Добірка наукової літератури з теми "Non-Turbulent"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Non-Turbulent".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Non-Turbulent"

1

Teixeira, M. A. C., and C. B. da Silva. "Turbulence dynamics near a turbulent/non-turbulent interface." Journal of Fluid Mechanics 695 (February 13, 2012): 257–87. http://dx.doi.org/10.1017/jfm.2012.17.

Повний текст джерела
Анотація:
AbstractThe characteristics of the boundary layer separating a turbulence region from an irrotational (or non-turbulent) flow region are investigated using rapid distortion theory (RDT). The turbulence region is approximated as homogeneous and isotropic far away from the bounding turbulent/non-turbulent (T/NT) interface, which is assumed to remain approximately flat. Inviscid effects resulting from the continuity of the normal velocity and pressure at the interface, in addition to viscous effects resulting from the continuity of the tangential velocity and shear stress, are taken into account by considering a sudden insertion of the T/NT interface, in the absence of mean shear. Profiles of the velocity variances, turbulent kinetic energy (TKE), viscous dissipation rate ($\varepsilon $), turbulence length scales, and pressure statistics are derived, showing an excellent agreement with results from direct numerical simulations (DNS). Interestingly, the normalized inviscid flow statistics at the T/NT interface do not depend on the form of the assumed TKE spectrum. Outside the turbulent region, where the flow is irrotational (except inside a thin viscous boundary layer),$\varepsilon $decays as${z}^{\ensuremath{-} 6} $, where$z$is the distance from the T/NT interface. The mean pressure distribution is calculated using RDT, and exhibits a decrease towards the turbulence region due to the associated velocity fluctuations, consistent with the generation of a mean entrainment velocity. The vorticity variance and$\varepsilon $display large maxima at the T/NT interface due to the inviscid discontinuities of the tangential velocity variances existing there, and these maxima are quantitatively related to the thickness$\delta $of the viscous boundary layer (VBL). For an equilibrium VBL, the RDT analysis suggests that$\delta \ensuremath{\sim} \eta $(where$\eta $is the Kolmogorov microscale), which is consistent with the scaling law identified in a very recent DNS study for shear-free T/NT interfaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Westerweel, Jerry, Alberto Petracci, René Delfos, and Julian C. R. Hunt. "Characteristics of the turbulent/non-turbulent interface of a non-isothermal jet." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, no. 1937 (February 28, 2011): 723–37. http://dx.doi.org/10.1098/rsta.2010.0308.

Повний текст джерела
Анотація:
The turbulent/non-turbulent interface of a jet is characterized by sharp jumps (‘discontinuities’) in the conditional flow statistics relative to the interface. Experiments were carried out to measure the conditional flow statistics for a non-isothermal jet, i.e. a cooled jet. These experiments are complementary to previous experiments on an isothermal Re =2000 jet, where, in the present experiments on a non-isothermal jet, the thermal diffusivity is intermediate to the diffusivity of momentum and the diffusivity of mass. The experimental method is a combined laser-induced fluorescence/particle image velocimetry method, where a temperature-sensitive fluorescent dye (rhodamine 6G) is used to measure the instantaneous temperature fluctuations. The results show that the cooled jet can be considered to behave like a self-similar jet without any significant buoyancy effects. The detection of the interface is based on the instantaneous temperature, and provides a reliable means to detect the interface. Conditional flow statistics reveal the superlayer jump in the conditional vorticity and in the temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Watanabe, T., X. Zhang, and K. Nagata. "Turbulent/non-turbulent interfaces detected in DNS of incompressible turbulent boundary layers." Physics of Fluids 30, no. 3 (March 2018): 035102. http://dx.doi.org/10.1063/1.5022423.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yu, Jia-Long, and Xi-Yun Lu. "Topological evolution near the turbulent/non-turbulent interface in turbulent mixing layer." Journal of Turbulence 20, no. 5 (May 4, 2019): 300–321. http://dx.doi.org/10.1080/14685248.2019.1640368.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Steiner, Helfried, and Christian Walchshofer. "Small-scale mixing at the turbulent/non-turbulent interface in turbulent jets." PAMM 11, no. 1 (December 2011): 601–2. http://dx.doi.org/10.1002/pamm.201110290.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

BISSET, DAVID K., JULIAN C. R. HUNT, and MICHAEL M. ROGERS. "The turbulent/non-turbulent interface bounding a far wake." Journal of Fluid Mechanics 451 (January 25, 2002): 383–410. http://dx.doi.org/10.1017/s0022112001006759.

