Добірка наукової літератури з теми "Numerical scheme for SDEs"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Numerical scheme for SDEs".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Numerical scheme for SDEs"
C. De Vecchi, Francesco, Andrea Romano, and Stefania Ugolini. "A symmetry-adapted numerical scheme for SDEs." Journal of Geometric Mechanics 11, no. 3 (2019): 325–59. http://dx.doi.org/10.3934/jgm.2019018.
Повний текст джерелаYamada, Toshihiro. "High order weak approximation for irregular functionals of time-inhomogeneous SDEs." Monte Carlo Methods and Applications 27, no. 2 (February 20, 2021): 117–36. http://dx.doi.org/10.1515/mcma-2021-2085.
Повний текст джерелаEwald, Brian. "Weak Versions of Stochastic Adams-Bashforth and Semi-implicit Leapfrog Schemes for SDEs." Computational Methods in Applied Mathematics 12, no. 1 (2012): 23–31. http://dx.doi.org/10.2478/cmam-2012-0002.
Повний текст джерелаLi, Xingjie Helen, Fei Lu, and Felix X. F. Ye. "ISALT: Inference-based schemes adaptive to large time-stepping for locally Lipschitz ergodic systems." Discrete & Continuous Dynamical Systems - S 15, no. 4 (2022): 747. http://dx.doi.org/10.3934/dcdss.2021103.
Повний текст джерелаArmstrong, J., and D. Brigo. "Intrinsic stochastic differential equations as jets." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474, no. 2210 (February 2018): 20170559. http://dx.doi.org/10.1098/rspa.2017.0559.
Повний текст джерелаMao, Xuerong, Aubrey Truman, and Chenggui Yuan. "Euler-Maruyama approximations in mean-reverting stochastic volatility model under regime-switching." Journal of Applied Mathematics and Stochastic Analysis 2006 (July 13, 2006): 1–20. http://dx.doi.org/10.1155/jamsa/2006/80967.
Повний текст джерелаZhang, Wei. "Ergodic SDEs on submanifolds and related numerical sampling schemes." ESAIM: Mathematical Modelling and Numerical Analysis 54, no. 2 (February 12, 2020): 391–430. http://dx.doi.org/10.1051/m2an/2019071.
Повний текст джерелаBuckwar, Evelyn, Massimiliano Tamborrino, and Irene Tubikanec. "Spectral density-based and measure-preserving ABC for partially observed diffusion processes. An illustration on Hamiltonian SDEs." Statistics and Computing 30, no. 3 (November 5, 2019): 627–48. http://dx.doi.org/10.1007/s11222-019-09909-6.
Повний текст джерелаBRUTI-LIBERATI, NICOLA, and ECKHARD PLATEN. "STRONG PREDICTOR–CORRECTOR EULER METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS." Stochastics and Dynamics 08, no. 03 (September 2008): 561–81. http://dx.doi.org/10.1142/s0219493708002457.
Повний текст джерелаKloeden, P. E., and S. Shott. "Linear-implicit strong schemes for Itô-Galkerin approximations of stochastic PDEs." Journal of Applied Mathematics and Stochastic Analysis 14, no. 1 (January 1, 2001): 47–53. http://dx.doi.org/10.1155/s1048953301000053.
Повний текст джерелаДисертації з теми "Numerical scheme for SDEs"
Kumar, Chaman. "Explicit numerical schemes of SDEs driven by Lévy noise with super-linear coeffcients and their application to delay equations." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/15946.
Повний текст джерелаAlnafisah, Yousef Ali. "First-order numerical schemes for stochastic differential equations using coupling." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/20420.
Повний текст джерелаHandari, Bevina D. "Numerical methods for SDEs and their dynamics /." [St. Lucia, Qld.], 2002. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17145.pdf.
Повний текст джерелаTzitzili, Efthalia. "Numerical approximation of Stratonovich SDEs and SPDEs." Thesis, Heriot-Watt University, 2015. http://hdl.handle.net/10399/2883.
Повний текст джерелаCampana, Lorenzo. "Modélisation stochastique de particules non sphériques en turbulence." Thesis, Université Côte d'Azur, 2022. http://www.theses.fr/2022COAZ4019.
Повний текст джерелаThe motion of small non- spherical particles suspended in a turbulent flow is relevant for a large variety of natural and industrial applications such as aerosol dynamics in respiration, red blood cells motion, plankton dynamics, ice in clouds, combustion, to name a few. Anisotropic particles react on turbulent flows in complex ways, which depend on a wide range of parameters (shape, inertia, fluid shear). Inertia-free particles, with size smaller than the Kolmogorov length, follow the fluid motion with an orientation generally defined by the local turbulent velocity gradient. Therefore, this thesis is focused on the dynamics of these objects in turbulence exploiting stochastic Lagrangian methods. The development of a model that can be used as predictive tool in industrial computational fluid dynamics (CFD) is highly valuable for practical applications in engineering. Models that reach an acceptable compromise between simplicity and accuracy are needed for progressing in the field of medical, environmental and industrial processes. The formulation of a stochastic orientation model is studied in two-dimensional turbulent flow with homogeneous shear, where results are compared with direct numerical simulations (DNS). Finding analytical results, scrutinising the effect of the anisotropies when they are included in the model, and extending the notion of rotational dynamics in the stochastic framework, are subjects addressed in our work. Analytical results give a reasonable qualitative response, even if the diffusion model is not designed to reproduce the non-Gaussian features of the DNS experiments. The extension to the three-dimensional case showed that the implementation of efficient numerical schemes in 3D models is far from straightforward. The introduction of a numerical scheme with the capability to preserve the dynamics at reasonable computational costs has been devised and the convergence analysed. A scheme of splitting decomposition of the stochastic differential equations (SDE) has been developed to overcome the typical instability problems of the Euler–Maruyama method, obtaining a mean-square convergence of order 1/2 and a weakly convergence of order 1, as expected. Finally, model and numerical scheme have been implemented in an industrial CFD code (Code_Saturne) and used to study the orientational and rotational behaviour of anisotropic inertia-free particles in an applicative prototype of inhomogeneous turbulence, i.e. a turbulent channel flow. This real application has faced two issues of the modelling: the numerical implementation in an industrial code, and whether and to which extent the model is able to reproduce the DNS experiments. The stochastic Lagrangian model for the orientation in the CFD code reproduces with some limits the orientation and rotation statistics of the DNS. The results of this study allows to predict the orientation and rotation of aspherical particles, giving new insight into the prediction of large scale motions both, in two-dimensional space, of interest for geophysical flows, and in three-dimensional industrial applications
Herdiana, Ratna. "Numerical methods for SDEs - with variable stepsize implementation /." [St. Lucia, Qld.], 2003. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17638.pdf.
Повний текст джерелаYannios, Nicholas, and mikewood@deakin edu au. "Computational aspects of the numerical solution of SDEs." Deakin University. School of Computing and Mathematics, 2001. http://tux.lib.deakin.edu.au./adt-VDU/public/adt-VDU20060817.123449.
Повний текст джерелаAdamu, Iyabo Ann. "Numerical approximation of SDEs and stochastic Swift-Hohenberg equation." Thesis, Heriot-Watt University, 2011. http://hdl.handle.net/10399/2460.
Повний текст джерелаGil, Gibin. "Hybrid Numerical Integration Scheme for Highly Oscillatory Dynamical Systems." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/306771.
Повний текст джерелаAlhojilan, Yazid Yousef M. "Higher-order numerical scheme for solving stochastic differential equations." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/15973.
Повний текст джерелаКниги з теми "Numerical scheme for SDEs"
Kloeden, Peter E. Numerical solution of SDE through computer experiments. 2nd ed. Berlin: Springer, 1997.
Знайти повний текст джерелаEckhard, Platen, and Schurz Henri, eds. Numerical solution of SDE through computer experiments. Berlin: Springer-Verlag, 1994.
Знайти повний текст джерелаNicolaides, Roy A. Analysis and convergence of the MAC scheme. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, Institute for Computer Applications in Science and Engineering, 1991.
Знайти повний текст джерелаChoo, Yung K. Generation of a composite grid for turbine flows and consideration of a numerical scheme. [Washington, D.C.]: National Aeronautics and Space Administration, 1987.
Знайти повний текст джерелаScott, James R. A new flux-conserving numerical scheme for the steady, incompressible Navier-Stokes equations. [Washington, DC: National Aeronautics and Space Administration, 1994.
Знайти повний текст джерелаFeng, Wang. A conservative Eulerian numerical scheme for elasto-plasticity and application to plate impact problems. Stony Brook, N. Y: State University of New York at Stony Brook, Dept. of Applied Mathematics and Statistics, 1992.
Знайти повний текст джерелаYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Знайти повний текст джерелаYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Знайти повний текст джерелаYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Знайти повний текст джерелаYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Знайти повний текст джерелаЧастини книг з теми "Numerical scheme for SDEs"
Zhang, Zhongqiang, and George Em Karniadakis. "Balanced numerical schemes for SDEs with non-Lipschitz coefficients." In Numerical Methods for Stochastic Partial Differential Equations with White Noise, 135–60. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57511-7_5.
Повний текст джерелаZhang, Zhongqiang, and George Em Karniadakis. "Numerical schemes for SDEs with time delay using the Wong-Zakai approximation." In Numerical Methods for Stochastic Partial Differential Equations with White Noise, 103–33. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57511-7_4.
Повний текст джерелаCyganowski, Sasha, Peter Kloeden, and Jerzy Ombach. "Numerical Methods for SDEs." In Universitext, 277–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56144-3_10.
Повний текст джерелаAkdim, Khadija. "Reflected Backward SDEs in a Convex Polyhedron." In Applied and Numerical Harmonic Analysis, 21–31. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35202-8_2.
Повний текст джерелаTanguy, Jean-Michel. "Numerical-Scheme Study." In Numerical Methods, 235–65. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118557877.ch10.
Повний текст джерелаPlaten, Eckhard, and Nicola Bruti-Liberati. "Monte Carlo Simulation of SDEs." In Numerical Solution of Stochastic Differential Equations with Jumps in Finance, 477–505. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13694-8_11.
Повний текст джерелаMilstein, Grigori N., and Michael V. Tretyakov. "Numerical methods for SDEs with small noise." In Scientific Computation, 171–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-10063-9_3.
Повний текст джерелаMilstein, Grigori N., and Michael V. Tretyakov. "Numerical Methods for SDEs with Small Noise." In Scientific Computation, 271–312. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82040-4_4.
Повний текст джерелаPlaten, Eckhard, and Nicola Bruti-Liberati. "Exact Simulation of Solutions of SDEs." In Numerical Solution of Stochastic Differential Equations with Jumps in Finance, 61–137. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13694-8_2.
Повний текст джерелаChassagneux, Jean-François, Hinesh Chotai, and Mirabelle Muûls. "Numerical Approximation of FBSDEs." In A Forward-Backward SDEs Approach to Pricing in Carbon Markets, 59–74. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63115-8_4.
Повний текст джерелаТези доповідей конференцій з теми "Numerical scheme for SDEs"
Ryashko, Lev. "Approximation of stochastic attractors for nonlinear SDEs via confidence domains." In 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013: ICNAAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4825935.
Повний текст джерелаChen, Lin. "Analysis of Stability for the Semi Implicit Scheme for SDEs with Polynomial Growth Condition." In 2018 3rd International Conference on Information Systems Engineering (ICISE). IEEE, 2018. http://dx.doi.org/10.1109/icise.2018.00024.
Повний текст джерелаM., Grigoriu. "Solution Stability and Phase Transition for Two SDEs by a Fixed Time Step Integration Scheme." In 6th International Conference on Computational Stochastic Mechanics. Singapore: Research Publishing Services, 2011. http://dx.doi.org/10.3850/978-981-08-7619-7_p031.
Повний текст джерелаLadonkina, Marina, Olga Nekliudova, and Vladimir Tishkin. "Combined scheme based on Rusanov scheme and discontinuous Galerkin method." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0031578.
Повний текст джерелаGil, Gibin, Ricardo G. Sanfelice, and Parviz E. Nikravesh. "Numerical Integration Scheme Using Singular Perturbation Method." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-13330.
Повний текст джерелаLi Hui, Yuan Dongsheng, and Xu Lu. "Based on numerical simulation support scheme selection." In 2011 International Conference on Computer Science and Service System (CSSS). IEEE, 2011. http://dx.doi.org/10.1109/csss.2011.5974967.
Повний текст джерелаRighi, Marcello. "A Numerical Scheme for Hypersonic Turbulent Flow." In 45th AIAA Fluid Dynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-3341.
Повний текст джерелаSrivastava, Shubham, Shivani Dixit, and M. Shukla. "Analysis of numerical interleaver for IDMA scheme." In 2017 7th International Conference on Communication Systems and Network Technologies (CSNT). IEEE, 2017. http://dx.doi.org/10.1109/csnt.2017.8418502.
Повний текст джерелаBoules, Adel N. "A Non-Adaptive Scheme for Numerical Integration." In 2018 International Conference on Computational Science and Computational Intelligence (CSCI). IEEE, 2018. http://dx.doi.org/10.1109/csci46756.2018.00044.
Повний текст джерелаKulesza, Zbigniew, and Jerzy T. Sawicki. "Controlled Deflection Approach for Rotor Crack Detection." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68960.
Повний текст джерелаЗвіти організацій з теми "Numerical scheme for SDEs"
Knio, Omar M., Habib N. Najm, and Phillip H. Paul. A numerical scheme for modelling reacting flow with detailed chemistry and transport. Office of Scientific and Technical Information (OSTI), September 2003. http://dx.doi.org/10.2172/918335.
Повний текст джерелаLeGrand, Sandra, Christopher Polashenski, Theodore Letcher, Glenn Creighton, Steven Peckham, and Jeffrey Cetola. The AFWA dust emission scheme for the GOCART aerosol model in WRF-Chem v3.8.1. Engineer Research and Development Center (U.S.), August 2021. http://dx.doi.org/10.21079/11681/41560.
Повний текст джерелаRusso, David, and William A. Jury. Characterization of Preferential Flow in Spatially Variable Unsaturated Field Soils. United States Department of Agriculture, October 2001. http://dx.doi.org/10.32747/2001.7580681.bard.
Повний текст джерела