Добірка наукової літератури з теми "Nonlinear interfaces"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Nonlinear interfaces".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Nonlinear interfaces"
Savotchenko, S. E. "Nonlinear surface waves propagating along the composite waveguide consisting of self-focusing slab between defocusing media separated by interfaces with nonlinear response." Journal of Nonlinear Optical Physics & Materials 28, no. 04 (December 2019): 1950039. http://dx.doi.org/10.1142/s0218863519500395.
Повний текст джерелаNASALSKI, W., and D. BURAK. "GAUSSIAN BEAM NONSPECULAR REFLECTION AT A NONLINEAR DEFOCUSING INTERFACE." Journal of Nonlinear Optical Physics & Materials 04, no. 04 (October 1995): 929–42. http://dx.doi.org/10.1142/s0218863595000422.
Повний текст джерелаVASSILIEV, O. N., and M. G. COTTAM. "OPTICALLY NONLINEAR S-POLARIZED ELECTROMAGNETIC WAVES IN MULTILAYERED SYMMETRIC DIELECTRICS." Surface Review and Letters 07, no. 01n02 (February 2000): 89–102. http://dx.doi.org/10.1142/s0218625x00000129.
Повний текст джерелаSavotchenko, S. E. "Nonlinear surface waves propagating along composite waveguide consisting of nonlinear defocusing media separated by interfaces with nonlinear response." Journal of Nonlinear Optical Physics & Materials 29, no. 01n02 (March 2020): 2050002. http://dx.doi.org/10.1142/s0218863520500022.
Повний текст джерелаNouira, Dorra, Davide Tonazzi, Anissa Meziane, Laurent Baillet, and Francesco Massi. "Numerical and Experimental Analysis of Nonlinear Vibrational Response due to Pressure-Dependent Interface Stiffness." Lubricants 8, no. 7 (July 10, 2020): 73. http://dx.doi.org/10.3390/lubricants8070073.
Повний текст джерелаLiang, Yu, Zhigang Zhai, Juchun Ding, and Xisheng Luo. "Richtmyer–Meshkov instability on a quasi-single-mode interface." Journal of Fluid Mechanics 872 (June 13, 2019): 729–51. http://dx.doi.org/10.1017/jfm.2019.416.
Повний текст джерелаСавотченко, С. Е. "Нелинейные интерфейсные волны в трехслойной оптической структуре с отличающимися характеристиками слоев и внутренней самофокусировкой". Журнал технической физики 127, № 7 (2019): 159. http://dx.doi.org/10.21883/os.2019.07.47944.231-18.
Повний текст джерелаShrivastava, Shamit, Kevin H. Kang, and Matthias F. Schneider. "Collision and annihilation of nonlinear sound waves and action potentials in interfaces." Journal of The Royal Society Interface 15, no. 143 (June 2018): 20170803. http://dx.doi.org/10.1098/rsif.2017.0803.
Повний текст джерелаSánchez-Curto, Julio, Pedro Chamorro-Posada, and Graham S. McDonald. "Dark solitons at nonlinear interfaces." Optics Letters 35, no. 9 (April 22, 2010): 1347. http://dx.doi.org/10.1364/ol.35.001347.
Повний текст джерелаSánchez-Curto, J., P. Chamorro-Posada, and G. S. McDonald. "Helmholtz solitons at nonlinear interfaces." Optics Letters 32, no. 9 (April 3, 2007): 1126. http://dx.doi.org/10.1364/ol.32.001126.
Повний текст джерелаДисертації з теми "Nonlinear interfaces"
Poznic, Milan. "Nonlinear Interaction Between Ultrasonic Waves and Cracks and Interfaces." Doctoral thesis, KTH, MWL Marcus Wallenberg Laboratoriet, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4604.
Повний текст джерелаQC 20100906
Poznić, Milan. "Interaction between ultrasonic waves and nonlinear cracks and interfaces /." Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4087.
Повний текст джерелаPoznić, Milan. "Nonlinear interaction between ultrasonic waves and cracks and interfaces /." Stockholm : Farkost- och flyg, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4604.
Повний текст джерелаShelford, Leigh. "Ultrafast nonlinear optical studies of multilayered thin films and interfaces." Thesis, University of Exeter, 2009. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.506859.
Повний текст джерелаVan, Wyck Neal Edward. "MULTIPHOTON SPECTROSCOPY OF THIN FILMS AND SURFACES (NONLINEAR, WAVEGUIDES, INTERFACES)." Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/291294.
Повний текст джерелаOjaghlou, Neda. "Adhesion at Solid/Liquid Interfaces." VCU Scholars Compass, 2019. https://scholarscompass.vcu.edu/etd/6079.
Повний текст джерелаLombardi, Giulia. "Unified nonlinear electrical interfaces for hybrid piezoelectric-electromagnetic small-scale harvesting systems." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI101.
Повний текст джерелаIn this research work, electronic nonlinear interfaces for hybrid energy harvesting systems combining piezoelectric and electromagnetic transducers are presented. Such systems have received great attention due to their ability to detect mechanical vibrations and convert them into electrical energy sufficient to power low-power sensors. In order to supply these microelectronic devices the generated sinusoidal signal needs to be rectified into a constant DC voltage. In other words, once the energy is converted, a proper and smart extraction of such energy needs to be implemented with a dedicated unit. The proposed nonlinear hybrid interfaces developed in this work, aimed at incorporating as much as electroactive parts as possible in the circuit, not only increase the final output power of the involved transducers but also provide a solution for obtaining a common optimal load value, despite dealing with elements singularly presenting different working principles and values of optimal load, without the use of additional load adaptation stages. A first solution is derived from the previously developed SSHI (Synchronized Switch Harvesting on Inductor) and based on the Synchronized Switching technique. This method aims at replacing the passive inductor in the SSHI interface with an active electromagnetic system, leading to an all-active microgenerators interface and increasing the final output power. A second solution is derived from a combination of the SECE (Synchronous Electric Charge Extraction) and SMFE (Synchronous Magnetic Flux Extraction) techniques. Its main principle consists of transferring the energy from the piezoelectric to the electromagnetic transducer and then extracting the boosted energy from the electromagnetic system. The strategy of including as much as electroactive parts within the same electrical interface open many different possibilities of interfacing more than one electroactive system, constituting hybrid energy harvesters, without including extra circuit stages, thus maintaining a relative simplicity without high power losses
Costard, Rene. "Ultrafast dynamics of phospholipid-water interfaces studied by nonlinear time-resolved vibrational spectroscopy." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2014. http://dx.doi.org/10.18452/16955.
Повний текст джерелаCharged phosphate groups are the major hydration sites of biomolecules such as phospholipids and DNA. Hydration shells play a key role in the formation and stabilization of cell membranes and the DNA double helix structure. Here, we introduce phospholipid reverse micelles with variable water content (between one and sixteen water molecules per phospholipid) as a model system to study elementary phosphate-water interactions. The fastest processes at phosphate-water interfaces , e.g. hydrogen-bond dynamics and vibrational energy transfer occur on a femto- to picosecond time scale. Since molecular vibrations are sensitive local probes of the structure and dynamics, the use of femtosecond vibrational spectroscopy, in particular two-dimensional infrared spectroscopy (2D IR) and pump-probe spectroscopy in a broad spectral range, allow for the observation of microscopic phosphate-water interactions in real time. We present the first two-dimensional infrared spectra of phosphate stretching vibrations that represent true interfacial probes independent of the hydration level. Such spectra reveal that the fastest structural fluctuations of phospholipid headgroups occur on a 300-fs timescale whereas phosphate-water hydrogen bonds are preserved for >10 ps. Vibrational dynamics of intramolecular water vibrations, i.e., the OH stretching and bending modes show that small water pools around the phosphate groups form when three or more water molecules per phospholipid are present. Such water pools act as efficient heat sinks of excess energy deposited in intramolecular vibrations of water or the phosphate groups.
RIZZOGLIO, FABIO. "Nonlinear dimensionality reduction for human movement analysis with application to body machine interfaces." Doctoral thesis, Università degli studi di Genova, 2021. http://hdl.handle.net/11567/1038287.
Повний текст джерелаAanensen, Nina Sasaki. "Nonlinear Laser-induced Deformations and Forces at Liquid-Liquid Interfaces near the critical Point." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-14264.
Повний текст джерелаКниги з теми "Nonlinear interfaces"
Whitfield, Troy W. Nonlinear optics and liquid structures of interfaces. Ottawa: National Library of Canada, 1994.
Знайти повний текст джерелаCenter, NASA Glenn Research, ed. Nonlinear dynamics of a diffusing interface. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Знайти повний текст джерелаJ, McGilp, Weaire D. L, and Patterson C. H. 1961-, eds. Epioptics: Linear and nonlinear optical spectroscopy of surfaces and interfaces. Berlin: Springer, 1995.
Знайти повний текст джерелаColinet, P. Pattern formation at interfaces. Wien: Springer, 2010.
Знайти повний текст джерелаDynamics of internal layers and diffusive interfaces. Philadelphia, Pa: Society for Industrial and Applied Mathematics, 1988.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Interface technology for geometrically nonlinear analysis of multiple connected subdomains. [Reston, VA?]: American Institute of Aeronautics and Astronautics, 1997.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Interface technology for geometrically nonlinear analysis of multiple connected subdomains. [Reston, VA?]: American Institute of Aeronautics and Astronautics, 1997.
Знайти повний текст джерелаShabat, Mohammed Musa Ramadan. Linear and nonlinear electro-magnetic waves at magnetic and non-magnetic interfaces. Salford: University of Salford, 1990.
Знайти повний текст джерелаNelson, Cory A. Probing surfaces and interfaces by nonlinear optical spectroscopy with time, energy, and phase resolution. [New York, N.Y.?]: [publisher not identified], 2015.
Знайти повний текст джерелаAlicante, Raquel. Photoinduced Modifications of the Nonlinear Optical Response in Liquid Crystalline Azopolymers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Знайти повний текст джерелаЧастини книг з теми "Nonlinear interfaces"
Nepomnyashchy, Alexander A. "Nonlinear dynamics of fronts." In Pattern Formation at Interfaces, 57–103. Vienna: Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-7091-0125-4_2.
Повний текст джерелаMills, D. L. "Nonlinear Optical Interactions at Surfaces and Interfaces." In Nonlinear Optics, 155–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58937-9_8.
Повний текст джерелаStegeman, George I., and Colin T. Seaton. "Nonlinear Surface Polaritons." In Dynamical Phenomena at Surfaces, Interfaces and Superlattices, 266–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82535-4_26.
Повний текст джерелаKaplan, A. E., P. W. Smith, and W. J. Tomlinson. "Nonlinear Waves and Switching Effects at Nonlinear Interfaces." In Nonlinear Waves in Solid State Physics, 93–111. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5898-5_3.
Повний текст джерелаSakawa, Masatoshi. "Fuzzy Multiobjective Nonlinear Programming." In Operations Research/Computer Science Interfaces Series, 153–68. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-1519-7_8.
Повний текст джерелаSakawa, Masatoshi. "Genetic Algorithms for Nonlinear Programming." In Operations Research/Computer Science Interfaces Series, 133–51. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-1519-7_7.
Повний текст джерелаSchmitt-Rink, Stefan. "Ultrafast Nonlinear Optical Phenomena in Semiconductor Quantum Wells." In Interfaces, Quantum Wells, and Superlattices, 211–26. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1045-7_12.
Повний текст джерелаLawal, I., S. Shah, M. Gonzalez-Madrid, T. Hu, C. W. Schwingshackl, and M. R. W. Brake. "The Effect of Non-Flat Interfaces On System Dynamics." In Nonlinear Dynamics, Volume 1, 187–97. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74280-9_21.
Повний текст джерелаLemaitre, Jean. "Conditions of Crack Arrest by Interfaces." In IUTAM Symposium on Nonlinear Analysis of Fracture, 125–33. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5642-4_12.
Повний текст джерелаDodson, Jacob C., Janet Wolfson, Jason R. Foley, and Daniel J. Inman. "Transmission of Guided Waves Across Prestressed Interfaces." In Topics in Nonlinear Dynamics, Volume 3, 83–94. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-2416-1_8.
Повний текст джерелаТези доповідей конференцій з теми "Nonlinear interfaces"
Baron, Alexandre, Thang B. Hoang, Chao Fang, Stéphane Larouche, Daniel J. Gauthier, Maiken H. Mikkelsen, and David R. Smith. "Nonlinear Metal/Dielectric Plasmonic Interfaces." In Nonlinear Optics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/nlo.2015.ntu2b.2.
Повний текст джерелаSánchez-Curto, Julio, Pedro Chamorro-Posada, and Graham S. McDonald. "Helmholtz dark solitons at nonlinear defocusing interfaces." In Nonlinear Photonics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/np.2010.ntuc22.
Повний текст джерелаWen, Yu-Chieh, Xiaofan Xu, Shuai Zha, Yuen Ron Shen, and Chuanshan Tian. "Structure of Water Interfaces Studied by Phase Sensitive Sum Frequency Vibrational Spectroscopy." In Nonlinear Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/nlo.2013.nth2b.3.
Повний текст джерелаMcCoy, E. A., J. M. Christian, G. S. McDonald, J. Sánchez-Curto, and P. Chamorro-Posada. "Refraction and Goos-Hänchen Shifts of Spatial Solitons at Cubic-Quintic Interfaces." In Nonlinear Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/nlo.2013.nw2a.3.
Повний текст джерелаPotma, Eric O., and John Kenison. "Coherent Raman scattering at interfaces (Conference Presentation)." In Ultrafast Nonlinear Imaging and Spectroscopy VI, edited by Zhiwen Liu, Demetri Psaltis, and Kebin Shi. SPIE, 2018. http://dx.doi.org/10.1117/12.2322636.
Повний текст джерелаXiong, Wei, Jennifer E. Laaser, Peerasak Paoprasert, Ryan A. Franking, Robert J. Hamers, Padma Gopalan, and Martin T. Zanni. "Nonlinear spectroscopy on charge transfer interfaces." In SPIE NanoScience + Engineering. SPIE, 2011. http://dx.doi.org/10.1117/12.897551.
Повний текст джерелаBoardman, Allan, Neil King, Yuriy Rapoport, and Larry Velasco. "Nonlinear gyrotropic guided waves at negatively refracting interfaces." In Nonlinear Guided Waves and Their Applications. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/nlgw.2005.thb19.
Повний текст джерелаVicente, Rafael A., Guilherme H. Oliveira, Pablo S. Fernández, and Rene Nome. "Low-frequency stimulated Raman spectroscopy measurements at electrochemical interfaces." In Ultrafast Nonlinear Imaging and Spectroscopy VIII, edited by Zhiwen Liu, Demetri Psaltis, and Kebin Shi. SPIE, 2020. http://dx.doi.org/10.1117/12.2567098.
Повний текст джерелаFerrando, A., C. Milian, D. Ceballos, and D. V. Skryabin. "Stability of soliplasmon excitations at metal/dielectric interfaces." In 2011 IEEE International Workshop "Nonlinear Photonics" (NLP). IEEE, 2011. http://dx.doi.org/10.1109/nlp.2011.6102645.
Повний текст джерелаHÄRTERICH, J., and K. SAKAMOTO. "INTERFACES DRIVEN BY REACTION, DIFFUSION AND CONVECTION." In Proceedings of the International Conference on Nonlinear Analysis. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812709257_0015.
Повний текст джерелаЗвіти організацій з теми "Nonlinear interfaces"
Benderskii, Alexander V. Nonlinear Spectroscopies of Nanostructured Surfaces and Interfaces. Fort Belvoir, VA: Defense Technical Information Center, November 2009. http://dx.doi.org/10.21236/ada563142.
Повний текст джерелаMiranda, Paulo B. Nonlinear vibrational spectroscopy of surfactants at liquid interfaces. Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/6502.
Повний текст джерелаRichmond, Geraldine L., and Stephen D. Kevan. Nonlinear Studies of Surface and Interfaces of Advanced Semiconductor Materials. Fort Belvoir, VA: Defense Technical Information Center, July 1992. http://dx.doi.org/10.21236/ada253365.
Повний текст джерелаRichmond, Geraldine, and Stephen Kevan. Nonlinear Studies of Surfaces and Interfaces of Advanced Semiconductor Materials. Fort Belvoir, VA: Defense Technical Information Center, July 1992. http://dx.doi.org/10.21236/ada254324.
Повний текст джерелаJacobs-O'Malley, Laura Diane, and John Hofer. Nonlinear Feature Extraction and Energy Dissipation of Foam/Metal Interfaces. Office of Scientific and Technical Information (OSTI), April 2017. http://dx.doi.org/10.2172/1595879.
Повний текст джерелаGeiger, Franz. Uranium(IV) Interaction with Aqueous/Solid Interfaces Studied by Nonlinear Optics. Office of Scientific and Technical Information (OSTI), March 2015. http://dx.doi.org/10.2172/1176883.
Повний текст джерелаMiles, Aaron R. The Effect of Initial Conditions on the Nonlinear Evolution of Perturbed Interfaces Driven by Strong Blast Waves. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/15014148.
Повний текст джерелаFurtak, T. E. Vibrational spectroscopy of buried interfaces using nonlinear optics. Final technical report, July 7, 1986--February 29, 1996. Office of Scientific and Technical Information (OSTI), May 1996. http://dx.doi.org/10.2172/286295.
Повний текст джерелаS. Enguehard and B. Hatfield. Web-interfaced Nonlinear Optical Waveguide and Photonic Crystal Simulator. Office of Scientific and Technical Information (OSTI), June 2002. http://dx.doi.org/10.2172/936601.
Повний текст джерелаAbrahamson, Norman, and Zeynep Gülerce. Regionalized Ground-Motion Models for Subduction Earthquakes Based on the NGA-SUB Database. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, December 2020. http://dx.doi.org/10.55461/ssxe9861.
Повний текст джерела