Добірка наукової літератури з теми "Nuclear boiling"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Nuclear boiling".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Nuclear boiling"
Wilczek, Frank. "Nuclear and subnuclear boiling." Nature 395, no. 6699 (September 1998): 220–21. http://dx.doi.org/10.1038/26107.
Повний текст джерелаGuo, Zhong De, and Shu Fang Zhang. "The Pure Heat Conversion Coefficient Analysis Method for Thermodynamic System of Advance Boiling Water Reactor Nuclear Power Unit." Advanced Materials Research 383-390 (November 2011): 6514–18. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.6514.
Повний текст джерелаGiustini, Giovanni. "Modelling of Boiling Flows for Nuclear Thermal Hydraulics Applications—A Brief Review." Inventions 5, no. 3 (September 14, 2020): 47. http://dx.doi.org/10.3390/inventions5030047.
Повний текст джерелаKim, Kang Seog, Andrew Ward, Ugur Mertyurek, Mehdi Asgari, and William Wieselquist. "Validation of the SCALE/Polaris–PARCS Code Procedure With the ENDF/B-VII.1 AMPX 56-Group Library: Boiling Water Reactor." Journal of Nuclear Engineering 5, no. 3 (August 1, 2024): 260–73. http://dx.doi.org/10.3390/jne5030018.
Повний текст джерелаPodowski, Michael Z., and Raf M. Podowski. "Mechanistic Multidimensional Modeling of Forced Convection Boiling Heat Transfer." Science and Technology of Nuclear Installations 2009 (2009): 1–10. http://dx.doi.org/10.1155/2009/387020.
Повний текст джерелаBang, In Cheol, Jacopo Buongiorno, Lin-Wen Hu, and Hsin Wang. "ICONE15-10030 Measurement of Key Pool Boiling Parameters in Nanofluids for Nuclear Applications." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2007.15 (2007): _ICONE1510. http://dx.doi.org/10.1299/jsmeicone.2007.15._icone1510_11.
Повний текст джерелаTõke, Jan. "Boiling Patterns of Iso-asymmetric Nuclear Matter." Journal of Physics: Conference Series 420 (March 25, 2013): 012100. http://dx.doi.org/10.1088/1742-6596/420/1/012100.
Повний текст джерелаStojanovic, Andrijana, Srdjan Belosevic, Nenad Crnomarkovic, Ivan Tomanovic, and Aleksandar Milicevic. "Nucleate pool boiling heat transfer: Review of models and bubble dynamics parameters." Thermal Science, no. 00 (2021): 69. http://dx.doi.org/10.2298/tsci200111069s.
Повний текст джерелаBaldwin, Michael, Andre LeClair, Alok Majumdar, Jason Hartwig, Vishwanath Ganesan, and Issam Mudawar. "Modeling of cryogenic heated-tube flow boiling experiments of nitrogen and methane with Generalized Fluid System Simulation Program." IOP Conference Series: Materials Science and Engineering 1301, no. 1 (May 1, 2024): 012158. http://dx.doi.org/10.1088/1757-899x/1301/1/012158.
Повний текст джерелаKurskii, A. S., V. M. Eshcherkin, V. V. Kalygin, M. N. Svyatkin, and I. I. Semidotskii. "Boiling water vessel reactors for nuclear district heating." Atomic Energy 111, no. 5 (February 19, 2012): 370–76. http://dx.doi.org/10.1007/s10512-012-9506-9.
Повний текст джерелаДисертації з теми "Nuclear boiling"
Doney, George Daniel. "Acoustic boiling detection." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/28110.
Повний текст джерелаAziz, S. "Forced convection film boiling on spheres." Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371536.
Повний текст джерелаSamaroo, Randy. "The effects of geometric, flow, and boiling parameters on bubble growth and behavior in subcooled flow boiling." Thesis, The City College of New York, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10159915.
Повний текст джерелаAir bubble injection and subcooled flow boiling experiments have been performed to investigate the liquid flow field and bubble nucleation, growth, and departure, in part to contribute to the DOE Nuclear HUB project, Consortium for Advanced Simulation of Light Water Reactors (CASL). The main objective was to obtain quantitative data and compartmentalize the many different interconnected aspects of the boiling process — from the channel geometry, to liquid and gas interactions, to underlying heat transfer mechanisms.
The air bubble injection experiments were performed in annular and rectangular geometries and yielded data on bubble formation and departure from a small hole on the inner tube surface, subsequent motion and deformation of the detached bubbles, and interactions with laminar or turbulent water flow. Instantaneous and ensemble- average liquid velocity profiles have been obtained using a Particle Image Velocimetry technique and a high speed video camera. Reynolds numbers for these works ranged from 1,300 to 7,700.
Boiling experiments have been performed with subcooled water at atmospheric pres- sure in the same annular channel geometry as the air injection experiments. A second flow loop with a slightly larger annular channel was constructed to perform further boiling experiments at elevated pressures up to 10 bar. High speed video and PIV measurements of turbulent velocity profiles in the presence of small vapor bubbles on the heated rod are presented. The liquid Reynolds number for this set of experiments ranged from 5,460 to 86,000. It was observed that as the vapor bubbles are very small compared to the injected air bubbles, further experiments were performed using a microscopic objective to obtain higher spatial resolution for velocity fields near the heated wall. Multiple correlations for the bubble liftoff diameter, liftoff time and bub- ble history number were evaluated against a number of experimental datasets from previous works, resulting in a new proposed correlations that account for fluid prop- erties that vary with pressure, heat flux, and variations in geometry.
Zeng, Yi. "Effect of peripheral wall conduction in pool boiling." Thesis, University of Ottawa (Canada), 1985. http://hdl.handle.net/10393/22397.
Повний текст джерелаGao, Qi. "A boiling water reactor simulator for stability analysis." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/39053.
Повний текст джерелаLange, Carsten. "Advanced nonlinear stability analysis of boiling water nuclear reactors." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-24954.
Повний текст джерелаDie vorliegende Dissertation leistet einen Beitrag zum tieferen Verständnis des nichtlinearen Stabilitätsverhaltens von Siedewasserreaktoren (SWR). Trotz der Tatsache, dass in diesem technischen System nur negative innere Rückkopplungskoeffizienten auftreten, können in bestimmten Arbeitspunkten oszillatorische Instabilitäten auftreten. Obwohl relativ gute Kenntnisse über die signifikanten physikalischen Einflussgrößen vorliegen, fehlt bisher ein umfassendes Verständnis des SWR-Stabilitätsverhaltens. Das betrifft insbesondere die Bereiche der Systemparameter, in denen lineare Stabilitätsindikatoren, wie zum Beispiel das asymptotische Decay Ratio (DR), ihren Sinn verlieren. Die nichtlineare Stabilitätsanalyse wird im Allgemeinen mit Systemcodes (nichtlineare partielle Differentialgleichungen, PDG) durchgeführt. Jedoch kann mit Systemcodes kein oder nur ein sehr lückenhafter Überblick über die Typen von nichtlinearen Phänomenen, die in bestimmten System-Parameterbereichen auftreten, erhalten werden. Deshalb wurde im Rahmen der vorliegenden Arbeit eine neuartige Methode (RAM-ROM Methode) zur nichtlinearen SWR-Stabilitätsanalyse erprobt, bei der integrale Systemcodes und sog. vereinfachte SWR-Modelle (ROM) als sich gegenseitig ergänzende Methoden eingesetzt werden, um die Stabilitätseigenschaften von Fixpunkten und periodischen Lösungen (Grenzzyklen) des nichtlinearen Differentialgleichungssystems, welches das Stabilitätsverhalten des SWR beschreibt, zu bestimmen. Das ROM, in denen das dynamische System durch gewöhnliche Differentialgleichungen (GDG) beschrieben wird, kann relativ einfach mit leistungsfähigen Methoden aus der nichtlinearen Dynamik, wie zum Beispiel die semianalytische Bifurkationsanalyse, gekoppelt werden. Mit solchen Verfahren kann, ohne das DG-System explizit lösen zu müssen, ein Überblick über mögliche Typen von stabilen und instabilen oszillatorischen Verhalten des SWR erhalten werden. Insbesondere sind die Stabilitätseigenschaften von Grenzzyklen, die in Hopf-Bifurkationspunkten entstehen, und die Bedingungen, unter denen sie auftreten, von Interesse. Mit dem Systemcode (RAMONA5) werden dann die mit dem ROM vorhergesagten Phänomene in den entsprechenden Parameterbereichen detaillierter untersucht (Validierung des ROM). Die Methodik dient daher nicht der Verfeinerung der Berechnung linearer Stabilitätsindikatoren (wie das DR). Das ROM-Gleichungssystem entsteht aus den PDGs des Systemcodes durch geeignete (nichttriviale) räumliche Mittelung der PDG. Es wird davon ausgegangen, dass die Reduzierung der räumlichen Komplexität die Stabilitätseigenschaften des SWR nicht signifikant verfälschen, da durch geeignete Mittlungsverfahren, räumliche Effekte näherungsweise in den GDGs berücksichtig werden. Beispielsweise wird die raum- und zeitabhängige Neutronenflussdichte nach räumlichen Moden entwickelt, wobei für eine Simulation der Stabilitätseigenschaften der In-phase- und Out-of-Phase-Leistungsoszillationen nur der Fundamentalmode und der erste azimuthale Mode berücksichtigt werden muss. Das ROM, welches ursprünglich am Paul Scherrer Institut (PSI, Schweiz) in Zusammenarbeit mit der Universität Illinois (USA) entwickelt wurde, ist in zwei wesentlichen Punkten erweitert und verbessert worden: • Entwicklung und Implementierung einer neuen Methode zur Berechnung der Rückkopplungsreaktivitäten • Entwicklung und Implementierung eines Modells zur Beschreibung der Rezirkulationsschleife (insbesondere wurde der Einfluss der Rezirkulationsschleife auf den In-Phase-Oszillationszustand und auf den Out-of-Phase-Oszillationszustand untersucht) • Entwicklung einer physikalisch begründeten Methode zur Berechnung der ROM-Inputdaten • Abschätzung des Einflusses des unterkühlten Siedens im Rahmen der ROM-Näherungen Mit dem erweiterten ROM wurden nichtlineare Stabilitätsanalysen für drei Arbeitspunkte (KKW Leibstadt (Zyklus 7) KKW Ringhals (Zyklus 14) und KKW Brunsbüttel (Zyklus 16)), für die Messdaten vorliegen, durchgeführt. In der Dissertationsschrift wird die RAM-ROM Methode ausführlich am Beispiel eines Arbeitspunktes (OP) des KKW Leibstadt (KKLc7_rec4-OP), in dem eine aufklingende regionale Leistungsoszillation bei einem Stabilitätstest gemessen worden ist, demonstriert. Das ROM sagt die Existenz eines Umkehrpunktes (saddle-node bifurcation of cycles, fold-bifurcation) voraus, der sich im linear stabilen Gebiet nahe der Stabilitätsgrenze befindet. Mit diesem ROM-Ergebnis ist eine neue Interpretation der Stabilitätseigenschaften des KKLc7_rec4-OP möglich. Die Resultate der in der Dissertation durchgeführten RAM-ROM Analyse bestätigen, dass das weiterentwickelte ROM für die Analyse des Stabilitätsverhaltens realer Leistungsreaktoren qualifiziert wurde
Chen, Xiangbin. "Direct numerical simulation of nuclear boiling on nanopatterned surface." Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS289.pdf.
Повний текст джерелаNucleate boiling dynamics are intricately influenced by the interactions between fluid and solid domains, particularly under conditions of small contact angles and complex interface phenomena. This thesis presents the development and application of advanced numerical methods to simulate these interactions with enhanced precision. Central to this work is the implementation of a mass-conservative Volume of Fluid (VOF) advection method, seamlessly integrated with an embedded solid domain approach. This technique is specifically designed to address the challenges of accurately capturing the dynamics of boiling processes at small contact angles.The numerical framework is constructed within the Basilisk platform, developed by Stéphane Popinet, utilizing a one-fluid model where the VOF method efficiently captures fluid interface dynamics. A continuous surface force model is employed to accurately represent surface tension effects, while the embedded solid model ensures robust coupling between the fluid and solid domains. To further enhance the simulation's fidelity, Leon Malan's phase-change model is integrated, incorporating a two-step advection interface method and an energy-conservative equation to handle the complexities of phase transition. Additionally, an interfacial heat resistance model by Lubomír Moravcík is implemented, quantifying the thermal resistance at the fluid-solid interface.A rigorous validation exercise is performed, demonstrating strong agreement with reference experimental data and established theoretical models. Key contributions of this work include the refinement of phase-change modeling techniques, a deeper understanding of microlayer dynamics, and insights into the interplay between surface tension, viscous forces, and heat transfer in nucleate boiling. This research provides a solid foundation for future studies, including three-dimensional simulations and the investigation of surface roughness and initial temperature distribution effects on boiling dynamics
Breen, R. J. "PWR safety studies : nucleate boiling heat transfer." Thesis, University of Oxford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236258.
Повний текст джерелаKim, Sung Joong Ph D. Massachusetts Institute of Technology. "Pool boiling heat transfer characteristics of nanofluids." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/41306.
Повний текст джерелаIncludes bibliographical references (leaves 79-83).
Nanofluids are engineered colloidal suspensions of nanoparticles in water, and exhibit a very significant enhancement (up to 200%) of the boiling Critical Heat Flux (CHF) at modest nanoparticle concentrations (50.1% by volume). Since CHF is the upper limit of nucleate boiling, such enhancement offers the potential for major performance improvement in many practical applications that use nucleate boiling as their prevalent heat transfer mode. The nuclear applications considered are main reactor coolant for PWR, coolant for the Emergency Core Cooling System (ECCS) of both PWR and BWR, and coolant for in-vessel retention of the molten core during severe accidents in high-power-density LWR. To implement such applications it is necessary to understand the fundamental boiling heat transfer characteristics of nanofluids. The nanofluids considered in this study are dilute dispersions of alumina, zirconia, and silica nanoparticles in water. Several key parameters affecting heat transfer (i.e., boiling point, viscosity, thermal conductivity, and surface tension) were measured and, consistently with other nanofluid studies, were found to be similar to those of pure water. However, pool boiling experiments showed significant enhancements of CHF in the nanofluids. Scanning Electron Microscope (SEM) and Energy Dispersive Spectrometry (EDS) analyses revealed that buildup of a porous layer of nanoparticles on the heater surface occurred during nucleate boiling. This layer significantly improves the surface wettability, as shown by measured changes in the static contact angle on the nanofluid-boiled surfaces compared with the pure-water-boiled surfaces. It is hypothesized that surface wettability improvement may be responsible for the CHF enhancement.
by Sung Joong Kim.
S.M.
Mason, VerrDon Holbrook. "Chemical characterization of simulated boiling water reactor coolant." Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/10945/28026.
Повний текст джерелаКниги з теми "Nuclear boiling"
J, Moody F., ed. The thermal-hydraulics of a boiling water nuclear reactor. 2nd ed. La Grange Park, Ill., USA: American Nuclear Society, 1993.
Знайти повний текст джерела(Bonn, Germany) Kerntechnische Gesellschaft. SWR 1000: Ein zukunftsweisendes Reaktorkonzept : Tagungsbericht = SWR 1000 : a reactor concept for the future : proceedings. Bonn: INFORUM, 1998.
Знайти повний текст джерелаHawthorne, J. R. Experimental assessments of Gundremmingen RPV archive material for fluence rate effects studies. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1988.
Знайти повний текст джерелаShih, Chunkuan, and K. Tien. The development and application of Kuosheng (BWR/6) nuclear power plant TRACE/SNAP model. Washington, DC: U.S. Nuclear Regulatory Commission, Division of Systems Analysis, Office of Nuclear Regulatory Research, 2014.
Знайти повний текст джерелаNikolaevich, Andreenko Sergeĭ, ред. Peregruzochnye mashiny kanalʹnykh i͡a︡dernykh ėnergeticheskikh reaktorov. Moskva: Ėnergoatomizdat, 1986.
Знайти повний текст джерелаHawthorne, J. R. Experimental assessments of Gundremmingen RPV archive material for fluence rate effects studies. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1988.
Знайти повний текст джерелаU.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research. Division of Engineering. and Oak Ridge National Laboratory, eds. Boiling-water reactor internals aging degradation study: Phase 1. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1993.
Знайти повний текст джерелаU.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research. Division of Engineering. and Oak Ridge National Laboratory, eds. Boiling-water reactor internals aging degradation study: Phase 1. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1993.
Знайти повний текст джерелаU.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research. Division of Engineering. and Oak Ridge National Laboratory, eds. Boiling-water reactor internals aging degradation study: Phase 1. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1993.
Знайти повний текст джерелаU.S. Nuclear Regulatory Commission. Division of Reactor Controls and Human Factors, ed. Knowledge and abilities catalog for nuclear power plant operators: Boiling water reactors. Washington, DC: Division of Reactor Controls and Human Factors, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, 1995.
Знайти повний текст джерелаЧастини книг з теми "Nuclear boiling"
Todreas, Neil E., and Mujid S. Kazimi. "Pool Boiling." In Nuclear Systems Volume I, 625–64. Third edition. | Boca Raton : CRC Press, 2021- |: CRC Press, 2021. http://dx.doi.org/10.1201/9781351030502-12.
Повний текст джерелаTodreas, Neil E., and Mujid S. Kazimi. "Flow Boiling." In Nuclear Systems Volume I, 665–742. Third edition. | Boca Raton : CRC Press, 2021- |: CRC Press, 2021. http://dx.doi.org/10.1201/9781351030502-13.
Повний текст джерелаZohuri, Bahman, and Nima Fathi. "Convective Boiling." In Thermal-Hydraulic Analysis of Nuclear Reactors, 375–412. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17434-1_14.
Повний текст джерелаZohuri, Bahman. "Convective Boiling." In Thermal-Hydraulic Analysis of Nuclear Reactors, 455–99. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53829-7_14.
Повний текст джерелаAnglart, Henryk. "Boiling Crisis." In Thermal Safety Margins in Nuclear Reactors, 253–72. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003255000-9.
Повний текст джерелаMasterson, Robert E. "The Boiling Water Reactor." In Nuclear Reactor Thermal Hydraulics, 69–94. Boca Raton : CRC Press, [2019]: CRC Press, 2019. http://dx.doi.org/10.1201/b22067-3.
Повний текст джерелаAnglart, Henryk. "Boiling Heat Transfer." In Thermal Safety Margins in Nuclear Reactors, 209–52. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003255000-8.
Повний текст джерелаMesquita, Amir Z., Antonella L. Costa, C. Pereira, Maria A. F. Veloso, and P. A. L. Reis. "Experimental Investigation of the Onset of Subcooled Nucleate Boiling in an Open-Pool Nuclear Research Reactor." In Film and Nucleate Boiling Processes, 183–97. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2011. http://dx.doi.org/10.1520/stp49339t.
Повний текст джерелаMesquita, Amir Z., Antonella L. Costa, C. Pereira, Maria A. F. Veloso, and P. A. L. Reis. "Experimental Investigation of the Onset of Subcooled Nucleate Boiling in an Open-Pool Nuclear Research Reactor." In Film and Nucleate Boiling Processes, 183–97. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2011. http://dx.doi.org/10.1520/stp153420120010.
Повний текст джерелаKondo, Koichi, Yasuo Ota, Hiroshi Ono, Masahiko Kuroki, Yuji Koshi, and Masayoshi Tahira. "Actual Operation Control of Boiling Water Reactor." In Nuclear Reactor Kinetics and Plant Control, 129–66. Tokyo: Springer Japan, 2012. http://dx.doi.org/10.1007/978-4-431-54195-0_7.
Повний текст джерелаТези доповідей конференцій з теми "Nuclear boiling"
Povolny, Antonin, and Martin Cuhra. "Two-Phase CFD of Channel Boiling for Boiling Transition Problems." In 2014 22nd International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icone22-30970.
Повний текст джерелаYi, Liao, Wang Cong, and Chen Lei. "Modular Boiling Water Reactor Concept." In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81196.
Повний текст джерелаRen, Tingting, Changqi Yan, Meiyue Yan, and Shengzhi Yu. "CFD Analysis on Wall Boiling Model During Subcooled Boiling in Vertical Narrow Rectangular Channel." In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81554.
Повний текст джерелаLiu, Wei, Masanori Monde, and Y. Mitsutake. "Characteristics of Transient Boiling Heat Transfer." In 10th International Conference on Nuclear Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/icone10-22741.
Повний текст джерелаKaroutas, Zeses E., Yixing Sung, Yutung R. Chang, Gennady A. Kogan, and Paul F. Joffre. "Subcooled Boiling Data From Rod Bundles." In 12th International Conference on Nuclear Engineering. ASMEDC, 2004. http://dx.doi.org/10.1115/icone12-49492.
Повний текст джерелаLuo, Hanwen, Hongbin Wang, and Jinbiao Xiong. "Numerical Simulation of Subchannel Flow Boiling Using Five-Component Wall Boiling Model and iMUSIG Model." In 2024 31st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/icone31-134545.
Повний текст джерелаWang, Shixian, Kai Wang, Shuichiro Miwa, and Koji Okamoto. "Analyzing Flow Rate Impact on CHF Front Behavior During Boiling Crisis in Downward Flow Boiling." In 2024 31st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/icone31-124786.
Повний текст джерелаShimkevich, Alexander L., Michael N. Ivanovsky, Valentine A. Morozov, Kenneth M. Sprouse, Mohamed S. El-Genk, and Mark D. Hoover. "Natural Convection Boiling Potassium Flow Loop." In SPACE NUCLEAR POWER AND PROPULSION: Eleventh Symposium. AIP, 1994. http://dx.doi.org/10.1063/1.2950136.
Повний текст джерелаOhtsuka, Masaya, Koji Fujimura, Takuji Nagayoshi, Jun’ichi Yamashita, and Yasuyoshi Kato. "Safe and Simplified Boiling Water Reactor (SSBWR)." In 10th International Conference on Nuclear Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/icone10-22565.
Повний текст джерелаOhtake, Hiroyasu, and Yasuo Koizumi. "Boiling Heat Transfer Under Oscillatory Flow Condition." In 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/icone14-89582.
Повний текст джерелаЗвіти організацій з теми "Nuclear boiling"
Wheeler, Timothy A., and Huafei Liao. A Compilation of Boiling Water Reactor Operational Experience for the United Kingdom's Office for Nuclear Regulation's Advanced Boiling Water Reactor Generic Design Assessment. Office of Scientific and Technical Information (OSTI), December 2014. http://dx.doi.org/10.2172/1323653.
Повний текст джерелаAnh Bui, Nam Dinh, and Brian Williams. Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models - Subcooled Flow Boiling Study. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1110336.
Повний текст джерелаRosa, M. P., and M. Z. Podowski. Modeling and numerical simulation of oscillatory two-phase flows, with application to boiling water nuclear reactors. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/107760.
Повний текст джерелаWang, Jy-An John, Hong Wang, Hao Jiang, and Yong Yan. CIRFT testing of high-burnup used nuclear fuel rods from pressurized water reactor and boiling water reactor environments. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1214025.
Повний текст джерелаN. Environmental Assessment for Authorizing the Puerto Rico Electric Power Authority (PREPA) to allow Public Access to the Boiling Nuclear Superheat (BONUS) Reactor Building, Rincon, Puerto Rico. Office of Scientific and Technical Information (OSTI), February 2003. http://dx.doi.org/10.2172/823492.
Повний текст джерелаKonzek, G. J., and R. I. Smith. Technology, safety and costs of decommissioning a reference boiling water reactor power station: Comparison of two decommissioning cost estimates developed for the same commercial nuclear reactor power station. Office of Scientific and Technical Information (OSTI), December 1990. http://dx.doi.org/10.2172/6416764.
Повний текст джерелаShort, S., A. Luksic, and M. Schutz. Spent fuel assembly hardware: Characterization and 10 CFR 61 classification for waste disposal: Volume 3, Calculated activity profiles of spent nuclear fuel assembly hardware for boiling water reactors. Office of Scientific and Technical Information (OSTI), June 1989. http://dx.doi.org/10.2172/5785023.
Повний текст джерелаBlock, J. A., C. Crowley, F. X. Dolan, R. G. Sam, and B. H. Stoedefalke. Nucleate boiling pressure drop in an annulus: Book 4. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/10148049.
Повний текст джерелаBlock, J. A., C. Crowley, F. X. Dolan, R. G. Sam, and B. H. Stoedefalke. Nucleate boiling pressure drop in an annulus: Book 3. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/10148052.
Повний текст джерелаBlock, J. A., C. Crowley, F. X. Dolan, R. G. Sam, and B. H. Stoedefalke. Nucleate boiling pressure drop in an annulus: Book 2. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/10148055.
Повний текст джерела