 1-3 (April 1991): 238–45. http://dx.doi.org/10.1016/0010-4655(91)90177-m.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bo, Li, Zhong Yi Li, and Yue Jin Zhang. "Ocean Surface Modeling in Vary Wind Field." Key Engineering Materials 480-481 (June 2011): 1452–56. http://dx.doi.org/10.4028/www.scientific.net/kem.480-481.1452.

Повний текст джерела
Анотація:
In ocean surface modeling a popular method of wave modeling is making use of ocean wave spectrum, which is a physical wave model and based on linear wave theories. The ocean waves produced in this way can reflect the statistical characteristics of the real ocean well. However, few investigations of ocean simulation have been focused on turbulent fluid under vary wind field in this way, while all ocean wave models are built with the same wind parameters. In order to resolve the problem of traditional method, we proposed a new method of dividing the ocean surface into regular grids and generating wave models with different parameters of wind in different location of view scope. The method not only preserves the fidelity of statistical characteristics, but also can be accelerated with the processing of GPU and widely used in VR applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Small, J., L. Shackleford, and G. Pavey. "Ocean feature models − their use and effectiveness in ocean acoustic forecasting." Annales Geophysicae 15, no. 1 (January 31, 1997): 101–12. http://dx.doi.org/10.1007/s00585-997-0101-7.

Повний текст джерела
Анотація:
Abstract. The aim of this paper is to test the effectiveness of feature models in ocean acoustic forecasting. Feature models are simple mathematical representations of the horizontal and vertical structures of ocean features (such as fronts and eddies), and have been used primarily for assimilating new observations into forecasts and for compressing data. In this paper we describe the results of experiments in which the models have been tested in acoustic terms in eddy and frontal environments in the Iceland Faeroes region. Propagation-loss values were obtained with a 2D parabolic-equation (PE) model, for the observed fields, and compared to PE results from the corresponding feature models and horizontally uniform (range-independent) fields. The feature models were found to represent the smoothed observed propagation-loss field to within an rms error of 5 dB for the eddy and 7 dB for the front, compared to 10–15-dB rms errors obtained with the range-independent field. Some of the errors in the feature-model propagation loss were found to be due to high-amplitude 'oceanographic noise' in the field. The main conclusion is that the feature models represent the main acoustic properties of the ocean but do not show the significant effects of small-scale internal waves and fine-structure. It is recommended that feature models be used in conjunction with stochastic models of the internal waves, to represent the complete environmental variability.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Timmermans, Mary-Louise, and Steven R. Jayne. "The Arctic Ocean Spices Up." Journal of Physical Oceanography 46, no. 4 (April 2016): 1277–84. http://dx.doi.org/10.1175/jpo-d-16-0027.1.

Повний текст джерела
Анотація:
AbstractThe contemporary Arctic Ocean differs markedly from midlatitude, ice-free, and relatively warm oceans in the context of density-compensating temperature and salinity variations. These variations are invaluable tracers in the midlatitudes, revealing essential fundamental physical processes of the oceans, on scales from millimeters to thousands of kilometers. However, in the cold Arctic Ocean, temperature variations have little effect on density, and a measure of density-compensating variations in temperature and salinity (i.e., spiciness) is not appropriate. In general, temperature is simply a passive tracer, which implies that most of the heat transported in the Arctic Ocean relies entirely on the ocean dynamics determined by the salinity field. It is shown, however, that as the Arctic Ocean warms up, temperature will take on a new role in setting dynamical balances. Under continued warming, there exists the possibility for a regime shift in the mechanisms by which heat is transported in the Arctic Ocean. This may result in a cap on the storage of deep-ocean heat, having profound implications for future predictions of Arctic sea ice.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Marks, K. M. "Southern Ocean gravity field image available." Eos, Transactions American Geophysical Union 73, no. 12 (1992): 130. http://dx.doi.org/10.1029/91eo00108.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tolstoy, A., and B. Sotirin. "Ocean tomography via matched‐field processing." Journal of the Acoustical Society of America 97, no. 5 (May 1995): 3249. http://dx.doi.org/10.1121/1.411711.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Voosen, Paul. "Ocean geoengineering scheme aces field test." Science 378, no. 6626 (December 23, 2022): 1266–67. http://dx.doi.org/10.1126/science.adg3935.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sushkevich, Tamara, Sergey Strelkov, and Svetlana Maksakova. "“Future Earth”: Nigmatulin Hypothesis and Dynamic Model of Radiation Field of Ocean-Atmosphere System." EPJ Web of Conferences 248 (2021): 01014. http://dx.doi.org/10.1051/epjconf/202124801014.

Повний текст джерела
Анотація:
The United Nations has proclaimed a Decade of Ocean Science for Sustainable Development (2021-2030) to support efforts to reverse the cycle of decline in ocean health and gather ocean stakeholders worldwide behind a common framework that will ensure ocean science can fully support countries in creating improved conditions for sustainable development of the Ocean. The marine realm is the largest component of the Earth’s system that stabilizes climate and support life on Earth and human well-being. Scientific understanding of the ocean’s responses to pressures and management action is fundamental for sustainable development. Planet Earth is a natural example of a dynamic system with nonlinear processes that is in continuous change. The Earth’s radiation field is a single physical field (electromagnetic radiation) and the unifying factor of the Earth dynamical system. The Earth’s climate system is a natural environment that includes the atmosphere, the hydrosphere (oceans, seas, lakes, rivers), the cryosphere (land surface, snow, sea and mountain ice, etc.), and the biosphere that unites all living things. According to the hypothesis of R.I. Nigmatulin “Ocean is a dictator of climate”. H2O and CO2 are competing climate influences. In this article, we propose original author’s mathematical models for radiation blocks with hyperspectral data on absorption by atmospheric components. The new models are based on the development of the theory of the optical transfer operator and the method of influence functions in the theory of radiation transfer and Boltzmann equations, as well as the iterative method of characteristics with iteration convergence accelerations.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Ocean field"

1

Melo, Jose Luis Branco Seabra de. "Nonlinear parametric wave model compared with field data." Monterey, Calif. : Naval Postgraduate School, 1985. http://catalog.hathitrust.org/api/volumes/oclc/57738811.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Brown, Jennifer. "Field measurements and modeling of surfzone currents on inhomogeneous beaches." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 117 p, 2009. http://proquest.umi.com/pqdweb?did=1885467621&sid=6&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lilly, Jonathan M. "Observations of the Labrador Sea eddy field /." Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/11041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Colbert, David B. "Field evaluation of ocean wave measurements with GPS buoys." Thesis, Monterey, California. Naval Postgraduate School, 2010. http://hdl.handle.net/10945/5117.

Повний текст джерела
Анотація:
Approved for public release; distribution is unlimited
An intercomparison of Datawell accelerometer buoys, Datawell GPS buoys, and prototype GPS buoys was conducted to determine the viability of using off-the-shelf GPS receivers to measure ocean surface waves. In the experiment, conducted off the coast of California near Bodega Bay, clusters off Datawell and prototype GPS buoys were deployed to collect ocean surface wave measurements. The first phase of the research was an intercomparison of wave measurements from a Datawell accelerometer sensor, the Magellan MMCX GPS receiver and the GlobalSat MR-350 GPS receiver. The Datawell accelerometer and the Magellan MMCX receiver measurements of both vertical and horizontal wave orbital excursions are in good agreement. The GlobalSat MR-350 receiver also accurately resolved horizontal wave orbital displacements but failed to reproduce the vertical wave excursion measurement by the accelerometer sensors. The second phase of the project was an independent intercomparison between the Datawell MK-II accelerometer buoys, Datawell Waverider GPS buoys, and the prototype GPS buoys built by the NPS team using the Magellan MMCX receiver. The intercomparison showed good agreement between the off-the-shelf GPS buoys, the newer Datawell GPS buoys as well as the traditional Datawell accelerometer buoys in the energetic part of the wave spectrum.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Strohm, Frederic M. "Simulation of ocean acoustic tomography using matched field processing." Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/26243.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Brown, Jeffrey W. "Lagrangian field observations of rip currents." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 133 p, 2008. http://proquest.umi.com/pqdweb?did=1633772921&sid=6&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Henry, Legena Albertha. "A study of ocean wave statistical properties using nonlinear, directional, phase-resolved ocean wave-field simulations." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1912/3230.

Повний текст джерела
Анотація:
Thesis (S.M.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), February 2010.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 327-334).
In the present work, we study the statistics of wavefields obtained from non-linear phase-resolved simulations. The numerical model used to generate the waves models wave-wave interactions based on the fully non-linear Zakharov equations. We vary the simulated wavefield's input spectral properties: directional spreading function, Phillips parameter and peak shape parameter. We then investigate the relationships between a wavefield's input spectral properties and its output physical properties via statistical analysis. We investigate surface elevation distribution, wave definition methods in a nonlinear wavefield with a two-dimensional wavenumber, defined waves' distributions, and the occurrence and spacing of large wave events.
by Legena Albertha Henry.
S.M.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Deffenbaugh, Max. "A matched field processing approach to long range acoustic navigation." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/34053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Stephens, Britton Bruce. "Field-based atmospheric oxygen measurements and the ocean carbon cycle /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1999. http://wwwlib.umi.com/cr/ucsd/fullcit?p3035435.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Grant, Justin Alexander. "Far-field noise from a rotor in a wind tunnel." Thesis, Florida Atlantic University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10154927.

Повний текст джерела
Анотація:

This project is intended to demonstrate the current state of knowledge in the prediction of the tonal and broadband noise radiation from a Sevik rotor. The rotor measurements were made at the Virginia Tech Stability Wind Tunnel. Details of the rotor noise and flow measurements were presented by Wisda et al(2014) and Murray et al(2015) respectively. This study presents predictions based on an approach detailed by Glegg et al(2015) for the broadband noise generated by a rotor in an inhomogeneous flow, and compares them to measured noise radiated from the rotor at prescribed observer locations. Discrepancies between the measurements and predictions led to comprehensive study of the flow in the wind tunnel and the discovery of a vortex upstream of the rotor at low advance ratios. The study presents results of RANS simulations. The static pressure and velocity profile in the domain near the rotor’s tip gap region were compared to measurements obtained from a pressure port array and a PIV visualization of the rotor in the wind tunnel

Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Ocean field"

1

illustrator, Hall Roger, and Hobson Ryan illustrator, eds. Field guide to ocean animals. San Diego: Silver DolphinBooks, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

M, Gorodnit͡s︡kiĭ A., ed. Anomalous magnetic field of the World Ocean. Boca Raton: CRC Press, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

W, Leffler Michael, United States. Army. Corps of Engineers., Coastal Engineering Research Center (U.S.), and U.S. Army Engineer Waterways Experiment Station., eds. Annual data summary for 1988 CERC Field Research Facility. [Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Miller, H. Carl. Annual data summary for 1986 CERC Field Research Facility. Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Walker, Ronald E. Marine light field statistics. New York: Wiley, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Leffler, Michael W. Annual data summary for 1987 CERC Field Research Facility. [Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Carl, Miller H., U.S. Army Engineer Waterways Experiment Station., Coastal Engineering Research Center (U.S.), and United States. Army. Corps of Engineers., eds. Annual data summary for 1986 CERC Field Research Facility. [Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Diachok, O., A. Caiti, P. Gerstoft, and H. Schmidt, eds. Full Field Inversion Methods in Ocean and Seismo-Acoustics. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8476-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mukhopadhyay, Ranadhir. The Indian Ocean nodule field: Geology and resource potential. Amsterdam: Elsevier, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Strohm, Frédéric M. Simulation of ocean acoustic tomography using matched field processing. Monterey, Calif: Naval Postgraduate School, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Ocean field"

1

Brantner, Gerald, and Oussama Khatib. "Controlling Ocean One." In Field and Service Robotics, 3–17. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67361-5_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Griffiths, Terry. "Field Development." In Encyclopedia of Ocean Engineering, 1–9. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-10-6963-5_229-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dozier, L. B., and H. A. Freese. "Active Matched Field Processing for Clutter Rejection." In Ocean Reverberation, 313–18. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2078-4_43.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kistovich, Anatoly, Konstantin Pokazeev, and Tatiana Chaplina. "Ray Description of the Sound Field in Inhomogeneous Media." In Ocean Acoustics, 71–85. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35884-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kistovich, Anatoly, Konstantin Pokazeev, and Tatiana Chaplina. "Wave Description of the Sound Field in Inhomogeneous Media." In Ocean Acoustics, 87–103. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35884-6_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Baggeroer, Arthur B., and William A. Kuperman. "Matched Field Processing in Ocean Acoustics." In Acoustic Signal Processing for Ocean Exploration, 79–114. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1604-6_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Talwani, Manik, and Xavier Le Pichon. "Gravity Field Over the Atlantic Ocean." In The Earth's Crust and Upper Mantle, 341–51. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm013p0341.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Forget, P. "The Wave Field Dynamics Inferred from HF Radar Sea-Echo." In The Ocean Surface, 257–62. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-015-7717-5_34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ewart, T. E., and S. A. Reynolds. "Experimental Ocean Acoustic Field Moments Versus Predictions." In Ocean Variability & Acoustic Propagation, 23–40. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3312-8_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

McCoy, John J., Louis Fishman, and L. Neil Frazer. "Range Dependent Propagation Codes Based on Wave Field Factorization and Invariant Imbedding." In Ocean Seismo-Acoustics, 39–46. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2201-6_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Ocean field"

1

Peipei, He, Shi Jie, and Li Jikang. "Acoustic Scattering Characteristics of an Underwater Vortex Field." In 2024 OES China Ocean Acoustics (COA), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/coa58979.2024.10723665.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

de Oliveira Júnior, Luciano, Orlando C. Rodríguez, and Sérgio M. Jesus. "Ocean Noise Field-Calibration Constraints for Deep Sea Mining." In OCEANS 2024 - SINGAPORE, 01–05. IEEE, 2024. http://dx.doi.org/10.1109/oceans51537.2024.10682346.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yuezhu, Cheng, Shi Jie, and Fu Xiaoyue. "The Study of Backscattering Acoustic Field from inhomogeneous Distributed Bubbles." In 2024 OES China Ocean Acoustics (COA), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/coa58979.2024.10723638.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Liu, Jiahui, Zuoshuai Wang, Wentie Yang, Lanyi Liu, and Yidong Xu. "AUV Underwater Docking Guidance Method Based on Rotating Current Field." In 2024 OES China Ocean Acoustics (COA), 1–7. IEEE, 2024. http://dx.doi.org/10.1109/coa58979.2024.10723394.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gao, Xiao, Haigang Zhang, and Dejin Cao. "Wave Impedance Characteristics Based on Deep Sea Sound Vector Field." In 2024 OES China Ocean Acoustics (COA), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/coa58979.2024.10723670.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wan, Xuanwei, Gang Zheng, Xiaofeng Li, and Lizhang Zhou. "Reconstruction of Ocean Temperature Field Based on a Temperature Profile." In 2024 Photonics & Electromagnetics Research Symposium (PIERS), 1–3. IEEE, 2024. http://dx.doi.org/10.1109/piers62282.2024.10618308.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

wang, xi, Qiushi Hao, and Mengdi Sun. "Ocean acoustic field model based on three-dimensional parabolic equation." In Fourth International Conference on Optics and Communication Technology (ICOCT 2024), edited by Yang Zhao and Yongjun Xu, 40. SPIE, 2024. http://dx.doi.org/10.1117/12.3049843.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gao, Yuxiang, Peng Xiao, and Zhenglin Li. "Physics-Informed Neural Networks for Solving Underwater Two-dimensional Sound Field." In 2024 OES China Ocean Acoustics (COA), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/coa58979.2024.10723708.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lu, Xiaotian, and Zhixiong Gong. "Analytical Solution of Radiated Acoustic Field by Moving Monopolar and Dipolar Sources." In 2024 OES China Ocean Acoustics (COA), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/coa58979.2024.10723542.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhang, Mingyu, Yan Wang, Rui Zhang, Minhui Wang, Hui Zhao, and Hairong Shi. "Study on the Radiated Sound Field of Hydroacoustic Transducer Installed on Carrier." In 2024 OES China Ocean Acoustics (COA), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/coa58979.2024.10723494.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Ocean field"

1

Sanford, Thomas B. Ocean Electric Field for Oceanography. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada590673.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sanford, Thomas B. Ocean E-Field Measurements Using Gliders. Fort Belvoir, VA: Defense Technical Information Center, January 2010. http://dx.doi.org/10.21236/ada542483.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wagner, Daniel. The Ocean Exploration Trust 2023 Field Season. Ocean Exploration Trust, April 2024. http://dx.doi.org/10.62878/vud148.

Повний текст джерела
Анотація:
This annual report marks the fifteenth year anniversary of Ocean Exploration Trust’s (OET) E/V Nautilus exploring poorly known parts of our global ocean in search of new discoveries. Since its first season in 2009, E/V Nautilus has conducted a total of 158 expeditions that explored our ocean throughout the Black Sea, Mediterranean, Atlantic, Caribbean, and Pacific for a total of 1,970 days at sea (~5.5 years). These scientific expeditions included a total of 1,017 successful ROV dives, as well as mapped over 1,053,000 km2 of seafloor. The results of these exploratory expeditions have been summarized in over 300 peer-reviewed scientific publications covering a wide range of scientific disciplines, including marine geology, biology, archaeology, chemistry, technology development, and the social sciences. Throughout its 15-year history, E/V Nautilus has been not only a platform for ocean exploration and discovery, but also an inclusive workspace that has provided pathways for more people, especially those early in their careers, to experience and enter ocean exploration professions. It has also catalyzed numerous technological innovations, multi-disciplinary collaborations, and inspired millions through OET’s extensive outreach initiatives. The 2023 field season was no exception, with E/V Nautilus undertaking 12 multi-disciplinary expeditions that explored some of the most remote and poorly surveyed areas in the Pacific, all of which included numerous activities to share expedition stories with diverse audiences across the globe.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sanford, Thomas B. Ocean Electric Field for Oceanography and Surveillance. Fort Belvoir, VA: Defense Technical Information Center, October 2014. http://dx.doi.org/10.21236/ada610903.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Marshall, John C. Modelling Studies in Support of Open-Ocean Convection Field Programs. Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/ada258324.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yue, Dick K., and Yuming Liu. Direct Phase-Resolved Simulation of Large-Scale Nonlinear Ocean Wave-Field. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada613064.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yue, Dick K., and Yuming Liu. Direct Phase-Resolved Simulation Of Large-Scale Nonlinear Ocean Wave-Field. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada531792.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yue, Dick K., and Yuming Liu. Direct Phase-Resolved Simulation of Large-Scale Nonlinear Ocean Wave-Field. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada533983.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Keutsch, Frank N. Green Ocean Amazon 2014/15 Manaus Pollution Study Field Campaign Report. Office of Scientific and Technical Information (OSTI), January 2017. http://dx.doi.org/10.2172/1343598.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yue, Dick K., and Yuming Liu. Direct Phase-Resolved Simulation of Large-Scale Nonlinear Ocean Wave-Field. Fort Belvoir, VA: Defense Technical Information Center, January 2010. http://dx.doi.org/10.21236/ada513669.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії