Добірка наукової літератури з теми "Nonlocal Neumann boundary conditions"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Nonlocal Neumann boundary conditions".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Nonlocal Neumann boundary conditions"
Dipierro, Serena, Xavier Ros-Oton, and Enrico Valdinoci. "Nonlocal problems with Neumann boundary conditions." Revista Matemática Iberoamericana 33, no. 2 (2017): 377–416. http://dx.doi.org/10.4171/rmi/942.
Повний текст джерелаYou, Huaiqian, Xin Yang Lu, Nathaniel Trask, and Yue Yu. "An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems." ESAIM: Mathematical Modelling and Numerical Analysis 55 (2021): S811—S851. http://dx.doi.org/10.1051/m2an/2020058.
Повний текст джерелаYou, Huaiqian, XinYang Lu, Nathaniel Task, and Yue Yu. "An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems." ESAIM: Mathematical Modelling and Numerical Analysis 54, no. 4 (June 18, 2020): 1373–413. http://dx.doi.org/10.1051/m2an/2019089.
Повний текст джерелаTurmetov, B. Kh, and V. V. Karachik. "NEUMANN BOUNDARY CONDITION FOR A NONLOCAL BIHARMONIC EQUATION." Bulletin of the South Ural State University series "Mathematics. Mechanics. Physics" 14, no. 2 (2022): 51–58. http://dx.doi.org/10.14529/mmph220205.
Повний текст джерелаBogoya, Mauricio, and Cesar A. Gómez S. "On a nonlocal diffusion model with Neumann boundary conditions." Nonlinear Analysis: Theory, Methods & Applications 75, no. 6 (April 2012): 3198–209. http://dx.doi.org/10.1016/j.na.2011.12.019.
Повний текст джерелаAksoylu, Burak, and Fatih Celiker. "Nonlocal problems with local Dirichlet and Neumann boundary conditions." Journal of Mechanics of Materials and Structures 12, no. 4 (May 20, 2017): 425–37. http://dx.doi.org/10.2140/jomms.2017.12.425.
Повний текст джерелаGomez, C. A., and J. A. Caicedo. "ON A RESCALED NONLOCAL DIFFUSION PROBLEM WITH NEUMANN BOUNDARY CONDITIONS." Advances in Mathematics: Scientific Journal 10, no. 8 (August 7, 2021): 3013–22. http://dx.doi.org/10.37418/amsj.10.8.2.
Повний текст джерелаAndreu, F., J. M. Mazón, J. D. Rossi, and J. Toledo. "A nonlocal p-Laplacian evolution equation with Neumann boundary conditions." Journal de Mathématiques Pures et Appliquées 90, no. 2 (August 2008): 201–27. http://dx.doi.org/10.1016/j.matpur.2008.04.003.
Повний текст джерелаAgarwal, Praveen, Jochen Merker, and Gregor Schuldt. "Singular Integral Neumann Boundary Conditions for Semilinear Elliptic PDEs." Axioms 10, no. 2 (April 24, 2021): 74. http://dx.doi.org/10.3390/axioms10020074.
Повний текст джерелаKarachik, Valery, Batirkhan Turmetov, and Hongfen Yuan. "Four Boundary Value Problems for a Nonlocal Biharmonic Equation in the Unit Ball." Mathematics 10, no. 7 (April 3, 2022): 1158. http://dx.doi.org/10.3390/math10071158.
Повний текст джерелаДисертації з теми "Nonlocal Neumann boundary conditions"
Roman, Svetlana. "Green's functions for boundary-value problems with nonlocal boundary conditions." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20111227_092148-01085.
Повний текст джерелаDisertacijoje tiriami antros ir aukštesnės eilės diferencialinis ir diskretusis uždaviniai su įvairiomis, tame tarpe ir nelokaliosiomis, sąlygomis, kurios yra aprašytos tiesiškai nepriklausomais tiesiniais funkcionalais. Pateikiamos šių uždavinių Gryno funkcijų išraiškos ir jų egzistavimo sąlygos, jei žinoma homogeninės lygties fundamentalioji sistema. Gautas dviejų Gryno funkcijų sąryšis uždaviniams su ta pačia lygtimi, bet su papildomomis sąlygomis. Rezultatai pritaikomi uždaviniams su nelokaliosiomis kraštinėmis sąlygomis. Įvadiniame skyriuje aprašyta tiriamoji problema ir temos objektas, išanalizuotas temos aktualumas, išdėstyti darbo tikslai, uždaviniai, naudojama tyrimų metodika, mokslinis darbo naujumas ir gautų rezultatų reikšmė, pateikti ginamieji teiginiai ir darbo rezultatų aprobavimas. m-tosios eilės diferencialinis uždavinys ir jo Gryno funkcija nagrinėjami pirmajame skyriuje. Surastas uždavinio sprendinys, išreikštas per Gryno funkciją. Pateikta Gryno funkcijos egzistavimo sąlyga. Antrajame skyriuje pateikti pirmojo skyriaus pagrindiniai apibrėžimai ir rezultatai antros eilės diferencialinei lygčiai. Pavyzdžiuose išsamiai išanalizuotas gautų rezultatų pritaikymas uždaviniams su nelokaliosiomis kraštinėmis sąlygomis. Trečiajame skyriuje nagrinėjama antros eilės diskrečioji lygtis su dviem sąlygomis. Surastos diskrečiosios Gryno funkcijos išraiška ir jos egzistavimo sąlyga. Taip pat pateiktas dviejų Gryno funkcijų sąryšis, kuris leidžia surasti diskrečiosios... [toliau žr. visą tekstą]
Mäder-Baumdicker, Elena [Verfasser], and Ernst [Akademischer Betreuer] Kuwert. "The area preserving curve shortening flow with Neumann free boundary conditions = Der flächenerhaltende Curve Shortening Fluss mit einer freien Neumann-Randbedingung." Freiburg : Universität, 2014. http://d-nb.info/1123480648/34.
Повний текст джерелаBenincasa, Tommaso <1981>. "Analysis and optimal control for the phase-field transition system with non-homogeneous Cauchy-Neumann boundary conditions." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/3066/1/benincasa_tommaso_tesi.pdf.
Повний текст джерелаBenincasa, Tommaso <1981>. "Analysis and optimal control for the phase-field transition system with non-homogeneous Cauchy-Neumann boundary conditions." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/3066/.
Повний текст джерелаPERROTTA, Antea. "Differential Formulation coupled to the Dirichlet-to-Neumann operator for scattering problems." Doctoral thesis, Università degli studi di Cassino, 2020. http://hdl.handle.net/11580/75845.
Повний текст джерелаCoco, Armando. "Finite-Difference Ghost-Cell Multigrid Methods for Elliptic problems with Mixed Boundary Conditions and Discontinuous Coefficients." Doctoral thesis, Università di Catania, 2012. http://hdl.handle.net/10761/1107.
Повний текст джерелаCao, Shunxiang. "Numerical Methods for Fluid-Solid Coupled Simulations: Robin Interface Conditions and Shock-Dominated Applications." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/93514.
Повний текст джерелаDoctor of Philosophy
Numerical simulations that couple computational fluid dynamics (CFD) solvers and computational solid dynamics (CSD) solvers have been widely used in the solution of nonlinear fluid-solid interaction (FSI) problems underlying many engineering applications. This is primarily because they are based on partitioned solutions of fluid and solid subsystems, which facilitates the use of existing numerical methods and computational codes developed for each subsystem. The first part of this dissertation focuses on developing advanced numerical algorithms for coupling the two subsystems. The aim is to resolve a major numerical instability issue that occurs when solving problems involving incompressible, heavy fluids and thin, lightweight structures. Specifically, this work first presents a new coupling algorithm based on a one-parameter Robin interface condition. An embedded boundary method is developed to enforce the Robin interface condition, which can be advantageous in solving problems involving complex geometry and large deformation. The new coupling algorithm has been shown to significantly improve numerical stability when the constant parameter is carefully selected. Next, the constant parameter is generalized into a spatially varying function whose local value is determined by the local material and geometric properties of the structure. Numerical studies show that when solving FSI problems involving non-uniform structures, using this spatially varying Robin interface condition can outperform the constant-parameter version in both stability and accuracy under the same computational cost. In the second part of this dissertation, a recently developed three-dimensional multiphase CFD - CSD coupled solver is extended to simulate complex FSI problems featuring shock wave, bubbles, and material damage and fracture. The aim is to understand the material’s response to loading induced by a shock wave and the collapse of nearby bubbles, which is important for advancing the beneficial use of shock wave and bubble collapse for material modification. Two computational studies are presented. The first one investigates the dynamic response and failure of a brittle material exposed to a prescribed shock wave. The causal relationship between shock loading and material failure, and the effects of the shock wave’s profile on material damage are discussed. The second study investigates the shock-induced bubble collapse near various solid and soft materials. The two-way interaction between bubble dynamics and materials response, and the reciprocal effects of the material’s properties are discussed in detail.
Roman, Svetlana. "Gryno funkcijos uždaviniams su nelokaliosiomis kraštinėmis sąlygomis." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20111227_092259-85107.
Повний текст джерелаIn the dissertation, second-order and higher-order differential and discrete equations with additional conditions which are described by linearly independent linear functionals are investigated. The solutions to these problems, formulae and the existence conditions of Green's functions are presented, if the general solution of a homogeneous equation is known. The relation between two Green's functions of two nonhomogeneous problems for the same equation but with different additional conditions is obtained. These results are applied to problems with nonlocal boundary conditions. In the introduction the topicality of the problem is defined, the goals and tasks of the research are formulated, the scientific novelty of the dissertation, the methodology of research, the practical value and the significance of the results are presented. m-order differential problem and its Green's function are investigated in the first chapter. The relation between two Green's functions and the existence condition of Green's function are obtained. In the second chapter, the main definitions and results of the first chapter are formulated for the second-order differential equation with additional conditions. In the examples the application of the received results is analyzed for problems with nonlocal boundary conditions in detail. In the third chapter, the second-order difference equation with two additional conditions is considered. The expression of Green's function and its existence... [to full text]
Eschke, Andy. "Analytical solution of a linear, elliptic, inhomogeneous partial differential equation with inhomogeneous mixed Dirichlet- and Neumann-type boundary conditions for a special rotationally symmetric problem of linear elasticity." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-149965.
Повний текст джерелаBensiali, Bouchra. "Approximations numériques en situations complexes : applications aux plasmas de tokamak." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4332/document.
Повний текст джерелаMotivated by two issues related to tokamak plasmas, this thesis proposes two numerical approximation methods for two mathematical problems associated with them. On the one hand, in order to study the turbulent transport of particles, a numerical method based on subdivision schemes is presented for the simulation of particle trajectories in a strongly varying velocity field. On the other hand, in the context of modeling the plasma-wall interaction, a penalization method is proposed to take into account Neumann or Robin boundary conditions. Analyzed on model problems of increasing complexity, these methods are finally applied in more realistic situations of practical interest in the study of the edge plasma
Книги з теми "Nonlocal Neumann boundary conditions"
E, Zorumski William, and Langley Research Center, eds. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Знайти повний текст джерелаE, Zorumski William, and Langley Research Center, eds. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Знайти повний текст джерелаE, Zorumski William, and Langley Research Center, eds. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Знайти повний текст джерелаE, Zorumski W., Watson Willie R, and Langley Research Center, eds. Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Знайти повний текст джерелаE, Zorumski W., Watson Willie R, and Langley Research Center, eds. Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Знайти повний текст джерелаSun, Xian-He. A high-order direct solver for helmholtz equations with neumann boundary conditions. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Знайти повний текст джерелаSun, Xian-He. A high-order direct solver for helmholtz equations with neumann boundary conditions. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Знайти повний текст джерелаSun, Xian-He. A high-order direct solver for helmholtz equations with neumann boundary conditions. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Знайти повний текст джерелаSun, Xian-He. A high-order direct solver for Helmholtz equations with Neumann boundary conditions. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Знайти повний текст джерелаPeriodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Знайти повний текст джерелаЧастини книг з теми "Nonlocal Neumann boundary conditions"
Sayas, Francisco-Javier, Thomas S. Brown, and Matthew E. Hassell. "Neumann boundary conditions." In Variational Techniques for Elliptic Partial Differential Equations, 3–26. Boca Raton, Florida : CRC Press, [2019]: CRC Press, 2019. http://dx.doi.org/10.1201/9780429507069-6.
Повний текст джерелаArendt, Wolfgang, and Karsten Urban. "Neumann and Robin boundary conditions." In Partial Differential Equations, 241–68. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13379-4_7.
Повний текст джерелаDroniou, Jérôme, Robert Eymard, Thierry Gallouët, Cindy Guichard, and Raphaèle Herbin. "Neumann, Fourier and Mixed Boundary Conditions." In Mathématiques et Applications, 67–97. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-79042-8_3.
Повний текст джерелаAdomian, George. "Decomposition Solutions for Neumann Boundary Conditions." In Solving Frontier Problems of Physics: The Decomposition Method, 190–95. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8289-6_7.
Повний текст джерелаMotreanu, Dumitru, Viorica Venera Motreanu, and Nikolaos Papageorgiou. "Nonlinear Elliptic Equations with Neumann Boundary Conditions." In Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, 387–436. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9323-5_12.
Повний текст джерелаLeung, Anthony W. "Large Systems under Neumann Boundary Conditions, Bifurcations." In Systems of Nonlinear Partial Differential Equations, 325–73. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-015-3937-1_7.
Повний текст джерелаFeltrin, Guglielmo. "Neumann and Periodic Boundary Conditions: Existence Results." In Positive Solutions to Indefinite Problems, 69–99. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94238-4_3.
Повний текст джерелаFeltrin, Guglielmo. "Neumann and Periodic Boundary Conditions: Multiplicity Results." In Positive Solutions to Indefinite Problems, 101–30. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94238-4_4.
Повний текст джерелаAksoylu, Burak, Fatih Celiker, and Orsan Kilicer. "Nonlocal Operators with Local Boundary Conditions: An Overview." In Handbook of Nonlocal Continuum Mechanics for Materials and Structures, 1–38. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-22977-5_34-1.
Повний текст джерелаAksoylu, Burak, Fatih Celiker, and Orsan Kilicer. "Nonlocal Operators with Local Boundary Conditions: An Overview." In Handbook of Nonlocal Continuum Mechanics for Materials and Structures, 1293–330. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-58729-5_34.
Повний текст джерелаТези доповідей конференцій з теми "Nonlocal Neumann boundary conditions"
Parks, Michael. "On Neumann-type Boundary Conditions for Nonlocal Models." In Proposed for presentation at the Mechanistic Machine Learning and Digital Twins for Computational Science, Engineering & Technology held September 27-29, 2021 in San Diego, CA. US DOE, 2021. http://dx.doi.org/10.2172/1889347.
Повний текст джерелаLi, Fan, and Lingling Zhang. "Blow-up phenomenon of parabolic equations with nonlocal terms under Neumann boundary conditions." In 2021 3rd International Conference on Industrial Artificial Intelligence (IAI). IEEE, 2021. http://dx.doi.org/10.1109/iai53119.2021.9619348.
Повний текст джерелаD'Elia, Marta. "Challenges in nonlocal modeling: nonlocal boundary conditions and nonlocal interfaces." In Proposed for presentation at the WCCM 2020 held January 11-15, 2021 in Virtual. US DOE, 2020. http://dx.doi.org/10.2172/1833494.
Повний текст джерелаLOMBARDO, M. C., and M. SAMMARTINO. "NONLOCAL BOUNDARY CONDITIONS FOR THE NAVIER–STOKES EQUATIONS." In Proceedings of the 13th Conference on WASCOM 2005. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773616_0047.
Повний текст джерелаArda, Mustafa, and Metin Aydogdu. "Nonlocal effect on boundary conditions of cantilever nanobeam." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0026430.
Повний текст джерелаGámez, José L. "Local bifurcation for elliptic problems: Neumann versus Dirichlet boundary conditions." In The First 60 Years of Nonlinear Analysis of Jean Mawhin. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702906_0006.
Повний текст джерелаKuryliak, D. B., and Z. T. Nazarchuk. "Wave scattering by wedge with Dirichlet and Neumann boundary conditions." In Proceedings of III International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory. DIPED-98. IEEE, 1998. http://dx.doi.org/10.1109/diped.1998.730938.
Повний текст джерелаPiasecki, Tomasz. "Steady compressible Oseen flow with slip boundary conditions." In Nonlocal and Abstract Parabolic Equations and their Applications. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2009. http://dx.doi.org/10.4064/bc86-0-16.
Повний текст джерелаNalbant, Nese, and Yasar Sozen. "The positivity of differential operator with nonlocal boundary conditions." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756198.
Повний текст джерелаGe, Zanyu, Huaibao Xiao, Guizhen Lu, and Dongdong Zeng. "Horizontal diffraction based on parabolic equation with nonlocal boundary conditions." In 2017 IEEE 5th International Symposium on Electromagnetic Compatibility (EMC-Beijing). IEEE, 2017. http://dx.doi.org/10.1109/emc-b.2017.8260444.
Повний текст джерелаЗвіти організацій з теми "Nonlocal Neumann boundary conditions"
D'Elia, Marta, and Yue Yu. On the prescription of boundary conditions for nonlocal Poisson's and peridynamics models. Office of Scientific and Technical Information (OSTI), June 2021. http://dx.doi.org/10.2172/1817978.
Повний текст джерелаD'Elia, Marta, Pavel Bochev, Mauro Perego, Jeremy Trageser, and David Littlewood. An optimization-based strategy for peridynamic-FEM coupling and for the prescription of nonlocal boundary conditions. Office of Scientific and Technical Information (OSTI), October 2021. http://dx.doi.org/10.2172/1825041.
Повний текст джерела