Зміст
Добірка наукової літератури з теми "Neurosciences mathématiques"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Neurosciences mathématiques".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Neurosciences mathématiques"
Touboul, Jonathan. "Neurosciences mathématiques / Mathematical neuroscience." L’annuaire du Collège de France, no. 116 (June 15, 2018): 656–57. http://dx.doi.org/10.4000/annuaire-cdf.13476.
Повний текст джерелаTouboul, Jonathan. "Neurosciences mathématiques / Mathematical neuroscience." L’annuaire du Collège de France, no. 117 (September 1, 2019): 641–42. http://dx.doi.org/10.4000/annuaire-cdf.14773.
Повний текст джерелаTouboul, Jonathan. "Neurosciences mathématiques." L’annuaire du Collège de France, no. 112 (April 1, 2013): 903–7. http://dx.doi.org/10.4000/annuaire-cdf.1094.
Повний текст джерелаTouboul, Jonathan. "Neurosciences mathématiques." L’annuaire du Collège de France, no. 114 (July 1, 2015): 1025–27. http://dx.doi.org/10.4000/annuaire-cdf.12071.
Повний текст джерелаTouboul, Jonathan. "Neurosciences mathématiques." L’annuaire du Collège de France, no. 115 (November 1, 2016): 912–13. http://dx.doi.org/10.4000/annuaire-cdf.12637.
Повний текст джерелаTouboul, Jonathan. "Neurosciences mathématiques." L’annuaire du Collège de France, no. 113 (April 1, 2014): 962–64. http://dx.doi.org/10.4000/annuaire-cdf.2720.
Повний текст джерелаBarallobres, Gustavo. "RÉFLEXIONS SUR LES LIENS ENTRE NEUROSCIENCES, MATHÉMATIQUES ET ÉDUCATION." Articles 53, no. 1 (February 19, 2019): 169–88. http://dx.doi.org/10.7202/1056288ar.
Повний текст джерелаRoditi, Éric, and Camille Noûs. "Didactique des mathématiques et neurosciences cognitives : une analyse des contributions à la recherche sur l’apprentissage d’un contenu scolaire." Revue française de pédagogie, no. 211 (September 23, 2021): 103–15. http://dx.doi.org/10.4000/rfp.10549.
Повний текст джерелаDomenech, P. "La décision, cette inconnue…" European Psychiatry 30, S2 (November 2015): S51. http://dx.doi.org/10.1016/j.eurpsy.2015.09.145.
Повний текст джерелаRodd, Melissa. "Transitioning from “It Looks Like” to “It Has To Be” in Geometrical Workspaces: affect and near-to-me attention." Bolema: Boletim de Educação Matemática 30, no. 54 (April 2016): 142–64. http://dx.doi.org/10.1590/1980-4415v30n54a07.
Повний текст джерелаДисертації з теми "Neurosciences mathématiques"
Tonnelier, Arnaud. "Dynamique non-linéaire et bifurcations en neurosciences mathématiques." Université Joseph Fourier (Grenoble), 2001. http://www.theses.fr/2001GRE10186.
Повний текст джерелаWe study properties of excitable systems coming from mathematical modeling in neurosciences. These models are written using couples nonlinear differential equations for which we look for emergent biophysical mechanisms using mathematical tools coming from bifurcation theory or perturbative methods. Most analytical results are obtained using an idealized nonlinearity with the Heaviside step function. Firstly, we study the piecewise linear FitzHugh-Nagumo model and its generalization to a Linéard system. Specifically, we are interested in transient regime, i. E. The emission of a finite number of action potentials, and asymptotic regime, i. E. The existence of limit cycles. For other models, neural populations model and neural oscillators model, we determine the bifurcation and we study synchronisation phenomena. We finish by studying synaptic propagation in neural network, and saltatory propoagation, along the neuron axon. (. . . )
Touboul, Jonathan. "Modèles nonlinéaires et stochastiques en neuroscience." Palaiseau, Ecole polytechnique, 2008. http://www.theses.fr/2008EPXX0028.
Повний текст джерелаSaïghi, Sylvain. "Circuits et systèmes de modélisation analogique de réseaux de neurones biologiques : application au développement d'outils pour les neurosciences computationnelles." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2004. http://tel.archives-ouvertes.fr/tel-00326005.
Повний текст джерелаMolaee-Ardekani, Behnam. "Modelling electrical activities of the brain and analysis of the EEG in general anesthesia." Rennes 1, 2008. http://www.theses.fr/2008REN1S154.
Повний текст джерелаUn modèle de type populations de neurones dédié à la simulation de l?EEG pour différentes profondeurs d'anesthésie (DOA) est présenté. Ses ingrédients sont issus des travaux de Steyn-Ross & Liley, et son originalité est l?adjonction d?un nouveau mécanisme ionique lent. La fonction sigmoïdale de Wilson-Cowan est redéfinie pour être également une fonction du mécanisme ionique lent introduit. Quand un agent anesthésique est administré, le mécanisme lent impose deux états de fonctionnement pour les cellules neurales. En effet, celles-ci alternent entre deux niveaux d'activité (haut, bas). La fréquence de commutation entre ces états est dans la bande Delta (c'est la raison derrière l'amplitude élevée de l?EEG durant l'anesthésie). Dans la phase de réveil le modèle est à l?état haut, en anesthésie modérée le modèle bascule dans le mode alterné et en anesthésie profonde il reste dans l?état bas. La modulation des ondes Alpha par des activités EEG plus lentes est également étudiée dans diverses DOA. La modulation est mesurée par deux paramètres appelés phase et taux de la modulation (POM, SOM). Ces paramètres sont calculés pour différents sous-bandes de la bande Delta et sont utilisés pour isoler différents mécanismes neurophysiologiques contribuant à la bande Delta, et pour déterminer DOA. Le paramètre SOM indique que la bande Delta comporte trois sous-bandes principales (approximativement [0. 1-0. 5],[0. 5-1. 5],[2-4]Hz). Les variations de POM en lien avec le volume du Désflurane indiquent que ce paramètre peut contribuer à l?évaluation de DOA. Le paramètre POM pour la bande [1. 7-4]Hz permet de distinguer les niveaux d?anesthésie profonde et légère mieux que l'indice BIS
Caianiello, Eduardo. "Le fait génétique des mathématiques et la puissance dynamique du mental humain." Phd thesis, Ecole des Hautes Etudes en Sciences Sociales (EHESS), 2010. http://tel.archives-ouvertes.fr/tel-00589733.
Повний текст джерелаCogliati, Dezza Irene. "“Vanilla, Vanilla .but what about Pistachio?” A Computational Cognitive Clinical Neuroscience Approach to the Exploration-Exploitation Dilemma." Doctoral thesis, Universite Libre de Bruxelles, 2018. https://dipot.ulb.ac.be/dspace/bitstream/2013/278730/3/Document1.pdf.
Повний текст джерелаDoctorat en Sciences psychologiques et de l'éducation
info:eu-repo/semantics/nonPublished
Vigot, Alexis. "Représentation stochastique d'équations aux dérivées partielles d'ordre supérieur à 3 issues des neurosciences." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066484.
Повний текст джерелаThis Thesis consists of two parts. In the mathematical part we study Korteweg--de Vries (KdV) equation and high-order pdes with a probabilistic point of view in order to obtain Feynman-Kac (FK) type formulas. This study was motivated by recent biological models. We prove a FK representation for a larger class of solutions of KdV equation (not only n-solitons), using Fredholm determinants and Laplace transforms of iterated Skorohod integrals. Regarding higher order pdes, iterated processes that consist in the composition of two independent processes, one corresponding to position and the other one to time, are naturally related to their solutions. Indeed, we prove FK formulas for solutions of high order pdes based on functionals of iterated processes even in the non Markovian case, thus extending the existing results. We also propose a scheme for the simulation of iterated diffusions trajectories based on Euler scheme, that converges a.s., uniformly in time, with a rate of convergence of order $1/4$. An estimation of the error is proposed. In the biological part, we have collected several papers in neuroscience and other fields of biology where the previous types of pdes are involved. In particular, we are interested in the simulation of the propagation of the action potential when the capacitance of the cell membrane is not assumed to be constant. These papers have in common the fact that they question the famous Hodgkin Huxley model dating back to the fifties. Indeed this model even if it has been very efficient for the understanding of neuronal signaling does not take into account all the phenomena that occur during the propagation of the action potential
Chateau-Laurent, Hugo. "Modélisation Computationnelle des Interactions Entre Mémoire Épisodique et Contrôle Cognitif." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0019.
Повний текст джерелаEpisodic memory is often illustrated with the madeleine de Proust excerpt as the ability to re-experience a situation from the past following the perception of a stimulus. This simplistic scenario should not lead into thinking that memory works in isolation from other cognitive functions. On the contrary, memory operations treat highly processed information and are themselves modulated by executive functions in order to inform decision making. This complex interplay can give rise to higher-level functions such as the ability to imagine potential future sequences of events by combining contextually relevant memories. How the brain implements this construction system is still largely a mystery. The objective of this thesis is to employ cognitive computational modeling methods to better understand the interactions between episodic memory, which is supported by the hippocampus, and cognitive control, which mainly involves the prefrontal cortex. It provides elements as to how episodic memory can help an agent to act. It is shown that Neural Episodic Control, a fast and powerful method for reinforcement learning, is in fact mathematically close to the traditional Hopfield Network, a model of associative memory that has greatly influenced the understanding of the hippocampus. Neural Episodic Control indeed fits within the Universal Hopfield Network framework, and it is demonstrated that it can be used to store and recall information, and that other kinds of Hopfield networks can be used for reinforcement learning. The question of how executive functions can control episodic memory operations is also tackled. A hippocampus-inspired network is constructed with as little assumption as possible and modulated with contextual information. The evaluation of performance according to the level at which contextual information is sent provides design principles for controlled episodic memory. Finally, a new biologically inspired model of one-shot sequence learning in the hippocampus is proposed. The model performs very well on multiple datasets while reproducing biological observations. It ascribes a new role to the recurrent collaterals of area CA3 and the asymmetric expansion of place fields, that is to disambiguate overlapping sequences by making retrospective splitter cells emerge. Implications for theories of the hippocampus are discussed and novel experimental predictions are derived
Ebadzadeh, Mohamad Mehdi. "Modélisation des voies réflexes et cérébelleuses, permettant le calcul des fonctions inverses : application à la commande d'un actionneur à deux muscles pneumatiques." Paris, ENST, 2004. http://www.theses.fr/2004ENST0046.
Повний текст джерелаAmalric, Marie. "Etude des mécanismes cérébraux d'apprentissage et de traitement des concepts mathématiques de haut niveau." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066143/document.
Повний текст джерелаHow does the human brain conceptualize abstract ideas? In particular, what is the origin of mathematical activity, especially when it is associated with high-level of abstraction? Is mathematical thought independent of language? Cognitive science has now started to investigate this question that has been of great interest to philosophers, mathematicians and educators for a long time. While studies have so far focused on basic arithmetic processing, my PhD thesis aims at further investigating the cerebral processes involved in the manipulation and learning of more advanced mathematical ideas. I have shown that (1) advanced mathematical reflection on concepts mastered for many years does not recruit the brain circuits for language; (2) mathematical activity systematically involves number- and space-related brain regions, regardless of mathematical domain, problem difficulty, and participants' visual experience; (3) non-verbal acquisition of geometrical rules relies on a language of thought that is independent of natural spoken language. Finally, altogether these results raise new questions and pave the way to further investigations in neuroscience: - is the human ability for language also irrelevant to advanced mathematical acquisition in schools where knowledge is taught verbally? - What is the operational definition of the fields of “mathematics” and “language” at the brain level?
Книги з теми "Neurosciences mathématiques"
N, Reeke George, ed. Modeling in the neurosciences: From biological systems to neuromimetic robotics. 2nd ed. Boca Raton, Fla: Taylor & Francis, 2005.
Знайти повний текст джерелаR, Poznanski Roman, ed. Modeling in the neurosciences: From ionic channels to neural networks. Amsterdam: Harwood Academic Publishers, 1999.
Знайти повний текст джерелаSuzanne, Tyc-Dumont, ed. Le neurone computationnel: Histoire d'un siècle de recherches. Paris: CNRS, 2005.
Знайти повний текст джерелаF, Abbott L., ed. Theoretical neuroscience: Computational and mathematical modeling of neural systems. Cambridge, Mass: Massachusetts Institute of Technology Press, 2001.
Знайти повний текст джерела1956-, Koch Christof, and Segev Idan, eds. Methods in neuronal modeling: From ions to networks. 2nd ed. Cambridge, Mass: MIT Press, 1998.
Знайти повний текст джерелаLindsay, K. A., G. N. Reeke, R. R. Poznanski, J. R. Rosenberg, and O. Sporns. Modeling in the Neurosciences: From Biological Systems to Neuromimetic Robotics. Taylor & Francis Group, 2005.
Знайти повний текст джерелаLindsay, K. A., G. N. Reeke, R. R. Poznanski, J. R. Rosenberg, and O. Sporns. Modeling in the Neurosciences: From Biological Systems to Neuromimetic Robotics. Taylor & Francis Group, 2005.
Знайти повний текст джерелаLindsay, K. A., G. N. Reeke, R. R. Poznanski, J. R. Rosenberg, and O. Sporns. Modeling in the Neurosciences: From Biological Systems to Neuromimetic Robotics. Taylor & Francis Group, 2005.
Знайти повний текст джерела(Editor), Lianghuo Fan, ed. How Chinese Learn Mathematics: Perspectives From Insiders (Mathematics Education). World Scientific Publishing Company, 2005.
Знайти повний текст джерелаHow Chinese Learn Mathematics: Perspectives from Insiders. World Scientific Pub Co Inc, 2004.
Знайти повний текст джерела