Повний текст джерела
Анотація:
The velocity fields of a turbulent wake behind a flat plate obtained from the direct numerical simulations of Moser et al. (1998) are used to study the structure of the flow in the intermittent zone where there are, alternately, regions of fully turbulent flow and non-turbulent velocity fluctuations on either side of a thin randomly moving interface. Comparisons are made with a wake that is ‘forced’ by amplifying initial velocity fluctuations. A temperature field T, with constant values of 1.0 and 0 above and below the wake, is transported across the wake as a passive scalar. The value of the Reynolds number based on the centreplane mean velocity defect and half-width b of the wake is Re ≈ 2000.The thickness of the continuous interface is about 0.07b, whereas the amplitude of fluctuations of the instantaneous interface displacement yI(t) is an order of magnitude larger, being about 0.5b. This explains why the mean statistics of vorticity in the intermittent zone can be calculated in terms of the probability distribution of yI and the instantaneous discontinuity in vorticity across the interface. When plotted as functions of y−yI the conditional mean velocity 〈U〉 and temperature 〈T〉 profiles show sharp jumps at the interface adjacent to a thick zone where 〈U〉 and 〈T〉 vary much more slowly.Statistics for the conditional vorticity and velocity variances, available in such detail only from DNS data, show how streamwise and spanwise components of vorticity are generated by vortex stretching in the bulges of the interface. While mean Reynolds stresses (in the fixed reference frame) decrease gradually in the intermittent zone, conditional stresses are roughly constant and then decrease sharply towards zero at the interface. Flow fields around the interface, analysed in terms of the local streamline pattern, confirm and explain previous results that the advancement of the vortical interface into the irrotational flow is driven by large-scale eddy motion.Terms used in one-point turbulence models are evaluated both conventionally and conditionally in the interface region, and the current practice in statistical models of approximating entrainment by a diffusion process is assessed.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Neuhaus, Lars, Matthias Wächter, and Joachim Peinke. "The fractal turbulent–non-turbulent interface in the atmosphere." Wind Energy Science 9, no. 2 (February 22, 2024): 439–52. http://dx.doi.org/10.5194/wes-9-439-2024.

Повний текст джерела
Анотація:
Abstract. With their constant increase in size, wind turbines are reaching unprecedented heights. Therefore, at these heights, they are influenced by wind conditions that have not yet been studied in detail. With increasing height, a transition to laminar conditions becomes more and more likely. In this paper, the presence of the turbulent–non-turbulent interface (TNTI) in the atmosphere is investigated. Three different on- and offshore locations are investigated. Our fractal scaling analysis leads to typical values known from ideal laboratory and numerical studies. The height distribution of the probability of the TNTI is determined and shows a frequent occurrence at the height of the rotor of future multi-megawatt turbines. The indicated universality of the fractality of the TNTI allows the use of simplified models in laboratory and numerical investigations.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhang, Xinxian, Tomoaki Watanabe, and Koji Nagata. "Passive scalar mixing near turbulent/non-turbulent interface in compressible turbulent boundary layers." Physica Scripta 94, no. 4 (January 30, 2019): 044002. http://dx.doi.org/10.1088/1402-4896/aafbdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yang, Jongmin, Min Yoon, and Hyung Jin Sung. "The turbulent/non-turbulent interface in an adverse pressure gradient turbulent boundary layer." International Journal of Heat and Fluid Flow 86 (December 2020): 108704. http://dx.doi.org/10.1016/j.ijheatfluidflow.2020.108704.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

PAPARELLA, F., and W. R. YOUNG. "Horizontal convection is non-turbulent." Journal of Fluid Mechanics 466 (September 10, 2002): 205–14. http://dx.doi.org/10.1017/s0022112002001313.

Повний текст джерела
Анотація:
Consider the problem of horizontal convection: a Boussinesq fluid, forced by applying a non-uniform temperature at its top surface, with all other boundaries insulating. We prove that if the viscosity, ν, and thermal diffusivity, κ, are lowered to zero, with σ ≡ ν/κ fixed, then the energy dissipation per unit mass, κ, also vanishes in this limit. Numerical solutions of the two-dimensional case show that despite this anti-turbulence theorem, horizontal convection exhibits a transition to eddying flow, provided that the Rayleigh number is sufficiently high, or the Prandtl number σ sufficiently small. We speculate that horizontal convection is an example of a flow with a large number of active modes which is nonetheless not ‘truly turbulent’ because ε→0 in the inviscid limit.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Non-Turbulent"

1

Cocconi, Giacomo. "Numerical investigation of turbulent/non-turbulent interface." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/5237/.

Повний текст джерела
Анотація:
The subject of this work is the diffusion of turbulence in a non-turbulent flow. Such phenomenon can be found in almost every practical case of turbulent flow: all types of shear flows (wakes, jet, boundary layers) present some boundary between turbulence and the non-turbulent surround; all transients from a laminar flow to turbulence must account for turbulent diffusion; mixing of flows often involve the injection of a turbulent solution in a non-turbulent fluid. The mechanism of what Phillips defined as “the erosion by turbulence of the underlying non-turbulent flow”, is called entrainment. It is usually considered to operate on two scales with different mechanics. The small scale nibbling, which is the entrainment of fluid by viscous diffusion of turbulence, and the large scale engulfment, which entraps large volume of flow to be “digested” subsequently by viscous diffusion. The exact role of each of them in the overall entrainment rate is still not well understood, as it is the interplay between these two mechanics of diffusion. It is anyway accepted that the entrainment rate scales with large properties of the flow, while is not understood how the large scale inertial behavior can affect an intrinsically viscous phenomenon as diffusion of vorticity. In the present work we will address then the problem of turbulent diffusion through pseudo-spectral DNS simulations of the interface between a volume of decaying turbulence and quiescent flow. Such simulations will give us first hand measures of velocity, vorticity and strains fields at the interface; moreover the framework of unforced decaying turbulence will permit to study both spatial and temporal evolution of such fields. The analysis will evidence that for this kind of flows the overall production of enstrophy , i.e. the square of vorticity omega^2 , is dominated near the interface by the local inertial transport of “fresh vorticity” coming from the turbulent flow. Viscous diffusion instead plays a major role in enstrophy production in the outbound of the interface, where the nibbling process is dominant. The data from our simulation seems to confirm the theory of an inertially stirred viscous phenomenon proposed by others authors before and provides new data about the inertial diffusion of turbulence across the interface.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Er, Sarp. "Structure interne, transfert turbulent et propriétés de cascade de l'interface turbulent/non-turbulent d'un jet turbulent." Electronic Thesis or Diss., Université de Lille (2022-....), 2023. http://www.theses.fr/2023ULILN048.

Повний текст джерела
Анотація:
L'interface turbulent/non-turbulent (TNTI) est une couche très fine entre les régions turbulentes et non turbulentes de l'écoulement. Cette étude vise à mieux comprendre le bilan d'énergie cinétique au voisinage de l'interface turbulent/non-turbulent. L'équation de Kármán-Howarth-Monin-Hill (KHMH) est utilisée pour caractériser le bilan énergétique cinétique local, y compris les transferts d'énergie dans l'espace et entre les échelles. L'analyse est effectuée à l'aide de données obtenues par simulation numérique directe (DNS) finement résolue d'un jet plan turbulent se développant avec le temps. Les lois d'échelles de vitesse et de longueur du jet plan turbulent en evolution temporelle sont différentes de celles de son homologue en développement spatial, dans le sens où ces lois sont indépendantes de l'échelle de dissipation turbulente, qu'elle soit à l'équilibre ou hors équilibre. Il est montré que la variation de la vitesse moyenne de propagation à travers l'épaisseur de la TNTI est fonction de la dimension fractale de la surface à chaque position. Une méthodologie basée sur une opération de moyennage le long de la TNTI est utilisée pour l'analyse de l'écoulement local à proximité de la TNTI. L'analyse du vecteur normal associé à l'orientation locale de la TNTI fournit des informations précieuces sur les caractéristiques géométriques prédominantes de l'interface. Les statistiques moyennes de l'interface sont ensuite conditionnées par sa courbure moyenne et sa vitesse de propagation locale afin de caractériser la variation locale de l'écoulement et le bilan de l'équation KHMH dans les différentes couche de l'interface. Il est démontré que l'épaisseur de la TNTI et de ses sous-couches diminuent de manière significative dans les régions de fort entraînement. Les transferts entre échelles et en espace sont décomposés en une partie solénoïdale et une partie irrotationnelle, ce qui montre l'importance, au niveau de la TNTI, des transferts irrotationnels d'énergie cinétique entre échelles et en espace, associés à la corrélation pression-vitesse. Des phénomènes de compression et d'étirement sont observés en moyenne à proximité de la TNTI, dans les directions respectivement normale et tangentielle à l'interface. L'étude du terme de transfert inter-échelles montre la présence d'une cascade directe dans la direction normale et d'une cascade inverse dans la direction tangentielle. Dans les régions d'entraînement inverse, les statistiques locales montrent un étirement dans la direction normale et de la compression dans la direction tangentielle, ce qui contraste avec les statistiques observées pour l'ensemble de la TNTI et les régions d'entraînement locales. Près de la TNTI, du côté turbulent, un équilibre inattendu ressemblant à celui de Kolmogorov est observé entre le transfert inter-échelle et le taux de dissipation pour une large gamme d'échelles. Pour ces échelles, contrairement à l'équilibre de Kolmogorov habituel pour la turbulence homogène, le transfert inter-échelle est constitué uniquement de la partie irrotationnelle qui est directement associée aux corrélations pression-vitesse
The turbulent/non-turbulent interface (TNTI) is a very sharp interface layer between turbulent and non-turbulent regions of the flow. This study aims to gain insight into the kinetic energy balance in the vicinity of the TNTI. The K'arm'an-Howarth-Monin-Hill equation (KHMH) is used to characterize the local kinetic energy balance including interscale/interspace energy transfers. The analysis is conducted by using a data set obtained by highly resolved direct numerical simulation (DNS) of a temporally developing turbulent planar jet. The scalings for the velocity and length scales of the temporally developing turbulent planar jet are shown to be different from its spatially developing counterpart in the sense that these scalings are independent of the turbulent dissipation scaling, whether equilibrium or non-equilibrium. The variation of the mean propagation velocity across the thickness of the TNTI is shown as a function of the fractal dimension of the surface at each location. Furthermore, a methodology based on a TNTI-averaging operation is used for the analysis of the local flow field in the vicinity of the TNTI. The analysis of the normal vector associated with the local facing direction of the TNTI provides valuable insights into the predominant geometric characteristics of the interface. The TNTI-averaged statistics are further conditioned on the mean curvature and the local propagation velocity of the interface, in order to characterize the variation of the local flow field and KHMH balance in various regions of the interface. The thickness of the TNTI and its sublayers are shown to reduce significantly in regions of fast entrainment. The interscale/interspace transfer terms are decomposed into solenoidal/irrotational parts showing the central importance at the TNTI of the irrotational interscale/interspace transfers of kinetic energy associated with pressure-velocity correlation. Compression and stretching are observed on average at the TNTI location, in the normal and tangential directions of the interface respectively. Investigation of the interscale transfer term shows the presence of a forward cascade in the normal direction and an inverse cascade in the tangential direction. In regions of detrainment, the local statistics display stretching in the normal direction and compression in the tangential direction, which is in contrast with the statistics observed for the entire TNTI and the local entrainment regions. Close to the location of TNTI, on the turbulent side, an unexpected Kolmogorov-like balance is observed between the interscale transfer and the dissipation rate for a wide range of scales. For these scales, unlike the usual Kolmogorov balance for homogeneous turbulence, the interscale transfer consists solely of the irrotational part which is directly associated with the pressure-velocity correlations
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Huangwei. "Extinction in turbulent swirling non-premixed flames." Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/254974.

Повний текст джерела
Анотація:
This thesis investigates the localized and global extinction in turbulent swirling non-premixed flames with Large Eddy Simulation (LES) and sub-grid scale Conditional Moment Closure (CMC) model. The first part of this thesis describes the derivations of the three dimensional conservative CMC governing equations and their finite volume discretization for unstructured mesh. The parallel performance of the newly developed CMC code is assessed. The runtime data coupling interface between the 3D-CMC and LES solvers is designed and the different solvers developed during the course of this research are detailed. The aerodynamics of two swirling non-reacting flows from the Sydney and Cambridge burners are first simulated. The main ow structures (e.g. the recirculating zones) in both cases are correctly predicted. The sensitivity analysis about the influences of turbulent inlet boundary, computational domain and mesh refinement on velocity statistics is conducted. This analysis acts as the preparatory investigation for the following flame simulations. The Sydney swirl diluted methane flame, SMA2, is then simulated for validating the LES/3D-CMC solvers. Excellent agreements are achieved in terms of velocity and mixture fraction statistics, averaged reactive scalars in both physical and mixture fraction space. The local extinction level from the increased central fuel velocity is reasonably predicted. At the experimental blow-off point, the LES/3D-CMC modelling does not obtain the occurrence of complete extinction, but severe extinction occurs at the flame base, qualitatively in line with experimental observations. Localized extinction features of a non-premixed methane flame in the Cambridge swirl burner are investigated and it is found that the occurrence of local extinction is typically manifested by low heat release rate and hydroxyl mass fraction, as well as low or medium temperature. It is also accompanied by high scalar dissipation rates. In mixture fraction space, the CMC cells undergoing local extinction have relatively wide scatter between inert and fully burning solutions. The PDFs of reactedness at the stoichiometric mixture fraction demonstrate some extent of bimodality, showing the events of local extinction and reignition and their relative occurrence frequency. Local extinction near the bluff body in the Cambridge swirl burner is also studied. The convective wall heat loss is included as a source term in the conditionally filtered total enthalpy equation. It shows a significant influence on the mean flame structures, directly linked to the changes of the conditional scalar dissipation near the wall. Furthermore, the degree of local extinction near the bluff body surface is intensified because of the wall heat loss. However, the wall heat loss shows a relatively small influence on the statistics of lift-off height. Finally, the blow-off conditions and dynamics in the Cambridge swirl burner are investigated. The blow-off critical air bulk velocity from LES/3D-CMC is over-predicted, greater than the experimental one by at most 25%. The predicted blow-off transient lasts finitely long duration quantified by the blow-off time, in good agreement with the experimental results. The reactive scalars in both physical and mixture fraction space demonstrate different transient behaviors during blow-off process. When the current swirling flame is close to blow-off, high-frequency and high-amplitude fluctuations of the conditionally filtered stoichiometric scalar dissipation rate on the iso-surfaces of the filtered stoichiometric mixture fraction are evident. The blow-off time from the computations is found to vary with different operating conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pater, Sjoerd Gerardus Maria. "Acoustics of turbulent non-premixed syngas combustion." Enschede : University of Twente [Host], 2007. http://doc.utwente.nl/58039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hossain, Mamdud. "CFD modelling of turbulent non-premixed combustion." Thesis, Loughborough University, 1999. https://dspace.lboro.ac.uk/2134/12230.

Повний текст джерела
Анотація:
The thesis comprises of a thorough assessment of turbulent non-premixed combustion modelling techniques, emphasising the fundamental issue of turbulence-chemistry interaction. The combustion models studied are the flame-sheet, equilibrium, eddy breakup and laminar flamelet models. An in-house CFD code is developed and all the combustion models are implemented. Fundamental numerical issues involving the discretisation schemes are addressed by employing three discretisation schemes namely, hybrid, power law and TVD. The combustion models are evaluated for a number of fuels ranging from simple H2/CO and CO/H2/N2 to more complex Cl4/H2 burning in bluff body stabilised burners at different inlet fuel velocities. The bluff body burner with its complex recirculation zone provides a suitable model problem for industrial flows. The initial and boundary conditions are simple and well-defined. The bluff body burner also provides a controlled environment for the study of turbulence-chemistry interaction at the neck zone. The high quality experimental database available from the University of Sydney and other reported measurements are used for the validation and evaluation of combustion models. The present calculations show that all the combustion models provide good predictions for near equilibrium flames for temperature and major species. Although the equilibrium chemistry model is capable of predicting minor species, the predictive accuracy is found to be inadequate when compared to the experimental data. The laminae flamelet model is the only model which has yielded good predictions for the minor species. For flames at higher velocities. the laminar flamelet model again has provided better predictions compared to predictions of other models considered. With different fuels, the laminar flamelet model predictions for CO/H2/N2 fuel are better than those for CH4/H2 fuel. The reasons for this discrepancy are discussed in detail. The effects of differential diffusion are studied in the laminar flamelet modelling strategy. The flamelet with unity Lewis number is found to give a better representation of the transport of species. The laminar flamelet model has yielded reasonably good predictions for NO mass fraction. The predictions of NO mass fraction are found to be very sensitive to differential diffusion effects. This study has also considered the issue of inclusion of radiative heat transfer in the laminar flamelet model. The radiation effects are found to be important only where the temperature is very high. The study undertaken and reported in this thesis shows that the presently available laminar flamelet modelling concepts are capable of predicting species concentrations and temperature fields with an adequate degree of accuracy. The flamelet model is also well suited for the prediction of NO emissions. The inclusion of radiation heat transfer has enhanced the predictive capability of the laminar flamelet model.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ahmed, S. F. A. F. S. "Spark ignition of turbulent non-premixed flames." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.595391.

Повний текст джерела
Анотація:
This thesis investigates the spark ignition of various turbulent non-premixed flames namely, jet, counter-flow and bluff-body flames. This detailed fundamental study of spark ignition aims to provide useful information for solving the high-altitude relight problem in the aviation gas turbine. A specially designed ignition unit has been built. Different spark parameters and flow conditions have been examined to study their effects on the ignition probability defined as successful flame establishment. The ignition probability results have been correlated with the measured or estimated flow velocity and mixture fraction. The whole ignition and flame propagation events have been visualized by a high-speed camera and OH-PLIF. In the jet flames, it was found that after an initially spherical shape, the flame took a cylindrical shape with a propagating edge upstream. The probability of successful ignition Pign increases with high spark energy, thin electrode diameter and wide gap, but decreases with increasing dilution of the jet with air. The flame kernel growth rate is high when the ignition probability is high for all parameters, except for jet velocity. Increasing the jet velocity decreases the ignition probability at all locations. The estimated net propagation speed relative to the incoming flow was about 3 to 6 laminar burning velocities of a stoichiometric mixture SL. In the counter-flow flames, it was found that the flame spread as an edge flame with a large scatter in its radial position. Pign decreased with bulk velocity, which suggests that the local strain rate can be detrimental to ignition so that, even with the strongest spark tested, ignition could not be achieved at a bulk velocity about 90% of the extinction velocity. Pign was greater than zero even in regions well into the fuel and air streams where the mixture fraction fluctuations were virtually zero, giving zero probability of finding flammable mixture at the spark location. The estimated edge flame speed relative to the radial flow is higher than SL for the premixed flame and is less than SL for the non-premixed flames.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Smith, Sarah Elizabeth. "Turbulent duct flow of non-Newtonian liquids." Thesis, University of Liverpool, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399184.

Повний текст джерела
Анотація:
The turbulent flow of non-Newtonian fluids in straight ducts has been investigated. Specifically, the fully developed circular pipe flow, axisymmetric sudden expansion flow and fully developed square duct flow were studied. The pipe flow study analysed previous measurements of the mean velocity profiles and friction factor-Reynolds number characteristics of different non-Newtonian fluids in pipe fully developed pipe flows. An investigation of different nondimensional parameters permitted initial progress on developing a correlation between drag reduction and fluid rheology to be made. Comparison of the ranking orders of drag reduction, fluid extensional viscosity and fluid elasticity revealed that these fluid properties are most strongly correlated with drag reduction at low shear/strain rates (that is, in the buffer and outer regions of the boundary layer). The sudden expansion geometry was investigated for flows of aqueous Xanthan gum solution and two reference Newtonian fluids. A smooth contraction was placed at the inlet to the sudden expansion. Few significant differences were observed between the mean flow behaviours of the test fluids for the turbulent Reynolds numbers tested (26,000 and 80,000). These results may reflect the manner in which the rigid, rod-like molecules found in Xanthan gum influence the flow behaviour. Turbulence measurements indicated that all three turbulence components were suppressed for the polymer solution flow within the free shear layer downstream of the expansion. The turbulent flow of two non-Newtonian fluids (a blend ofXanthan gum and Carboxymethylcellulose in water and an aqueous solution of polyacrylamide) in a square duct were compared with a turbulent Newtonian square duct flow. Although suppression of the transverse turbulence components was noted, the polymer solutions also strongly affected the behaviour of the secondary flows found in turbulent non-circular duct flows of Newtonian fluids. Specifically, the secondary flows appeared to be weakened in the polymer blend flow and completely suppressed in the polyacrylamide solution flow. It is anticipated that fluid elasticity is influential in this suppression
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Richardson, Edward S. "Ignition modelling for turbulent non-premixed flows." Thesis, University of Cambridge, 2007. https://eprints.soton.ac.uk/203167/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

De, Bruyn Kops Stephen M. "Numerical simulation of non-premixed turbulent combustion /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/7140.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Branley, Niall Thomas. "Large eddy simulation of non-premixed turbulent flames." Thesis, Imperial College London, 2000. http://hdl.handle.net/10044/1/8584.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Non-Turbulent"

1

Thomas, Troy S. Turbulent arena: Global effects against non-state adversaries. Colorado Springs, CO: USAF Institute for National Security Studies, USAF Academy, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chai, Michael I. B. Soot modeling of a turbulent non-premixed methane/air flame. Ottawa: National Library of Canada, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ma, Guoping. Soot modeling of a turbulent non-premixed ethylene/air jet flame. Ottawa: National Library of Canada, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nikjooy, Mohammad. On the modelling of non-reactive and reactive turbulent combustor flows. Cleveland, Ohio: Lewis Research Center, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

C, So Ronald M., and United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., eds. On the modelling of non-reactive and reactive turbulent combustor flows. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

V, Shebalin J., Hussaini M. Yousuff, and Institute for Computer Applications in Science and Engineering., eds. Direct-numerical and large-eddy simulations of a non-equilibrium turbulent Kolmogorov flow. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

V, Shebalin J., Hussaini M. Yousuff, and Institute for Computer Applications in Science and Engineering., eds. Direct-numerical and large-eddy simulations of a non-equilibrium turbulent Kolmogorov flow. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

V, Shebalin J., Hussaini M. Yousuff, and Institute for Computer Applications in Science and Engineering., eds. Direct-numerical and large-eddy simulations of a non-equilibrium turbulent Kolmogorov flow. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Promoting your non-profit: Using marketing to help your organization succeed in a turbulent time. Redwood City, Calif: Woodside Business Press, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yunardi. Modelling soot formation and oxidation in turbulent non-premixed flames: Report for overseas cooperation and international publication research scheme. Banda Aceh]: Syiah Kuala University, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Non-Turbulent"

1

Zhang, Zhengji. "Non-stationary Turbulent Flows." In LDA Application Methods, 117–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13514-9_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yershin, Shakhbaz A. "Turbulent Non-isothermal Gas Jets." In Paradoxes in Aerohydrodynamics, 275–85. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25673-3_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Speziale, Charles G. "Modeling Non-Equilibrium Turbulent Flows." In ICASE/LaRC Interdisciplinary Series in Science and Engineering, 107–37. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4724-8_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rao, Samrat, G. R. Vybhav, P. Prasanth, S. M. Deshpande, and R. Narasimha. "Turbulent/Non-turbulent Interface of a Transient Diabatic Plume." In Lecture Notes in Mechanical Engineering, 355–61. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-5183-3_38.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhang, Xinxian. "Direct Numerical Simulation on Turbulent/Non-turbulent Interface in Compressible Turbulent Boundary Layers." In Frontiers of Digital Transformation, 155–68. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-1358-9_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cocconi, G., A. Cimarelli, B. Frohnapfel, and E. De Angelis. "A Numerical Study of the Shear-Less Turbulent/Non-turbulent Interface." In Springer Proceedings in Physics, 37–40. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29130-7_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

von Larcher, Thomas, and Rupert Klein. "Approximating Turbulent and Non-turbulent Events with the Tensor Train Decomposition Method." In Turbulent Cascades II, 283–91. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12547-9_30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rudman, M., and H. M. Blackburn. "Turbulent Pipe Flow of Non-Newtonian Fluids." In Computational Fluid Dynamics 2002, 687–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59334-5_104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bieder, U., A. Scoliege, and Q. Feng. "Turbulent Non-axial Flow in Rod Bundles." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 89–100. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60387-2_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Veynante, D., F. Lacas, E. Maistret, and S. M. Candel. "Coherent Flame Model for Non-Uniformly Premixed Turbulent Flames." In Turbulent Shear Flows 7, 367–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76087-7_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Non-Turbulent"

1

Taveira, Rodrigo M. R., and Carlos B. da Silva. "SCALAR MIXING AT TURBULENT/NON-TURBULENT INTERFACE OF A TURBULENT PLANE JET." In Eighth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2013. http://dx.doi.org/10.1615/tsfp8.520.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Westerweel, Jerry, A. Petracci, Rene Delfos, and Julian C. R. Hunt. "THE TURBULENT/NON-TURBULENT INTERFACE OF A COOLED JET." In Fifth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2007. http://dx.doi.org/10.1615/tsfp5.1640.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kohan, Khashayar F., and Susan Gaskin. "The Turbulent/Non-Turbulent Interface Characteristics in an Axisymmetric Jet." In 7th International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT'20). Avestia Publishing, 2020. http://dx.doi.org/10.11159/ffhmt20.162.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

da Silva, Carlos B., and Rodrigo M. R. Taveira. "CHARACTERISTICS OF THE TURBULENT/NON-TURBULENT INTERFACE AND VISCOUS SUPERLAYER IN TURBULENT PLANAR JETS." In Eighth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2013. http://dx.doi.org/10.1615/tsfp8.2170.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Baumert, H. Z., and B. Wessling. "TURBULENT MIXING IN NON-NEWTONIAN DISPERSIONS." In Topical Problems of Fluid Mechanics 2016. Institute of Thermomechanics, AS CR, v.v.i., 2016. http://dx.doi.org/10.14311/tpfm.2016.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sallam, K., C. Ng, R. Sankarakrishnan, C. Aalburg, and K. Lee. "Breakup of Turbulent and Non-Turbulent Liquid jets in Gaseous Crossflows." In 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-1517.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Terashima, Osamu, Yasuhiko Sakai, and Kouji Nagata. "Study on the Interfacial Layers Between the Turbulent/Non Turbulent Regions in Two Dimensional Turbulent Jet." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-21003.

Повний текст джерела
Анотація:
The interface between the turbulent and non turbulent regions in a two dimensional turbulent jet is investigated by the simultaneous measurement of the velocity and pressure. The measurement is performed by using a combined probe comprising an X-type hot-wire and a static pressure tube. The measurement data are analyzed by the conditional sampling technique and an ensemble averaged technique on the basis of the intermittency function for the turbulent/non turbulent decision. The experimental data at the cross-streamwise edge of the turbulent region show that there is a thin interfacial layer with a sharp jump of physical quantities (such as mean streamwise velocity) at the cross-streamwise edge of the turbulent region, and the thickness of the interfacial layer is 0.08 times the half-width of the cross-streamwise profile of the mean streamwise velocity. The turbulent diffusion term in the turbulent energy transport equation near the interfacial layer is examined. It is also found that the turbulent energy is transported from the inside of the interfacial layer to both the inner side (the side of the turbulent fluid) and the outer side (the side of the non turbulent fluid) by the diffusion term. Furthermore, the components of the diffusion term are separately estimated. It is found that the turbulent diffusion term shows the gain of the turbulent energy at the inner side of the interfacial layer, and the pressure diffusion term transports the turbulent energy to the non turbulent fluid. Moreover, small scale vortices are found in the interfacial layer. From these results, there is a possibility that the existence of the interfacial layer (existence of the vortices) contributes to the transport of the turbulent energy to the non turbulent fluid since the velocity and the pressure field that determine the pressure diffusion is greatly influenced by the existence of the interfacial layer. This hypothesis indicates that the outward propagation from a turbulent fluid can be attributed to the presence of vortices in the interfacial layer.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Maciel, Yvan, Mark P. Simens, and Ayse Gul Gungor. "TURBULENT STRUCTURES IN A NON-EQUILIBRIUM LARGE-VELOCITY-DEFECT TURBULENT BOUNDARY LAYER." In Ninth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2015. http://dx.doi.org/10.1615/tsfp9.640.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Turkyilmaz, B., E. Bernard, J. O. Rodriguez Garcia, M. Bourgoin, and A. Gylfason. "Non-intrusive temperature measurements in turbulent convection." In 10th International Symposium on Turbulence, Heat and Mass Transfer, THMT-23, Rome, Italy, 11-15 September 2023. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/ichmt.thmt-23.730.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Turkyilmaz, B., E. Bernard, J. O. Rodriguez Garcia, M. Bourgoin, and A. Gylfason. "Non-intrusive temperature measurements in turbulent convection." In 10th International Symposium on Turbulence, Heat and Mass Transfer, THMT-23, Rome, Italy, 11-15 September 2023. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/thmt-23.730.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Non-Turbulent"

1

Speziale, Charles G. Non-Equilibrium Modeling of Complex Turbulent Flows. Fort Belvoir, VA: Defense Technical Information Center, August 1998. http://dx.doi.org/10.21236/ada353048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pope, Stephen. Final Report: Investigation of non-premixed turbulent combustion. Office of Scientific and Technical Information (OSTI), August 2009. http://dx.doi.org/10.2172/963296.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ozgokmen, Tamay M. A Non-Fickian Mixing Model for Stratified Turbulent Flows. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada542575.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ozgokmen, Tamay M. A Non-Fickian Mixing Model for Stratified Turbulent Flows. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada590696.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ozgokmen, Tamay M. A Non-Fickian Mixing Model for Stratified Turbulent Flows. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada601520.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bourlioux, A. Analytical Validation of Flamelet-Based Models for Non-Premixed Turbulent Combustion. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada396374.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wang, Hai, Sanghoon Kook, Jeffrey Doom, Joseph Charles Oefelein, Jiayao Zhang, Christopher R. Shaddix, Robert W. Schefer, and Lyle M. Pickett. Understanding and predicting soot generation in turbulent non-premixed jet flames. Office of Scientific and Technical Information (OSTI), October 2010. http://dx.doi.org/10.2172/1011219.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kimber, Mark, John Brigham, and Anirban Jana. Experimentally Validated Numerical Models of Non-Isothermal Turbulent Mixing in High Temperature Reactors. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1461189.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Park, J. T., R. J. Mannheimer, T. A. Grimley, and T. B. Morrow. Experiments on densely-loaded non-Newtonian slurries in laminar and turbulent pipe flows: Final report. Office of Scientific and Technical Information (OSTI), June 1989. http://dx.doi.org/10.2172/5801857.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

SCHNEIDER, Steven P., and Steven H. Collicott. Laminar-Turbulent Transition in High-Speed Compressible Boundary Layers with Curvature: Non-Zero Angle of Attack Experiments. Fort Belvoir, VA: Defense Technical Information Center, August 1997. http://dx.doi.org/10.21236/ada329733.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії