Добірка наукової літератури з теми "Nuclear astrophysics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Nuclear astrophysics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Nuclear astrophysics":

1

Depalo, Rosanna. "Nuclear Astrophysics Deep Underground." International Journal of Modern Physics: Conference Series 46 (January 2018): 1860003. http://dx.doi.org/10.1142/s2010194518600030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cross sections of nuclear reactions relevant for astrophysics are crucial ingredients to understand the energy generation inside stars and the synthesis of the elements. At astrophysical energies, nuclear cross sections are often too small to be measured in laboratories on the Earth surface, where the signal would be overwhelmed by the cosmic-ray induced background. LUNA is a unique Nuclear Astrophysics experiment located at Gran Sasso National Laboratories. The extremely low background achieved at LUNA allows to measure nuclear cross sections directly at the energies of astrophysical interest. Over the years, many crucial reactions involved in stellar hydrogen burning as well as Big Bang nucleosynthesis have been measured at LUNA. The present contribution provides an overview on underground Nuclear Astrophysics as well as the latest results and future perspectives of the LUNA experiment.
2

Adsley, Philip. "Transfer Reactions in Nuclear Astrophysics." EPJ Web of Conferences 275 (2023): 01001. http://dx.doi.org/10.1051/epjconf/202327501001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Transfer reactions are important tool in nuclear astrophysics. These reactions allow us to identify states in nuclei and to find the corresponding energies, to determine if these states can contribute to astrophysical nuclear reactions and ultimately to determine the strength of that contribution. In this paper,the basic details of how transfer reactions may be used in nuclear astrophysics are set out along with some common pitfalls to avoid.
3

Gyürky, György. "Challenges and Requirements in High-Precision Nuclear Astrophysics Experiments." Universe 8, no. 4 (March 28, 2022): 216. http://dx.doi.org/10.3390/universe8040216.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the 21th century astronomical observations, as well as astrophysical models, have become impressively precise. For a better understanding of the processes in stellar interiors, the nuclear physics of astrophysical relevance—known as nuclear astrophysics—must aim for similar precision, as such precision is not reached yet in many cases. This concerns both nuclear theory and experiment. In this paper, nuclear astrophysics experiments are put in focus. Through the example of various parameters playing a role in nuclear reaction studies, the difficulties of reaching high precision and the possible solutions are discussed.
4

Lépine-Szily, Alinka, and Pierre Descouvemont. "Nuclear astrophysics: nucleosynthesis in the Universe." International Journal of Astrobiology 11, no. 4 (May 9, 2012): 243–50. http://dx.doi.org/10.1017/s1473550412000158.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractNuclear astrophysics is a relatively young science; it is about half a century old. It is a multidisciplinary subject, since it combines nuclear physics with astrophysics and observations in astronomy. It also addresses fundamental issues in astrobiology through the formation of elements, in particular those required for a carbon-based life. In this paper, a rapid overview of nucleosynthesis is given, mainly from the point of view of nuclear physics. A short historical introduction is followed by the definition of the relevant nuclear parameters, such as nuclear reaction cross sections, astrophysical S-factors, the energy range defined by the Gamow peak and reaction rates. The different astrophysical scenarios that are the sites of nucleosynthesis, and different processes, cycles and chains that are responsible for the building of complex nuclei from the elementary hydrogen nuclei are then briefly described.
5

Arnould, M., and K. Takahashi. "Nuclear astrophysics." Reports on Progress in Physics 62, no. 3 (January 1, 1999): 395–462. http://dx.doi.org/10.1088/0034-4885/62/3/003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Penionzhkevich, Yu E. "Nuclear astrophysics." Physics of Atomic Nuclei 73, no. 8 (August 2010): 1460–68. http://dx.doi.org/10.1134/s106377881008020x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Langanke, K. "Nuclear astrophysics." Nuclear Physics A 654, no. 1-2 (July 1999): C330—C349. http://dx.doi.org/10.1016/s0375-9474(99)00262-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rauscher, Thomas, and Friedrich-Karl Thielemann. "Nuclear astrophysics." Europhysics News 32, no. 6 (November 2001): 224–26. http://dx.doi.org/10.1051/epn:2001608.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Haxton, W. C. "Nuclear astrophysics." Nuclear Physics A 553 (March 1993): 397–406. http://dx.doi.org/10.1016/0375-9474(93)90638-e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Descouvemont, P. "Astrophysica for Windows: a PC software for nuclear astrophysics." Nuclear Physics A 688, no. 1-2 (May 2001): 557–59. http://dx.doi.org/10.1016/s0375-9474(01)00786-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Nuclear astrophysics":

1

Doherty, Daniel Thomas. "Experimental studies for explosive nuclear astrophysics." Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/18022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the ejecta from ONe novae outbursts nuclei up to A~40 are observed. The 30P(p,γ)31S reaction is thought to be the bottleneck for the production of all elements heavier than sulphur. However, due to uncertainties in the properties of key proton-unbound resonances the reaction rate is not well determined. In this thesis work, excited states in 31S were populated via the 28Si(4He,n) light-ion fusion-evaporation reaction and the prompt electromagnetic radiation was then detected with the GAMMASPHERE detector array. This γ-ray spectroscopy study, and comparisons with the stable mirror nucleus 31P, allowed the determination of the 31S level structure below the proton-emission threshold and also of the key proton-unbound states for the 30P(p,γ)31S reaction. In particular, transitions from key, low-spin states were observed for the first time. This new information was then used for the re-evaluation of the 30P(p,γ)31S reaction in the temperature range relevant for ONe novae. The newly calculated rate is higher than previous estimates implying a greater flux of material processed to high-Z elements in novae. Astrophysical X-ray bursts are thought to be a result of thermonuclear explosions on the atmosphere of an accreting neutron star. Between these bursts, energy is thought to be generated by the hot CNO cycles. The 15O(α,γ)19Ne reaction is one reaction that allows breakout from these CNO cycle and into the rp-process to fuel outbursts. The reaction is expected to be dominated by a single 3/2+ resonance at 4.033 MeV in 19Ne, however, limited information is available on this key state. This thesis work reports on a pioneering study of the 20Ne(p,d)19Ne reaction in inverse kinematics performed at the Experimental Storage Ring (ESR) as a means of accessing the 4.033-MeV state in 19Ne. The unique background free, high luminosity conditions of the ESR were utilised for this, the first transfer reaction performed at the ESR. The results of this pioneering test experiment are presented along with suggestions for future measurements at storage ring facilities.
2

Mumby-Croft, Paul David. "Tactic : A New Detector for Nuclear Astrophysics." Thesis, University of York, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.507686.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

TABASSAM, UZMA. "A Pair Spectrometer for Nuclear Astrophysics Applications." Doctoral thesis, Università degli Studi di Camerino, 2012. http://hdl.handle.net/11581/401785.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A spectrometer using two fully depleted silicon detectors (in a configuration) has been realized with the goal of directly measuring the production rate of the e+e− pairs emitted in E0 transition of the 12C 16O reaction. This is a key reaction in nuclear astrophysics, which takes place during the He burning stage of red giant stars and thus regulates the carbon/oxygen abundance in the Universe. In particular, we are interested to determine the e+e− pair cross section at energies below 2 MeV, where theoretical estimate is possible by using the R- matrix extrapolation. Experimental e+e− pair emission data at this energy thus provides a valuable tool to validate such analytical approximate scheme. Resolution and efficiency measurements have been carried out using 241Am +239 Pu source, the α source, 32P,207 Bi β sources and the 19F(p, α)16O fusion evaporation reaction below 1 MeV on beam reaction at CIRCE tandem accelerator (Caserta, Italy). The results obtained approve to be in good agreement with our GEANT4 simulation.
4

Szabo, Anthony Paul. "High energy emissions for astrophysical objects." Title page, contents and abstract only, 1992. http://web4.library.adelaide.edu.au/theses/09PH/09phs996.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Luis, Hélio Fernandes. "Study of nuclear reactions relevant for astrophysics by Micro-AMS." Doctoral thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/11274.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dissertação para obtenção do Grau de Doutor em Física
This work of this thesis was dedicated to the application of the Micro-AMS(Accelerator Mass spectrometry with micro-beam) to the study of nuclear reactions relevant to Astrophysics, namely reactions involving the radioisotope 36Cl. Before this could be done, the system had to be installed, tested and optimized. During the installation and testing phase, several isotopes were measured, principally lead and platinum isotopes, which served to show the potential of this technique for applications to Material science and archeology. After this initial stage, the work with 36Cl began. 36Cl is one of several short to medium lived isotopes (as compared to the earth age) whose abundances in the earlier solar system may help to clarify its formation process. There are two generally accepted possible models for the production of this radionuclide: it originated from the ejecta of a nearby supernova (where 36Cl was most probably produced via the s-process by neutron irradiation of 35Cl) and/or it was produced by in-situ irradiation of nebular dust by energetic particles(mostly, p, a, 3He -X-wind irradiation model). The objective of the present work was to measure the cross section of the 35Cl(n,γ)36Cl nuclear reaction which opened the possibility to the future study of the 37Cl(p,d)36Cl and 35Cl(d,p)36Cl nuclear reactions, by measuring the 36Cl content of AgCl samples with Micro-AMS, taking advantage of the very low detection limits of this technique for chlorine measurements. For that, the micro-AMS system of the CTN-IST laboratory had to be optimized for chlorine measurements, as to our knowledge this type of measurements had never been performed in such a system (AMS with micro-beam). This thesis presents the results of these developments, namely the tests in terms of precision and reproducibility that were done by comparing AgCl blanks irradiated at the Portuguese National Reactor with standards produced by the dilution of the NIST SRM 4943 standard material. With these results the cross section of the 37Cl(n,γ)36Cl was calculated.
6

Álvarez, Pastor José Manuel. "Focal plane detectors of a Laue lens telescope for Nuclear Astrophysics." Doctoral thesis, Universitat Autònoma de Barcelona, 2012. http://hdl.handle.net/10803/83940.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
centenares de keV hasta unos pocos MeV), presenta un extraordinario potencial para comprender los procesos más extremos que tienen lugar en el Universo, como las explosiones estelares o los aceleradores de partículas. No obstante, a pesar de los enormes esfuerzos realizados por los observatorios de rayos gamma (en el pasado y en la actualidad), se requiere una mejora en la sensibilidad instrumental para aprovechar el enorme potencial científico contenido en este rango energético. Durante las dos últimas décadas se han buscado formas de mejorar la sensibilidad de los instrumentos, incrementando la eficiencia de los detectores y reduciendo el ruido instrumental (mediante sofisticados mecanismos de blindaje y técnicas de análisis). Con este objetivo, un enorme esfuerzo en innovación instrumental (construcción de prototipos y estudios numéricos) está siendo realizado por una comunidad creciente de científicos que se enfrentan al reto de preparar la próxima generación de telescopios de rayos gamma. En particular, son especialmente notables los avances logrados en los últimos años en el campo de la focalización de rayos gamma mediante lentes de difracción. Conceptualmente, una lente de rayos gamma reduciría drásticamente el ruido instrumental ya que concentra los fotones en un detector de pequeñas dimensiones (el ruido es proporcional al volumen del instrumento). Una lente de difracción, para observaciones en astrofísica nuclear, no es sólo un concepto teórico, sino una realidad, gracias principalmente al proyecto CLAIRE. Asimismo, el desarrollo de la tecnología para la focalización de rayos gamma ha incentivado el desarrollo de las diferentes tecnologías de detección. Un detector apropiado para el plano focal de una lente gamma, debe disponer de capacidad de imagen, proporcionar espectroscopia de alta resolución y medir la polarización de los fotones incidentes. El trabajo presentado en esta tesis comprende tanto la óptica de focalización como el detector del plano focal. Con respecto a la óptica, se presenta el ensayo realizado con el prototipo CLAIRE, mediante el cual se ha confirmado los principios de una lente de difracción. En cuanto al plano focal, esta investigación se ha desarrollado principalmente en el marco de estudio de las misiones espaciales GRI (2007) y DUAL (2010), propuestas a la ESA dentro del programa “Cosmic Vision 2015-2025”. En el marco de la misión GRI, se presenta una configuración para el detector del plano focal basado en detectores pixelados de Cd(Zn)Te, al tiempo que se investiga y desarrolla un primer prototipo de detector pixelado de CdTe. Cabe destacar que el sistema de detección propuesto fue registrado con éxito mediante una patente europea, y está siendo desarrollado para su aplicación en medicina nuclear. En relación a la propuesta DUAL, se presenta un estudio del ruido instrumental obtenido mediante simulaciones numéricas con el fin de precisar la sensibilidad del instrumento (basado en detectores de Germanio) propuesto en esta misión. Más allá de las tecnología consideradas en GRI y DUAL, una amplia variedad de detectores pueden ser explorados, bien para el plano focal de una lente de difracción o bien como sistemas de detección por sí mismos. En este sentido, se ha ampliado el espectro de tecnologías y se ha incluido un estudio sobre detectores basados en xenón líquido. En esta tesis se ha realizado un trabajo de investigación y desarrollo con tecnologías vanguardistas propuestas para la próxima generación de telescopios de rayos gamma. Esta instrumentación debe enfrentarse al reto de alcanzar la sensibilidad requerida para dar respuesta a las cuestiones aun no resultas por la astrofísica de rayos gamma en el rango de energía de las transiciones nucleares.
few MeV) has an extraordinary potential for understanding the evolving and violent Universe. In spite of the strong efforts accomplished by past and current instruments, in order to perform observations in this energy range, an improvement in sensitivity over present technologies is needed to take full advantage of the scientific potential contained in this energy range. In order to achieve higher sensitivities, γ-ray astronomy has been looking over the last decades for new ways to increase the efficiency of its instruments while reducing the background noise. With the objective of reducing or avoiding as much background as possible (through shielding mechanisms and data analysis techniques), a strong effort in innovation and design (build-up of prototypes and numerical simulations studies) is being conducted by a community facing the challenge of preparing the next generation of γ-ray telescopes. In particular, the progress achieved during the last decade on focusing optics based on Laue lenses is especially remarkable. Conceptually, a focusing telescope will reduce drastically the background noise by concentrating γ-rays onto a small size detector. Focusing γ-rays with a Laue lens is not just a theoretical concept, but a reality, mainly thanks to the development of a first prototype of Laue lens for nuclear astrophysics accomplished as part of the CLAIRE project. Moreover, the development of focusing optics during these years has also encouraged the development of new detector technologies. The focal plane detector of a focusing telescope should provide imaging capabilities, perform high-resolution spectroscopy and measure the polarization of the incident photons in order to achieve the ambitious scientific goals. The research presented in this thesis covers both main areas of a γ-rays telescope: focusing optics and focal plane detector. As far as the optics is concerned, a test of the lens CLAIRE was performed in order to confirm the principles of a Laue diffraction lens. Concerning the focal plane detector, theoretical and experimental studies with new detector technologies have been carried out. Our main research has evolved in the framework of two mission concept studies -GRI (2007) and DUAL (2010)- submitted to the ESA Calls for a Medium-size mission opportunity within the Cosmic Vision 2015-2025 program. As far as the GRI mission is concerned, a focal plane detector configuration based on Cd(Zn)Te pixelated detectors is proposed, whilst development and testing of a detector prototype is accomplished. It is noteworthy that the detector configuration was successfully registered under a European Patent and is being considered for applications in the field of nuclear medicine. Regarding the DUAL mission, simulations of the expected space radiation environment and the resulting detector activation were carried out in order to estimate the performances of the all-sky Compton telescope of DUAL (based on Germanium-strip detectors). The results show that DUAL could achieve, after two years of operation, a continuum sensitivity one order of magnitude better than any past and current observatory in the MeV energy range and up to a factor 30 of improvement with its Laue lens. Beyond the detector technology proposed for GRI and DUAL, a wide variety of technologies could be explored for the focal plane of a γ-ray lens mission as well as for a stand-alone detector. In this thesis a focal plane detector based on liquid xenon is also considered. This work faces the challenges of the next generation of γ-ray telescopes, where high performance γ-ray detectors are necessary to achieve the required sensitivity in order to answer several hot scientific topics of Gamma-ray astrophysics in the energy range of nuclear transitions.
7

Harss, Boris Peter Mathias Sascha. "Development of a radioactive 17F beam and its use in nuclear astrophysics experiments." [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=962379883.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Altana, Carmen Loredana. "The role of nanostructured targets in Laser-Produced Plasmas for Nuclear Astrophysics studies." Doctoral thesis, Università di Catania, 2017. http://hdl.handle.net/10761/3737.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This PhD thesis documents the experimental study of plasmas produced from the interaction of a high-power laser in ns domain with nanostructured materials compared with ordinary bulk target. The study is focused on the effect of solid targets with different physical and geometric characteristics, and has the purpose to asses the effects of nanoscale structures in laser-matter interaction and in plasma formation. The motivation for these experiments arises from the fact that there is the possibility of producing plasmas with density and temperature characteristics suitable for nuclear fusion studies, relevant in astrophysics. The optimization of the specific characteristics of nanomaterials, containing metal nanowires, could lead to a stagnant, hotter and denser plasma and to implement the above mentioned studies successfully. The nanostructured targets used in this study are metamaterials consisting in aligned metal nanowires grown by electrodeposition into a porous alumina matrix, obtained on a thick aluminium substrate. These materials were developed with different length, diameter, metal and deposition technique in order to maximize absorption in the visible and IR wavelengths. Various diagnostics were employed for the characterization of the Laser Produced Plasma (LPP). In particular, an Intensified CCD camera in visible domain has been a useful diagnostic tools to understand the expansion dynamics of laser created plumes, by providing a two-dimensional snap shots of the three-dimensional LPP propagation. Depending upon the target material, the generated plume s ion emission features (velocity, flux) as well as plasma properties (temperature, density) are varied even at constant laser intensity. The use of a CCD-camera in X-rays domain has allowed to investigate the X-ray emissivity of laser-produced plasmas. By coupling the detector with an array of pinhole, spectral selection of X-ray emission has been implemented. The Time of Flight measurements have provided a technique to determine the velocity distribution of the plasma at large distances from the target surface, complementarily to velocity estimated by visible imaging close to target surface. Moreover, morphological analysis of craters formed for the laser irradiation was performed by using an optical microscope. The cross-analysis of various diagnostics has immediately showed the differences between an ordinary Al-bulk target and nanostructured materials: bulk aluminium plasma has shorter duration, X-ray flux and ablation efficiency than all other. Finally, preliminary investigations of ion energy spectra, obtained with a Thomson Parabola Spectrometer, were carried out to better understand the nuclear fusion process in a plasma. Temperature estimated are in good agreement with the occurrence of nuclear fusions. All these experimental evidences have taken a further step towards the application of laser driven nuclear reactions.
9

Wallace, Jennifer Patrita. "Studies of the structure of the Tz = -1 Nuclei 20Na and 30S for explosive astrophysics." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In explosive astrophysical environments such as novae, X-ray bursters and supernovae, conditions of extreme temperature and density are achieved. Under such conditions, both the rate of energy release and path of nucleosynthesis are governed by reactions on unstable nuclei. In this light, direct reaction studies using radioactive ion beams play a vital role in determining nuclear reaction rates. However, in the vast majority of cases, direct measurements are not possible and as such, indirect measurements are equally important for the understanding of the main reaction processes driving astrophysical events. In this thesis work, indirect studies of the astrophysically important 19Ne(p,γ)20Na and 29P(p,γ)30S reactions have been performed. For the first reaction, a β-delayed proton decay study of 20Mg was performed to gain information about the spin-parity assignment of the first key resonance above the proton emission threshold in the compound nucleus 20Na. This resonance is expected to dominate the 19Ne(p,γ)20Na reaction rate in explosive astrophysical environments and its identity has been under discussion for a long time, with J π = 1+ and 3+ assignments suggested. In the present study an upper limit on the β-decay branch to this state of 0.02% with a con dence level of 90% is reported. This is signi cantly more stringent than previous studies and makes a 1+ assignment highly unlikely, favouring instead a 3+ assignment. A 3+ assignment is predicted to have a signi cantly higher resonance strength and produce a proportionately higher 19Ne(p,γ)20Na reaction rate in X-ray burst conditions. The second study performed was a detailed gamma-ray spectroscopy study of the nucleus 30S. Excitation energies have been determined with improved precision over previous studies and the first,firm spin-parity assignments of key 29P + p resonant states, expected to dominate the 29P(p,γ)30S reaction in stellar scenarios, have been made. An evaluation of the 29P(pγ)30S reaction over the temperature range T = 0.06-2.5 GK shows that the 3+ and 2+ resonant states located at Er = 292.0(9) and 413.1(10) keV, respectively, dominate the 29P(p,γ)30S reaction rate in ONe novae, while the 413 keV resonance is expected to govern the rate in X-ray burster environments. These new, precise resonance energy measurements and firm spin-parity assignments have signi cantly reduced uncertainties in the 29P(p,γ)30S reaction in ONe novae and X-ray bursters. In particular, the reaction rate is now speci ed precisely enough for calculations of isotopic abundances in ONe novae ejecta.
10

Curran, Dian Beard. "Magnetic shearing instabilities in accretion disks /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Nuclear astrophysics":

1

Hillebrandt, Wolfgang, Rudolf Kuhfuß, Ewald Müller, and James W. Truran, eds. Nuclear Astrophysics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0016562.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Perkins, Donald H. Particle astrophysics. 2nd ed. Oxford: Oxford University Press, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Perkins, Donald H. Particle astrophysics. Oxford: Oxford University Press, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Perkins, Donald H. Particle astrophysics. 2nd ed. Oxford: Oxford University Press, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

IAP Workshop (2nd 1986 Paris, France). Advances in nuclear astrophysics. Gif-sur-Yvette, France: Editions Frontières, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Longair, M. S. High energy astrophysics. 3rd ed. Cambridge: Cambridge University Press, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Klapdor-Kleingrothaus, H. V. Particle astrophysics. Bristol, UK: Institute of Physics Pub., 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Klapdor-Kleingrothaus, H. V. Particle astrophysics. Bristol, UK: Institute of Physics Publ., 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

von Ballmoos, Peter, ed. Focusing Telescopes in Nuclear Astrophysics. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/978-1-4020-5304-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Descouvemont, P. Theoretical models for nuclear astrophysics. New York: Nova Science Publishers, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Nuclear astrophysics":

1

Paetz gen. Schieck, Hans. "Nuclear Astrophysics." In Nuclear Reactions, 231–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-53986-2_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rebel, H. "Coulomb dissociation as a source of information on radiative capture processes of astrophysical interest." In Nuclear Astrophysics, 38–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0016566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tornambè, A., F. Matteucci, I. Iben, and K. Nomoto. "Binary systems as supernova progenitors (some frequency estimates)." In Nuclear Astrophysics, 283–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0016589.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Langanke, K. "Nuclear Astrophysics: Selected Topics." In The Hispalensis Lectures on Nuclear Physics Vol. 2, 173–216. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-44504-3_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

von Ballmoos, P. "Instruments for Nuclear Astrophysics." In High-Energy Spectroscopic Astrophysics, 82–197. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-27013-2_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wong, S. S. M. "Nuclear Astrophysics with Radioactive Beams." In Stellar Astrophysics, 51–60. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-010-0878-5_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kubono, Shigeru. "Nuclear clustering aspects in astrophysics." In Atomic and Nuclear Clusters, 73–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79696-8_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wiescher, Michael, and Thomas Rauscher. "Nuclear Reactions." In Astrophysics with Radioactive Isotopes, 523–54. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91929-4_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Descouvemont, P. "Cluster Models in Nuclear Astrophysics." In Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms, 27–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22930-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mathews, G. J., W. M. Howard, K. Takahashi, and R. A. Ward. "Nuclear Astrophysics Away from Stability." In ACS Symposium Series, 134–44. Washington, DC: American Chemical Society, 1986. http://dx.doi.org/10.1021/bk-1986-0324.ch019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Nuclear astrophysics":

1

BOMBACI, IGNAZIO. "NUCLEAR ASTROPHYSICS." In Proceedings of the 9th Conference on Problems in Theoretical Nuclear Physics. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705143_0003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Meyer, Mikko, and Kai Zuber. "Nuclear Astrophysics." In 5th International Solar Neutrino Conference. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789811204296_others04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

VIGEZZI, E. "NUCLEAR ASTROPHYSICS." In Proceedings of the 11th Conference on Problems in Theoretical Nuclear Physics. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812708793_0015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Haxton, W. C. "Nuclear Astrophysics." In INTERSECTIONS OF PARTICLE AND NUCLEAR PHYSICS: 9th Conference CIPAN2006. AIP, 2006. http://dx.doi.org/10.1063/1.2402595.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

DRAGO, ALESSANDRO. "NUCLEAR ASTROPHYSICS." In Proceedings of the 10th Conference on Problems in Theoretical Nuclear Physics. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701985_0009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

BRUNE, C. R. "NUCLEAR ASTROPHYSICS." In Proceedings of the Nineteenth Lake Louise Winter Institute. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701961_0001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

APRAHAMIAN, A. "NUCLEAR STRUCTURE AND NUCLEAR ASTROPHYSICS." In Proceedings of the Eleventh International Symposium. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812795151_0035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Aprahamian, Ani. "Nuclear Astrophysics and Nuclear Structure." In NUCLEAR PHYSICS, LARGE AND SMALL: International Conference on Microscopic Studies of Collective Phenomena. AIP, 2004. http://dx.doi.org/10.1063/1.1805934.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

DE OLIVEIRA SANTOS, F. "NUCLEAR ASTROPHYSICS @ GANIL." In Proceedings of the International Symposium. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814508865_0002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wiescher, Michael. "Nuclear astrophysics underground." In IX LATIN AMERICAN SYMPOSIUM ON NUCLEAR PHYSICS AND APPLICATIONS. AIP, 2012. http://dx.doi.org/10.1063/1.3688796.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Nuclear astrophysics":

1

Miller, Jonah. Nuclear Astrophysics and Astrophysical Transients. Office of Scientific and Technical Information (OSTI), November 2022. http://dx.doi.org/10.2172/1900461.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cooperstein, J. Nuclear astrophysics of supernovae. Office of Scientific and Technical Information (OSTI), January 1988. http://dx.doi.org/10.2172/6034283.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Penionzhkevich, Yu E. Nuclear reactions in astrophysics. Physico-Technical Society of Kazakhstan, December 2017. http://dx.doi.org/10.29317/ejpfm.2017010202.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schramm, D. N., and A. V. Olinto. Nuclear physics and astrophysics. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/7073919.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Arcones, Almudena, Jutta E. Escher, and M. Others. White Paper on Nuclear Astrophysics and Low Energy Nuclear Physics - Part 1. Nuclear Astrophysics. Office of Scientific and Technical Information (OSTI), April 2016. http://dx.doi.org/10.2172/1248270.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jones, Katherine Louise. Direct Reactions for Nuclear Structure and Nuclear Astrophysics. Office of Scientific and Technical Information (OSTI), December 2014. http://dx.doi.org/10.2172/1166766.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Palumbo, A. EMPIRE: A code for nuclear astrophysics. Office of Scientific and Technical Information (OSTI), December 2013. http://dx.doi.org/10.2172/1121215.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wu, J. Theoretical nuclear physics and astrophysics. Final report. Office of Scientific and Technical Information (OSTI), March 1998. http://dx.doi.org/10.2172/631234.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lattimer, J. M., and A. Yahil. Research in nuclear astrophysics: Stellar collapse and supernovae. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5262065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lattimer, J. M., and A. Yahil. Research in nuclear astrophysics: Stellar collapse and supernovae. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6209743.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії