Добірка наукової літератури з теми "Numerical analysis : finite volumes"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Numerical analysis : finite volumes".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Numerical analysis : finite volumes"
Idelsohn, S. R., and E. Oñate. "Finite volumes and finite elements: Two ‘good friends’." International Journal for Numerical Methods in Engineering 37, no. 19 (October 15, 1994): 3323–41. http://dx.doi.org/10.1002/nme.1620371908.
Повний текст джерелаDroniou, Jérôme, Robert Eymard, Thierry Gallouët, and Raphaèle Herbin. "The Gradient Discretisation Method for Linear Advection Problems." Computational Methods in Applied Mathematics 20, no. 3 (July 1, 2020): 437–58. http://dx.doi.org/10.1515/cmam-2019-0060.
Повний текст джерелаKhattri, Sanjay Kumar. "Nonlinear elliptic problems with the method of finite volumes." Differential Equations and Nonlinear Mechanics 2006 (2006): 1–16. http://dx.doi.org/10.1155/denm/2006/31797.
Повний текст джерелаDubois, Fran�ois. "Finite volumes and mixed Petrov-Galerkin finite elements: The unidimensional problem." Numerical Methods for Partial Differential Equations 16, no. 3 (May 2000): 335–60. http://dx.doi.org/10.1002/(sici)1098-2426(200005)16:3<335::aid-num5>3.0.co;2-x.
Повний текст джерелаDa Silva Almeida Junior, Dilberto, Anderson de Jesus Araujo Ramos, Joao Carlos Pantoja Fortes, and Mauro De Lima Santos. "Ingham type approach for uniform observability inequality of the semi-discrete coupled wave equations." Electronic Journal of Differential Equations 2020, no. 01-132 (December 22, 2020): 127. http://dx.doi.org/10.58997/ejde.2020.127.
Повний текст джерелаLIU, S. J., H. WANG, and H. ZHANG. "SMOOTHED FINITE ELEMENTS LARGE DEFORMATION ANALYSIS." International Journal of Computational Methods 07, no. 03 (September 2010): 513–24. http://dx.doi.org/10.1142/s0219876210002246.
Повний текст джерелаDiniz, Jacqueline F. B., João M. P. Q. Delgado, Anderson F. Vilela, Ricardo S. Gomez, Arianne D. Viana, Maria J. Figueiredo, Diego D. S. Diniz, et al. "Drying of Sisal Fiber: A Numerical Analysis by Finite-Volumes." Energies 14, no. 9 (April 27, 2021): 2514. http://dx.doi.org/10.3390/en14092514.
Повний текст джерелаDeuring, Paul, and Robert Eymard. "L2-stability of a finite element – finite volume discretization of convection-diffusion-reaction equations with nonhomogeneous mixed boundary conditions." ESAIM: Mathematical Modelling and Numerical Analysis 51, no. 3 (April 14, 2017): 919–47. http://dx.doi.org/10.1051/m2an/2016042.
Повний текст джерелаDroniou, Jérome, Neela Nataraj, and Devika Shylaja. "Numerical Analysis for the Pure Neumann Control Problem Using the Gradient Discretisation Method." Computational Methods in Applied Mathematics 18, no. 4 (October 1, 2018): 609–37. http://dx.doi.org/10.1515/cmam-2017-0054.
Повний текст джерелаGraff, Joseph S., Roger L. Davis, and John P. Clark. "Computational structural dynamics general solution procedure using finite volumes." Journal of Algorithms & Computational Technology 16 (January 2022): 174830262210840. http://dx.doi.org/10.1177/17483026221084030.
Повний текст джерелаДисертації з теми "Numerical analysis : finite volumes"
Tan, Zhijun. "Moving mesh finite volume method and its applications." HKBU Institutional Repository, 2005. http://repository.hkbu.edu.hk/etd_ra/592.
Повний текст джерелаFricke, J. Robert. "Acoustic scattering from elastic ice a finite difference solution /." Woods Hole, Mass. : Woods Hole Oceanographic Institution, 1991. http://catalog.hathitrust.org/api/volumes/oclc/24347157.html.
Повний текст джерелаOng, Thanh Hai. "Finite volume schemes for anisotropic and heterogeneous diffusion operators on non-conforming meshes." Thesis, Paris Est, 2012. http://www.theses.fr/2012PEST1097/document.
Повний текст джерелаWe present a new scheme for the discretization of heterogeneous anisotropic diffusion problems on general meshes. With light assumptions, we show that the algorithm can be written as a cell-centered scheme with a small stencil and that it is convergent for discontinuous tensors. The key point of the proof consists in showing both the strong and the weak consistency of the method. Besides, we study non-linear corrections to correct the FECC scheme, in order to satisfy the discrete maximum principle (DMP).The efficiency of the scheme is demonstrated through numerical tests of the 5th & 6th International Symposium on Finite Volumes for Complex Applications - FVCA 5 & 6. Moreover, the comparison with classical finite volume schemes emphasizes the precision of the method. We also show the good behaviour of the algorithm for nonconforming meshes. In addition, we give some numerical tests to check the existence for the non-linear FECC schemes
Demin, Mikhail. "Finite Volume Methods for Option Pricing." Thesis, Högskolan i Halmstad, Tillämpad matematik och fysik (MPE-lab), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-16397.
Повний текст джерелаElfarra, Monier Ali Supervisor :. Akmandor İ Sinan. "Two dimensional finite volume weighted essentially non-oscillatory euler schemes with uniform and non-uniform grid coefficients." Ankara : METU, 2005. http://etd.lib.metu.edu.tr/upload/2/12605898/index.pdf.
Повний текст джерелаNOVO, MARCELA SILVA. "NUMERICAL ANALYSIS OF ELECTROMAGNETIC WELL-LOGGING TOOLS BY USING FINITE VOLUME METHODS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2007. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=11478@1.
Повний текст джерелаCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
SOCIETY OF EXPLORATION GEOPHYSICISTS FOUNDATION
SOCIETY OF PETROPHYSICISTS & WELL LOG ANALYSTS
O objetivo principal deste trabalho é o desenvolvimento de modelos computacionais para analisar a resposta eletromagnética de ferramentas de perfilagem LWD/MWD em formações geofísicas arbitrárias. Essa modelagem envolve a determinação precisa de campos eletromagnéticos em regiões tridimensionais (3D) complexas e, conseqüentemente, a solução de sistemas lineares não-hermitianos de larga escala. A modelagem numérica é realizada através da aplicação do método dos volumes finitos (FVM) no domínio da freqüência. Desenvolvem-se dois modelos computacionais, o primeiro válido em regiões isotrópicas e o segundo considerando a presença de anisotropias no meio. As equações de Maxwell são resolvidas através de duas formulações distintas: formulação por campos e formulação por potenciais vetor e escalar. A discretização por volumes finitos utiliza um esquema de grades entrelaçadas em coordenadas cilíndricas para evitar erros de aproximação de escada da geometria da ferramenta. Os modelos desenvolvidos incorporam quatro técnicas numéricas para aumentar a eficiência computacional e a precisão do método. As formulações por campos e por potenciais vetor e escalar são comparadas em termos da taxa de convergência e do tempo de processamento em cenários tridimensionais. Os modelos foram validados e testados em cenários tridimensionais complexos, tais como: (i) poços horizontais ou direcionais; (ii) formações não homogêneas com invasões de fluído de perfuração; (iii) formações anisotrópicas e (iv) poços excêntricos. Motivado pela flexibilidade dos modelos e pelos resultados numéricos obtidos em diferentes cenários tridimensionais, estende-se a metodologia para analisar a resposta de ferramentas LWD que empregam antenas inclinadas em relação ao eixo da ferramenta. Tais ferramentas podem prover dados com sensibilidade azimutal, assim como estimativas da anisotropia da formação, auxiliando o geodirecionamento de poços direcionais e horizontais.
The main objective of this work is to develop computational models to analyze electromagnetic logging-while-drilling tool response in arbitrary geophysical formations. This modeling requires the determination of electromagnetic fields in three- dimensional (3-D) complex regions and consequently, the solution of large scale non-hermitian systems. The numerical modeling is done by using Finite Volume Methods (FVM) in the frequency domain. Both isotropic and anisotropic models are developed. Maxwell's equations are solved by using both the field formulation and the coupled vector-scalar potentials formulation. The proposed FVM technique utilizes an edge-based staggered-grid scheme in cylindrical coordinates to avoid staircasing errors on the tool geometry. Four numerical techniques are incorporated in the models in order to increase the computational efficiency and the accuracy of the method. The field formulation and the coupled vector-scalar potentials formulation are compared in terms of their accuracy, convergence rate, and CPU time for three-dimensional environments. The models were validated and tested in 3-D complex environments, such as:(i) horizontal and directional boreholes; (ii) multilayered geophysical formations including mud-filtrate invasions; (iii) anisotropic formations and (iv)eccentric boreholes. The methodology is extended to analyze LWD tools that are constructed with the transmitters and/or receivers tilted with respect to the axis of the drill collar. Such tools can provide improved anisotropy measurements and azimuthal sensitivity to benefit geosteering.
Ferreira, Ivaldo Leão. "Analises numerica, analitica e experimental da macrossegregação inversa na solidificação." [s.n.], 2004. http://repositorio.unicamp.br/jspui/handle/REPOSIP/265592.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica
Made available in DSpace on 2018-08-04T03:14:59Z (GMT). No. of bitstreams: 1 Ferreira_IvaldoLeao_D.pdf: 8636771 bytes, checksum: fb3623e9e0a9c93143f4b34ba87844cf (MD5) Previous issue date: 2004
Resumo: o presente trabalho analisa as influências do teor de soluto, do superaquecimento e do coeficiente global de transferência de calor metal/fluido (hg), na macrossegregação inversa durante a solidificação unidirecional vertical ascendente de ligas binárias AI-Cu e ternária AI-Cu-Si. Os perfis experimentais de segregação ao longo dos lingotes para as ligas AI4,5%Cu, AI-6,2%Cu, AI-8,I%Cu e Al-8,I%Cu-3%Si são comparados com as predições teóricas fomecidas por modelos numérico e analítico, com perfis transitórios de (hg) sendo determinados em cada experimento. O modelo analítico é baseado num modelo analítico de transferência de calor [Garcia, 2001], acoplado a uma formulação clássica para a redistribuição local de soluto proposta por Flemings e Nereo (Flemings e Nereo, 1967]. O modelo numérico é aquele proposto por V oller [V oller, 1997], com modificações introduzidas levando em consideração diferentes propriedades termofisicas para as fases líquida e sólida, coeficiente global de transferência de calor metal/fluido variável com o tempo e malha com distribuição de comprimento de nós variável ao longo do domínio, o que garantiu a precisão dos resultados sem aumento excessivo do número de nós. AIém dessas modificações, fez-se necessária à mudança no critério de convergência para melhor representar os gradientes térmicos e taxas de resfriamento. Um modelo semi-analítico para a macrossegregação inversa, baseado na solução por variável de similaridade, é aplicado para validação do modelo numérico. Observa-se que as predições numéricas apresentam boa concordância com as medidas experimentais, e que as predições analíticas, apesar de sua relativa simplicidade, também é capaz de representar satisfatoriamente os resultados experimentais, exceto para condições de elevado superaquecimento. O modelo numérico é aplicado com sucesso para a situação de solidificação de ligas multicomponentes, representada pela liga Al-8,1%Cu-3%Si, onde é observada boa representatividade dos resultados experimentais
Abstract: The present work focuses on the influences of alloy solute content, melt superheat, and meta1/fluid heat transfer coefficients on inverse segregation during upward solidification of AI-Cu and AI-Cu-Si alloys. The experimental segregation profiles of AI4,5 wt % Cu, AI-6,2 wt % Cu, AI-8,1 wt % Cu and AI-8,1 wt % Cu-3 wt % Si alloys are compared with theoretical predictions fumished by analytical and numerica1 models, with transient (hg) profiles being determined in each experimento The analytical model is based on an ana1ytica1 heat transfer model coupled with the classica1loca1 solute redistribution equation proposed by Flemings and Nereo. The numerica1 model is that proposed by V oller, with some changes introduced to take into account different thermophysica1 properties for liquid and solid phases, time variable meta1/fluid interface heat-transfer coefficient, and a variable space grid along the domain in order to assure the accuracy of results without raising the number of nodes. Furthermore, changes in the convergence criterion were necessary to improve the accuracy of the therma1 gradients and solidification rates ca1culated numerlcally. A sophisticated semi-ana1ytica1 solution for the inverse segregation based on the similarity variable is carried out to valida te the numerica1 model. It is observed that the numerical predictions generally conform with the experimental segregation measurements and that the predicted analytical segregation, despite its simplicity, also compares favorably with the experimental scatter except for high melt superheat. The numerical model is successfully applied for a situation of multicomponent alloy solidification, Le., AI-8,1 wt % Cu-3 wt % Si alloy, and it is found be in good agreement with experimental results
Doutorado
Materiais e Processos de Fabricação
Doutor em Engenharia Mecânica
Shcherbakov, Dmitry, and Sylwia Szwaczkiewicz. "Exponential Fitting, Finite Volume and Box Methods in Option Pricing." Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-6108.
Повний текст джерелаZhou, Zhiqiang. "Multiple-Scale Numerical Analysis of Composites Based on Augmented Finite Element Method." Scholarly Repository, 2010. http://scholarlyrepository.miami.edu/oa_dissertations/75.
Повний текст джерелаCalhoun, Donna. "A Cartesian grid method for solving the streamfunction vorticity equations in irregular geometries /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/6753.
Повний текст джерелаКниги з теми "Numerical analysis : finite volumes"
International Symposium on Finite Volumes for Complex Applications (5th 2008 Aussois, France). Finite volumes for complex applications V: Proceedings of the 5th International Symposium on Finite Volumes for Complex Applications. Hoboken, NJ: Wiley, 2008.
Знайти повний текст джерелаBaysal, Oktay. An overlapped grid method for multigrid, finite volume/difference flow solvers - MaGGiE. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Знайти повний текст джерелаChristian, Grossmann. Numerical treatment of partial differential equations. Berlin: Springer, 2007.
Знайти повний текст джерела1946-, Chen Zhongying, and Wu Wei 1929-, eds. Generalized difference methods for differential equations: Numerical analysis of finite volume methods. New York: M. Dekker, 2000.
Знайти повний текст джерелаJiří, Fürst, Halama Jan, Herbin Raphaèle, Hubert Florence, and SpringerLink (Online service), eds. Finite Volumes for Complex Applications VI - Problems & Perspectives: FVCA 6, International Symposium, Prague, June 6-10, 2011. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Знайти повний текст джерелаShima, Eiji. Numerical analysis of multiple element high lift devices by Navier Stokes equation using implicit TVD finite volume method. New York: AIAA, 1988.
Знайти повний текст джерелаCenter, NASA Glenn Research, ed. Computational aeroacoustics by the space-time CE/SE method. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Знайти повний текст джерелаOñate, Eugenio. Structural Analysis with the Finite Element Method Linear Statics: Volume 2. Beams, Plates and Shells. Dordrecht: Springer Netherlands, 2013.
Знайти повний текст джерелаZ, Pirzadeh Shahyar, and Langley Research Center, eds. Tetrahedral finite-volume solutions to the Navier-Stokes equations on complex configurations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Знайти повний текст джерелаFrink, Neal T. Tetrahedral finite-volume solutions to the Navier-Stokes equations on complex configurations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Знайти повний текст джерелаЧастини книг з теми "Numerical analysis : finite volumes"
Feireisl, Eduard, Mária Lukáčová-Medviďová, Hana Mizerová, and Bangwei She. "Mixed Finite Volume – Finite Element Method for the Navier–Stokes System." In Numerical Analysis of Compressible Fluid Flows, 393–418. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73788-7_13.
Повний текст джерелаBermúdez, A., S. Busto, J. L. Ferrín, L. Saavedra, E. F. Toro, and M. E. Vázquez-Cendón. "A Projection Hybrid Finite Volume-ADER/Finite Element Method for Turbulent Navier-Stokes." In Computational Mathematics, Numerical Analysis and Applications, 201–6. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49631-3_7.
Повний текст джерелаFeireisl, Eduard, Mária Lukáčová-Medviďová, Hana Mizerová, and Bangwei She. "Finite Volume Method for the Navier–Stokes System." In Numerical Analysis of Compressible Fluid Flows, 351–76. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73788-7_11.
Повний текст джерелаFeireisl, Eduard, Mária Lukáčová-Medviďová, Hana Mizerová, and Bangwei She. "Finite Volume Method for the Complete Euler System." In Numerical Analysis of Compressible Fluid Flows, 307–50. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73788-7_10.
Повний текст джерелаFeireisl, Eduard, Mária Lukáčová-Medviďová, Hana Mizerová, and Bangwei She. "Finite Volume Method for the Barotropic Euler System." In Numerical Analysis of Compressible Fluid Flows, 277–306. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73788-7_9.
Повний текст джерелаFeireisl, Eduard, Mária Lukáčová-Medviďová, Hana Mizerová, and Bangwei She. "Finite Volume Method for the Barotropic Euler System – Revisited." In Numerical Analysis of Compressible Fluid Flows, 377–91. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73788-7_12.
Повний текст джерелаMendoza, Joshua, and A. Keith Miller. "Numerical Substructuring Methods in Finite Element Analysis." In Topics in Experimental Dynamic Substructuring, Volume 2, 71–75. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6540-9_7.
Повний текст джерелаMaury, Bertrand. "Numerical Analysis of a Finite Element/Volume Penalty Method." In Partial Differential Equations, 167–85. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8758-5_9.
Повний текст джерелаBenkhaldoun, Fayssal, and Abdallah Bradji. "Convergence Analysis of a Finite Volume Scheme for a Distributed Order Diffusion Equation." In Numerical Methods and Applications, 59–72. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-32412-3_6.
Повний текст джерелаChoquet, Catherine, Moussa Mory Diédhiou, and Houssein Nasser El Dine. "Numerical Analysis of a Finite Volume Scheme for the Optimal Control of Groundwater Pollution." In Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples, 467–75. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43651-3_43.
Повний текст джерелаТези доповідей конференцій з теми "Numerical analysis : finite volumes"
Craeye, Christophe, and Xavier Dardenne. "Fast Numerical Analysis of Finite Arrays of Antennas in Finite Dielectric Volumes." In 2007 International Conference on Electromagnetics in Advanced Applications. IEEE, 2007. http://dx.doi.org/10.1109/iceaa.2007.4387367.
Повний текст джерелаMoukalled, F., and M. Darwish. "A Coupled Finite Volume Solver for Incompressible Flows." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2991028.
Повний текст джерелаTouma, Rony, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Central Unstaggered Finite Volume Methods for Shallow Water Equations." In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790204.
Повний текст джерелаDarwish, M., F. Moukalled, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "A Coupled Finite Volume Solver for Compressible Flows." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3637752.
Повний текст джерелаEgidi, Nadaniela, Josephin Giacomini, and Pierluigi Maponi. "Solution strategies for finite elements and finite volumes methods applied to flow and heat transfer problem in U-shaped geothermal exchangers." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM 2015). Author(s), 2016. http://dx.doi.org/10.1063/1.4952281.
Повний текст джерелаBradji, Abdallah, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "An Approach to Improve the Convergence Order in Finite Volume and Finite Element Methods." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241269.
Повний текст джерелаVoitovich, Tatiana V., and Stefan Vandewalle. "Barycentric Interpolation and Exact Integration Formulas for the Finite Volume Element Method." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2990990.
Повний текст джерелаBillaud, Marie, Gérard Gallice, Boniface Nkonga, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Stabilized Finite Element Method for Compressible-Incompressible Interface Flows." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241334.
Повний текст джерелаReiss, J., J. Sesterhenn, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Fully Conservative, Skew Symmetric and Compact Finite Difference Schemes." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241451.
Повний текст джерелаAntoniadis, A. F., K. H. Iqbal, E. Shapiro, N. Asproulis, D. Drikakis, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Comparison of High-order Finite Volume and Discontinuous Galerkin Methods on 3D Unstructured Grids." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636979.
Повний текст джерелаЗвіти організацій з теми "Numerical analysis : finite volumes"
Martinez, M. J. Analysis of anelastic flow and numerical treatment via finite elements. Office of Scientific and Technical Information (OSTI), May 1994. http://dx.doi.org/10.2172/10151480.
Повний текст джерелаMeiron, D. I., and P. G. Saffman. Analytical and numerical analysis of finite amplitude Rayleigh-Taylor instability. Office of Scientific and Technical Information (OSTI), September 1987. http://dx.doi.org/10.2172/5585523.
Повний текст джерелаChen. PR-244-9827-R03 Preliminary Finite Element Analysis of Local Buckling. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), July 2008. http://dx.doi.org/10.55274/r0011037.
Повний текст джерелаIhlenburg, Frank, and Ivo Babuska. Dispersion Analysis and Error Estimation of Galerkin Finite Element Methods for the Numerical Computation of Waves. Fort Belvoir, VA: Defense Technical Information Center, July 1994. http://dx.doi.org/10.21236/ada290296.
Повний текст джерелаRusso, David, and William A. Jury. Characterization of Preferential Flow in Spatially Variable Unsaturated Field Soils. United States Department of Agriculture, October 2001. http://dx.doi.org/10.32747/2001.7580681.bard.
Повний текст джерелаZhu, Minjie, and Michael Scott. Two-Dimensional Debris-Fluid-Structure Interaction with the Particle Finite Element Method. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, April 2024. http://dx.doi.org/10.55461/gsfh8371.
Повний текст джерелаPerez-Rivera, Anthony, Jonathan Trovillion, Peter Stynoski, and Jeffrey Ryan. Simulated barge impacts on fiber-reinforced polymers (FRP) composite sandwich panels : dynamic finite element analysis (FEA) to develop force time histories to be used on experimental testing. Engineer Research and Development Center (U.S.), January 2024. http://dx.doi.org/10.21079/11681/48080.
Повний текст джерелаChen, Qishi, Joe Zhou, Duane DeGeer, Ola Bjornoy, and Richard Verley. JTM13-CCP Collapse of Corroded Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 2001. http://dx.doi.org/10.55274/r0011820.
Повний текст джерелаHeymsfield, Ernie, and Jeb Tingle. State of the practice in pavement structural design/analysis codes relevant to airfield pavement design. Engineer Research and Development Center (U.S.), May 2021. http://dx.doi.org/10.21079/11681/40542.
Повний текст джерелаGraville. L51764 Hydrogen Cracking in the Heat-Affected Zone of High-Strength Steels-Year 2. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 1997. http://dx.doi.org/10.55274/r0010170.
Повний текст джерела