Добірка наукової літератури з теми "Nonlinearitie"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Nonlinearitie".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Nonlinearitie"

1

Bahrouni, Anouar. "A Note on the Existence Results for Schrödinger–Maxwell System with Super-Critical Nonlinearitie." Acta Applicandae Mathematicae 166, no. 1 (May 9, 2019): 215–21. http://dx.doi.org/10.1007/s10440-019-00263-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Śliwiński, Przemysław. "On-line wavelet estimation of Hammerstein system nonlinearity." International Journal of Applied Mathematics and Computer Science 20, no. 3 (September 1, 2010): 513–23. http://dx.doi.org/10.2478/v10006-010-0038-y.

Повний текст джерела
Анотація:
On-line wavelet estimation of Hammerstein system nonlinearityA new algorithm for nonparametric wavelet estimation of Hammerstein system nonlinearity is proposed. The algorithm works in the on-line regime (viz., past measurements are not available) and offers a convenient uniform routine for nonlinearity estimation at an arbitrary point and at any moment of the identification process. The pointwise convergence of the estimate to locally bounded nonlinearities and the rate of this convergence are both established.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Altuğ, Sumru, Richard A. Ashley, and Douglas M. Patterson. "ARE TECHNOLOGY SHOCKS NONLINEAR?" Macroeconomic Dynamics 3, no. 4 (December 1999): 506–33. http://dx.doi.org/10.1017/s1365100599013036.

Повний текст джерела
Анотація:
The behavior of postwar real U.S. GNP, the inputs to an aggregate production function, and several formulations of the associated Solow residuals for the presence of nonlinearities in their generating mechanisms are examined. Three different statistical tests for nonlinearity are implemented: the McLeod-Li test, the BDS test, and the Hinich bicovariance test. We find substantial evidence for nonlinearity in the generating mechanism of real GNP growth but no evidence for nonlinearity in the Solow residuals. We further find that the generating mechanism of the labor input series is nonlinear, whereas that of the capital services input appears to be linear. We therefore conclude that the observed nonlinearity in real output arises from nonlinearities in the labor markets, not from nonlinearities in the technical shocks driving the system. Finally, we investigate the source of the nonlinearities in the labor markets by examining simulated data from a model of the Dutch economy with asymmetric adjustment costs.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schäfer, Dominik. "Influence of Fluid Viscosity and Compressibility on Nonlinearities in Generalized Aerodynamic Forces for T-Tail Flutter." Aerospace 9, no. 5 (May 9, 2022): 256. http://dx.doi.org/10.3390/aerospace9050256.

Повний текст джерела
Анотація:
The numerical assessment of T-tail flutter requires a nonlinear description of the structural deformations when the unsteady aerodynamic forces comprise terms from lifting surface roll motion. For linear flutter, a linear deformation description of the vertical tail plane (VTP) out-of-plane bending results in a spurious stiffening proportional to the steady lift forces, which is corrected by incorporating second-order deformation terms in the equations of motion. While the effect of these nonlinear deformation components on the stiffness of the VTP out-of-plane bending mode shape is known from the literature, their impact on the aerodynamic coupling terms involved in T-tail flutter has not been studied so far, especially regarding amplitude-dependent characteristics. This term affects numerical results targeting common flutter analysis, as well as the study of amplitude-dependent dynamic aeroelastic stability phenomena, e.g., Limit Cycle Oscillations (LCOs). As LCOs might occur below the linear flutter boundary, fundamental knowledge about the structural and aerodynamic nonlinearities occurring in the dynamical system is essential. This paper gives an insight into the aerodynamic nonlinearities for representative structural deformations usually encountered in T-tail flutter mechanisms using a CFD approach in the time domain. It further outlines the impact of geometrically nonlinear deformations on the aerodynamic nonlinearities. For this, the horizontal tail plane (HTP) is considered in isolated form to exclude aerodynamic interference effects from the studies and subjected to rigid body roll and yaw motion as an approximation to the structural mode shapes. The complexity of the aerodynamics is increased successively from subsonic inviscid flow to transonic viscous flow. At a subsonic Mach number, a distinct aerodynamic nonlinearity in stiffness and damping in the aerodynamic coupling term HTP roll on yaw is shown. Geometric nonlinearities result in an almost entire cancellation of the stiffness nonlinearity and an increase in damping nonlinearity. The viscous forces result in a stiffness offset with respect to the inviscid results, but do not alter the observed nonlinearities, as well as the impact of geometric nonlinearities. At a transonic Mach number, the aerodynamic stiffness nonlinearity is amplified further and the damping nonlinearity is reduced considerably. Here, the geometrically nonlinear motion description reduces the aerodynamic stiffness nonlinearity as well, but does not cancel it.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

He, Shuai, Ching-Tai Ng, and Carman Yeung. "Time-Domain Spectral Finite Element Method for Modeling Second Harmonic Generation of Guided Waves Induced by Material, Geometric and Contact Nonlinearities in Beams." International Journal of Structural Stability and Dynamics 20, no. 10 (August 31, 2020): 2042005. http://dx.doi.org/10.1142/s0219455420420055.

Повний текст джерела
Анотація:
This study proposes a time-domain spectral finite element (SFE) method for simulating the second harmonic generation (SHG) of nonlinear guided wave due to material, geometric and contact nonlinearities in beams. The time-domain SFE method is developed based on the Mindlin–Hermann rod and Timoshenko beam theory. The material and geometric nonlinearities are modeled by adapting the constitutive relation between stress and strain using a second-order approximation. The contact nonlinearity induced by breathing crack is simulated by bilinear crack mechanism. The material and geometric nonlinearities of the SFE model are validated analytically and the contact nonlinearity is verified numerically using three-dimensional (3D) finite element (FE) simulation. There is good agreement between the analytical, numerical and SFE results, demonstrating the accuracy of the proposed method. Numerical case studies are conducted to investigate the influence of number of cycles and amplitude of the excitation signal on the SHG and its performance in damage detection. The results show that the amplitude of the SHG increases with the numbers of cycles and amplitude of the excitation signal. The amplitudes of the SHG due to material and geometric nonlinearities are also compared with the contact nonlinearity when a breathing crack exists in the beam. It shows that the material and geometric nonlinearities have much less contribution to the SHG than the contact nonlinearity. In addition, the SHG can accurately determine the crack location without using the reference data. Overall, the findings of this study help further advance the use of SHG for damage detection.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Quintana, Anthony, Rui Vasconcellos, Glen Throneberry, and Abdessattar Abdelkefi. "Nonlinear Analysis and Bifurcation Characteristics of Whirl Flutter in Unmanned Aerial Systems." Drones 5, no. 4 (October 21, 2021): 122. http://dx.doi.org/10.3390/drones5040122.

Повний текст джерела
Анотація:
Aerial drones have improved significantly over the recent decades with stronger and smaller motors, more powerful propellers, and overall optimization of systems. These improvements have consequently increased top speeds and improved a variety of performance aspects, along with introducing new structural challenges, such as whirl flutter. Whirl flutter is an aeroelastic instability that can be affected by structural or aerodynamic nonlinearities. This instability may affect the prediction of potentially dangerous behaviors. In this work, a nonlinear reduced-order model for a nacelle-rotor system, considering quasi-steady aerodynamics, is implemented. First, a parametric study for the linear system is performed to determine the main aerodynamic and structural characteristics that affect the onset of instability. Multiple polynomial nonlinearities in the two degrees of freedom nacelle-rotor model are tested to simulate possible structural nonlinear effects including symmetric cubic hardening nonlinearities for the pitch and yaw degrees of freedom; purely yaw nonlinearity; purely pitch nonlinearity; and a combination of quadratic, cubic, and fifth-order nonlinearities for both degrees of freedom. Results show that the presence of hardening structural nonlinearities introduces limit cycle oscillations to the system in the post-flutter regime. Moreover, it is demonstrated that the inclusion of quadratic nonlinearity introduces asymmetric oscillations and subcritical behavior, where large and potentially dangerous deformations can be reached before the predicted linear flutter speed.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mu, Rongjun, and Chao Cheng. "Controller Design of Complex System Based on Nonlinear Strength." Mathematical Problems in Engineering 2015 (2015): 1–12. http://dx.doi.org/10.1155/2015/523197.

Повний текст джерела
Анотація:
This paper presents a new idea of controller design for complex systems. The nonlinearity index method was first developed for error propagation of nonlinear system. The nonlinearity indices access the boundary between the strong and the weak nonlinearities of the system model. The algorithm of nonlinearity index according to engineering application is first proposed in this paper. Applying this method on nonlinear systems is an effective way to measure the nonlinear strength of dynamics model over the full flight envelope. The nonlinearity indices access the boundary between the strong and the weak nonlinearities of system model. According to the different nonlinear strength of dynamical model, the control system is designed. The simulation time of dynamical complex system is selected by the maximum value of dynamic nonlinearity indices. Take a missile as example; dynamical system and control characteristic of missile are simulated. The simulation results show that the method is correct and appropriate.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kristály, Alexandru, and Nikolaos S. Papageorgiou. "Multiplicity theorems for semilinear elliptic problems depending on a parameter." Proceedings of the Edinburgh Mathematical Society 52, no. 1 (February 2009): 171–80. http://dx.doi.org/10.1017/s0013091507000665.

Повний текст джерела
Анотація:
AbstractWe consider semilinear elliptic problems in which the right-hand-side nonlinearity depends on a parameter λ > 0. Two multiplicity results are presented, guaranteeing the existence of at least three non-trivial solutions for this kind of problem, when the parameter λ belongs to an interval (0,λ*). Our approach is based on variational techniques, truncation methods and critical groups. The first result incorporates as a special case problems with concave–convex nonlinearities, while the second one involves concave nonlinearities perturbed by an asymptotically linear nonlinearity at infinity.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wu, Zhijun, Lifeng Fan, and Shihe Zhao. "Effects of Hydraulic Gradient, Intersecting Angle, Aperture, and Fracture Length on the Nonlinearity of Fluid Flow in Smooth Intersecting Fractures: An Experimental Investigation." Geofluids 2018 (2018): 1–14. http://dx.doi.org/10.1155/2018/9352608.

Повний текст джерела
Анотація:
This study experimentally investigated the nonlinearity of fluid flow in smooth intersecting fractures with a high Reynolds number and high hydraulic gradient. A series of fluid flow tests were conducted on one-inlet-two-outlet fracture patterns with a single intersection. During the experimental tests, the syringe pressure gradient was controlled and varied within the range of 0.20–1.80 MPa/m. Since the syringe pump used in the tests provided a stable flow rate for each hydraulic gradient, the effects of hydraulic gradient, intersecting angle, aperture, and fracture length on the nonlinearities of fluid flow have been analysed for both effluent fractures. The results showed that as the hydraulic gradient or aperture increases, the nonlinearities of fluid flow in both the effluent fractures and the influent fracture increase. However, the nonlinearity of fluid flow in one effluent fracture decreased with increasing intersecting angle or increasing fracture length, as the nonlinearity of fluid flow in the other effluent fracture simultaneously increased. In addition, the nonlinearities of fluid flow in each of the effluent fractures exceed that of the influent fracture.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kashchenko, Alexandra. "Asymptotics of Solutions to a Differential Equation with Delay and Nonlinearity Having Simple Behaviour at Infinity." Mathematics 10, no. 18 (September 16, 2022): 3360. http://dx.doi.org/10.3390/math10183360.

Повний текст джерела
Анотація:
In this paper, we study nonlocal dynamics of a nonlinear delay differential equation. This equation with different types of nonlinearities appears in medical, physical, biological, and ecological applications. The type of nonlinearity in this paper is a generalization of two important for applications types of nonlinearities: piecewise constant and compactly supported functions. We study asymptotics of solutions under the condition that nonlinearity is multiplied by a large parameter. We construct all solutions of the equation with initial conditions from a wide subset of the phase space and find conditions on the parameters of equations for having periodic solutions.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Nonlinearitie"

1

Fiscella, A. "VARIATIONAL PROBLEMS INVOLVING NON-LOCAL ELLIPTIC OPERATORS." Doctoral thesis, Università degli Studi di Milano, 2014. http://hdl.handle.net/2434/245334.

Повний текст джерела
Анотація:
My thesis deals with nonlinear elliptic problems involving a non-local integrodifferential operator of fractional type. Our main results concern the existence of weak solutions for these problems and they are obtained using variational and topological methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Craig, Duncan Wilson. "Optical nonlinearities in CdHgTe." Thesis, Heriot-Watt University, 1987. http://hdl.handle.net/10399/1015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Markellos, Raphael N. "Nonlinearities and dynamics in finance." Thesis, Loughborough University, 1999. https://dspace.lboro.ac.uk/2134/27402.

Повний текст джерела
Анотація:
This thesis deals with a set of overlapping problems in finance and econometrics which involve nonlinearities and dynamics: nonlinear co-integration, asset pricing dynamics and nonparametric derivative asset pricing.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Darzi, Ayad K. R. "Picosecond studies of optical nonlinearities." Thesis, Heriot-Watt University, 1991. http://hdl.handle.net/10399/1026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Milward, Jonathan Ray. "Electronic optical nonlinearities in ZnSe." Thesis, Heriot-Watt University, 1991. http://hdl.handle.net/10399/858.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tsiotas, Georgios K. "Nonlinearities in stochastic volatility models." Thesis, University of Essex, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.394112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dixit, Atray (Atray Chitanya). "Methods for bounding genetic nonlinearities." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/117897.

Повний текст джерела
Анотація:
Thesis: Ph. D. in Medical Engineering and Medical Physics, Harvard-MIT Program in Health Sciences and Technology, 2018.
Cataloged from PDF version of thesis.
Includes bibliographical references.
Complex hierarchical structures are a hallmark of life. Within multicellular organisms, the building blocks of these structures are cells; within cells, they are genes. The interdependence of these building blocks is difficult to measure but is integral to the biological processes of health and disease, which emerge from the dynamism of thousands of interacting genes. This cooperativity manifests in particular mutations which accumulate over the course of cancer progression, gender-specific medical conditions, and transcription factor cocktails used to reprogram differentiated cells into stem cells. However, it is experimentally intractable to test the significance of perturbing every unique combination of genes. Instead, we explore gross features of this interaction space to determine how prevalent these synergies are. We take a top-down approach, creating new methods to measure the effects of removing genes from the full set. In the first, we develop a method to measure the transcriptional response to genetic perturbations across hundreds of thousands of cells revealing opposing classes of transcription factors regulating the immune response of dendritic cells. In the second, we create a method to measure how millions of combinations of genetic perturbations impact the growth rate of cancer cell lines.
by Atray Dixit.
Ph. D. in Medical Engineering and Medical Physics
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Farah, Petros. "Ultrafast nonlinearities of metal nanostructures." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648176.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kunde, Jens. "Optical control of ultrafast semiconductor nonlinearities /." Zürich, 2001. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=13975.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Øyen, Karsten. "Compensation of Loudspeaker Nonlinearities : - DSP implementation." Thesis, Norwegian University of Science and Technology, Department of Electronics and Telecommunications, 2007. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-8839.

Повний текст джерела
Анотація:

Compensation of loudspeaker nonlinearities is investigated. A compensation system, based a loudspeaker model (a computer simulation of the real loudspeaker), is first simulated in matlab and later implemented on DSP for realtime testing. So far it is a pure feedforward system, meaning that no feedback measurement of the loudspeaker is used. Loudspeaker parameters are drifting due to temperature and aging. This reduces the performance of the compensation. To fulfil the system, an online tracking of the loudspeaker linear parameters is needed (also known as parameter identification). Previous investigations (done by Andrew Bright and also Bo R. Pedersen) shows that the loudspeaker linear parameters can be found by calculations based on measurements of the loudspeakers current. This is a subject for further work. Without the parameter identification, the compensation system is briefly tested, with the loudspeaker diaphragm excursion as output measure. The loudspeaker output and the output of the loudspeaker model are both monitored, and the loudspeaker model is manually adjusted to fit the real loudspeaker. This is done by realtime tuning on DSP. The system seems to work for some input frequencies and do not work for others.

Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Nonlinearitie"

1

Institute of Physics (Great Britain). Nonlinearity. Bristol, England: Institute of Physics and the London Mathematical Society, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Orlando, Giuseppe, Alexander N. Pisarchik, and Ruedi Stoop, eds. Nonlinearities in Economics. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70982-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gaponov-Grekhov, Andrei V., and Mikhail I. Rabinovich. Nonlinearities in Action. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-75292-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ivancevic, Vladimir G., and Tijana T. Ivancevic. Complex Nonlinearity. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-79357-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Velupillai, Kumaraswamy, ed. Nonlinearities, Disequilibria and Simulation. London: Palgrave Macmillan UK, 1992. http://dx.doi.org/10.1007/978-1-349-12227-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sengupta, A., ed. Chaos, Nonlinearity, Complexity. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-31757-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Abdullaev, Fatkulla, Alan R. Bishop, and Stephanos Pnevmatikos, eds. Nonlinearity with Disorder. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84774-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bishop, Alan R., David K. Campbell, and Stephanos Pnevmatikos, eds. Disorder and Nonlinearity. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74893-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Control and nonlinearity. Providence, R.I: American Mathematical Society, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Torres-Torres, Carlos, and Geselle García-Beltrán. Optical Nonlinearities in Nanostructured Systems. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10824-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Nonlinearitie"

1

Chaigne, Antoine, Joël Gilbert, Jean-Pierre Dalmont, and Cyril Touzé. "Nonlinearities." In Modern Acoustics and Signal Processing, 395–467. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3679-3_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Esposito, Anna, Marcos Faundez-Zanuy, Francesco Carlo Morabito, and Eros Pasero. "Processing Nonlinearities." In Neural Advances in Processing Nonlinear Dynamic Signals, 3–7. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95098-3_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Vladimirov, Sergey V., Vadim N. Tsytovich, Sergey I. Popel, and Fotekh Kh Khakimov. "Higher Nonlinearities." In Astrophysics and Space Science Library, 119–59. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-017-2306-0_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gray, Robert M., and Joseph W. Goodman. "Memoryless Nonlinearities." In Fourier Transforms, 333–45. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2359-8_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ambrosetti, Antonio, and David Arcoya. "Asymmetric Nonlinearities." In An Introduction to Nonlinear Functional Analysis and Elliptic Problems, 111–19. Boston: Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-8114-2_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Krasnosel’skiǐ, Mark A., and Aleksei V. Pokrovskiǐ. "Discontinuous nonlinearities." In Systems with Hysteresis, 212–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-61302-9_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Krasnosel’skii, Alexander M. "Weak nonlinearities." In Asymptotics of Nonlinearities and Operator Equations, 135–84. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9082-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Frank, Steven A. "Nonlinearity." In Control Theory Tutorial, 79–84. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91707-8_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Weik, Martin H. "nonlinearity." In Computer Science and Communications Dictionary, 1108. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_12432.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wang, Wenlei, Jie Zhao, and Qiuming Cheng. "Nonlinearity." In Encyclopedia of Mathematical Geosciences, 1–6. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-26050-7_227-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Nonlinearitie"

1

Buryak, Alexander V., Tristram J. Alexander, and Yuri S. Kivshar. "Stable dark and vortex parametric solitons due to competing nonlinearitie." In Nonlinear Guided Waves and Their Applications. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/nlgw.1998.nthe.4.

Повний текст джерела
Анотація:
We demonstrate how the influence of a weak Kerr effect in quadratic nonlinear media can eliminate parametric modulational instability of plane waves, leading to the existence of stable dark and vortex spatial solitons.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Van Stryland, E. W., G. Stegeman, R. DeSalvo, D. J. Hagan та M. Sheik-Bahae. "Cascading of χ(2) for χ(3) Nonlinearities". У Nonlinear Optics. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nlo.1992.ma2.

Повний текст джерела
Анотація:
The cascading of second order nonlinearities (χ(2): χ(2) to induce a nonlinear phase distortion on the input beam has recently received considerable attention[1,2] We estimate that materials with large second order nonlinearities (≃102 pm/V) will give rise to effective nonlinear refractive indices, n 2 eff , of 10–12 to 10–10 esu. These nonlinearities are truly nonresonant and can be in a lossless spectral region (i.e. loss determined by impurities and defects). An important difference between this nonlinearity and a true χ(3) nonlinearity is that the sign is readily changed by, for example, changing the phase matching condition.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Trillo, Stefano, Alexander V. Buryak, and Yuri S. Kivshar. "Optical solitons in media with quadratic and cubic nonlinearities." In Nonlinear Guided Waves and Their Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/nlgw.1995.nthb5.

Повний текст джерела
Анотація:
Self-trapping and soliton-like propagation due to interplay of dispersion and nonlinearity-induced phase shift due to cascaded nonlinearities [1] has attracted a great deal of interest [2-6]. Soliton propagation may occur either in the form of strongly coupled symbiotic pairs for the fundamental-frequency (FF) and the second-harmonic (SII) fields [2-6], or in the limit of nonzero mismatch, for which the propagation is governed by an equivalent nonlinear Schrödinger (NLS) equation for the FF field, obtained by means of asymptotic techniques [7]. However, in χ(2) materials there always exist cubic nonlinearities which might become also important and even compete with quadratic nonlinearities. Here we analyze the effect of such competing nonlinearities on properties of solitary waves. As we will show, self-phase (SPM) and cross-phase (CPM) modulation induced by a cubic nonlinearity can strongly perturb solitary waves of a purely quadratic medium, and they may eventually destroy them. Nevertheless, we show that, even for such competing nonlinearities, stable solitary waves do exist.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Blouin, Alain, Pierre Galarneau, and Marguerite Marie Denariez-Roberge. "Tensor components of higher-order susceptibilities in a saturable absorber." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.thy5.

Повний текст джерела
Анотація:
Higher-order nonlinearities may affect the performance of optical devices based on the third-order nonlinearity and may also be important in the characterization of nonlinear materials. A geometry of n-wave mixing to selectively probe each order of the nonlinearity was first proposed by Raj et al.,1 and its behavior was analyzed by us.2 We propose a theoretical model based on a holographic approach for all orders of the nonlinearities in a saturable absorber in stationary and transient regimes. Results of the theoretical calculation for the tensor components of the susceptibilities will be presented. We have performed experiments in the picosecond regime in which we used a frequency-doubled Nd:YAG mode-locked laser. We studied the fifth- and seventh-order nonlinearities for both isotropic and anisotropic materials. We used different beam polarization configurations to separate the components of the susceptibility tensors. In conclusion, we will discuss the importance of higher-order nonlinearities for complete characterization of nonlinear materials and the possibility of some devices using these nonlinearities.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shmidt, E. E., M. A. Banshchikova, and V. A. Avduyshev. "Investigation of nonlinearity in inverse problems of satellite dynamics." In Всероссийская с международным участием научная конференция студентов и молодых ученых, посвященная памяти Полины Евгеньевны Захаровой «Астрономия и исследование космического пространства». Ural University Press, 2021. http://dx.doi.org/10.15826/b978-5-7996-3229-8.16.

Повний текст джерела
Анотація:
The report presents the results of a study of the total and intrinsic nonlinearities as applied to the outer satellites of Jupiter observed on a short arc. The relationship between the nonlinearities and the conditions of satellite observations is revealed. In particular, it is shown that the total nonlinearity is very strong when the observation period is less than 0.1 of the orbital period, while the intrinsic nonlinearity is weak enough for all satellites, which indicates the possibility of using nonlinear methods for adequate modeling of their orbital uncertainty.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gotoh, T., T. Kondoh, K. Egawa, and K. Kubodera. "Exceptionally Large Third-Order Optical Nonlinearity of the Organic Charge-Transfer Complex." In Nonlinear Optical Properties of Materials. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/nlopm.1988.ma3.

Повний текст джерела
Анотація:
Much effort has been devoted to a search for material having a large third-order optical nonlinearity sufficient to realize ultra-fast optical signal processing and optical computing etc. π-conjugated organic materials, especially conductive polymers such as polydiacetylenes, seem to attract a principal interest in this field because of their fast responces and large optical nonlinearities.1) Those known materials put origin of their optical nonlinearities on intramolecular electronic polarization. Our own scope is, however, that supramolecular electronic polarization is possibly an efficient origin of optical nonlinearity.2)
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Leadenham, S., and A. Erturk. "Modeling and Characterization of Elastic, Coupling, and Dissipative Nonlinearities in PZT Bimorphs for Vibration Energy Harvesting." In ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-6260.

Повний текст джерела
Анотація:
In numerous applications of lead zirconate titanate (PZT)-based devices, such as dynamic actuation, vibration control, sensing, and energy harvesting, inherent nonlinearities are inevitably pronounced for a broad range of mechanical and electrical excitation levels. Even in the absence of any geometric nonlinearity, researchers observed and reported nonlinear behavior in PZT-based devices for moderate-to-high excitation levels. Over the past two decades, the softening nonlinearities have been attributed to different phenomena by different research groups, such as purely elastic nonlinear terms and coupling nonlinearity. Dissipative effects of quadratic order have been observed but often attributed to air damping in symmetric structures. In an effort to develop a global nonlinear, non-conservative modeling framework, we combined elastic, coupling, and dissipative nonlinearities to explore primary resonance behavior in bimorph cantilevers for problems of mechanical and electrical excitation. We use this model to characterize the nonlinearities in piezoelectric bimorphs for energy harvesting with a focus on a symmetric brass-reinforced PZT-5A sample under base excitation. Specifically we point out the importance of quadratic nonlinearities in both stiffness and damping. Coupling and higher-order elastic nonlinearities from the electric enthalpy are observed to become effective only for the highest excitation levels close to physical limits of the device with high linear stiffness tested in this work.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Christopherson, J., G. Nakhaie Jazar, and M. Mahinfalah. "Chaotic Behavior of Hydraulic Engine Mount." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13744.

Повний текст джерела
Анотація:
The constitutive relationships of the rubber materials that act as the main spring of a hydraulic mount are nonlinear. In addition to material induced nonlinearity, further nonlinearities may be introduced by mount geometry, turbulent fluid behavior, boundary conditions, temperature, decoupler action, and hysteretic behavior. While all influence the behavior of the system only certain aspects are realistically considered using the lumped parameter approach employed in this research. The nonlinearities that are readily modeled by the lumped parameter approach constitute the geometry and constitutive relationship induced nonlinearity, including hysteretic behavior, noting that these properties all make an appearance in the load-deflection relationship for the mount and may be readily determined via experiment or flnite element analysis. In this paper we will shoe that under certain conditions, the nonlinearities involved in the hydraulic engine mounts can show a chaotic response.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kulkarni, V. V., L. Y. Pao, and P. L. Falb. "Stability multipliers for memoryless positive nonlinearities: parameterizations based on the nonlinearity graph." In 2006 American Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/acc.2006.1655333.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hiroshima, Tohya. "Excitonic Optical Nonlinearity in Two- and Three-Dimensional Semiconductors." In Quantum Wells for Optics and Opto-Electronics. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/qwoe.1989.tue1.

Повний текст джерела
Анотація:
Recently, excitonic optical nonlinearities in direct-gap-semiconductors have attracted much attention and have been studied extensively [1]. Of particular interest are the nonresonant excitonic nonlinearities for their potential applications to ultrafast all-optical devices. The nonlinear optical properties of exciton systems result, in general, from the deviation of excitons from non-interacting ideal bosons. Not only the mutual interaction between excitons, but also the anharmonic excitonphoton interaction, contribute to the excitonic optical nonlinearity. In this paper we develope a simple theory for nonresonant excitonic optical nonlinearity in two- and three-dimensional semiconductors, treating the above mentioned two kinds of anharmonicity on an equal basis.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Nonlinearitie"

1

Aruoba, S. Borağan, Luigi Bocola, and Frank Schorfheide. Assessing DSGE Model Nonlinearities. Cambridge, MA: National Bureau of Economic Research, December 2013. http://dx.doi.org/10.3386/w19693.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yang, Shao. Optical detector nonlinearity :. Gaithersburg, MD: National Bureau of Standards, 1995. http://dx.doi.org/10.6028/nist.tn.1376.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Owyang, Michael T., Daniel Soques, and Laura E. Jackson. Nonlinearities, Smoothing and Countercyclical Monetary Policy. Federal Reserve Bank of St. Louis, 2016. http://dx.doi.org/10.20955/wp.2016.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Van Stryland, Eric, and David Hagan. Semiconductor Optical Nonlinearities in the IR. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada480145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Segalman, Daniel Joseph. Model reduction of systems with localized nonlinearities. Office of Scientific and Technical Information (OSTI), March 2006. http://dx.doi.org/10.2172/886648.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hauenstein, Anthony J., and Robert M. Laurenson. Chaotic Response of Aerosurfaces with Structural Nonlinearities. Fort Belvoir, VA: Defense Technical Information Center, March 1989. http://dx.doi.org/10.21236/ada208433.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kokotovic, Peter V. Adaptive Control of Systems with Uncertain Nonlinearities. Fort Belvoir, VA: Defense Technical Information Center, September 1995. http://dx.doi.org/10.21236/ada304391.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nayfeh, Ali H., and Dean T. Mook. The Effect of Nonlinearities on Flexible Structures. Fort Belvoir, VA: Defense Technical Information Center, February 1990. http://dx.doi.org/10.21236/ada222705.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fleischer, Jason. Dynamical Imaging using Spatial Nonlinearity. Fort Belvoir, VA: Defense Technical Information Center, January 2014. http://dx.doi.org/10.21236/ada597107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Savit, R. [Growth and nonlinearity]. Progress report. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/10128447.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії