Добірка наукової літератури з теми "Neumann boundary control problems"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Neumann boundary control problems".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Neumann boundary control problems"

1

López, Ginés, and Juan-Aurelio Montero-Sánchez. "Neumann boundary value problems across resonance." ESAIM: Control, Optimisation and Calculus of Variations 12, no. 3 (June 20, 2006): 398–408. http://dx.doi.org/10.1051/cocv:2006009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kowalewski, Adam, and Anna Krakowiak. "Optimal boundary control problems of retarded parabolic systems." Archives of Control Sciences 23, no. 3 (September 1, 2013): 261–79. http://dx.doi.org/10.2478/acsc-2013-0016.

Повний текст джерела
Анотація:
Abstract Optimal boundary control problems of retarded parabolic systems are presented. Necessary and sufficient conditions of optimality are derived for the Neumann problem. A simple example of application is also presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bollo, Carolina M., Claudia M. Gariboldi, and Domingo A. Tarzia. "Neumann boundary optimal control problems governed by parabolic variational equalities." Control and Cybernetics 50, no. 2 (June 1, 2021): 227–52. http://dx.doi.org/10.2478/candc-2021-0012.

Повний текст джерела
Анотація:
Abstract We consider a heat conduction problem S with mixed boundary conditions in an n-dimensional domain Ω with regular boundary and a family of problems Sα with also mixed boundary conditions in Ω, where α > 0 is the heat transfer coefficient on the portion of the boundary Γ1. In relation to these state systems, we formulate Neumann boundary optimal control problems on the heat flux q which is definite on the complementary portion Γ2 of the boundary of Ω. We obtain existence and uniqueness of the optimal controls, the first order optimality conditions in terms of the adjoint state and the convergence of the optimal controls, the system state and the adjoint state when the heat transfer coefficient α goes to infinity. Furthermore, we formulate particular boundary optimal control problems on a real parameter λ, in relation to the parabolic problems S and Sα and to mixed elliptic problems P and Pα . We find an explicit form for the optimal controls, we prove monotony properties and we obtain convergence results when the parameter time goes to infinity.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hamamuki, Nao, and Qing Liu. "A deterministic game interpretation for fully nonlinear parabolic equations with dynamic boundary conditions." ESAIM: Control, Optimisation and Calculus of Variations 26 (2020): 13. http://dx.doi.org/10.1051/cocv/2019076.

Повний текст джерела
Анотація:
This paper is devoted to deterministic discrete game-theoretic interpretations for fully nonlinear parabolic and elliptic equations with nonlinear dynamic boundary conditions. It is known that the classical Neumann boundary condition for general parabolic or elliptic equations can be generated by including reflections on the boundary to the interior optimal control or game interpretations. We study a dynamic version of such type of boundary problems, generalizing the discrete game-theoretic approach proposed by Kohn-Serfaty (2006, 2010) for Cauchy problems and later developed by Giga-Liu (2009) and Daniel (2013) for Neumann type boundary problems.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gunzburger, Max D., Hyung-Chun Lee, and Jangwoon Lee. "Error Estimates of Stochastic Optimal Neumann Boundary Control Problems." SIAM Journal on Numerical Analysis 49, no. 4 (January 2011): 1532–52. http://dx.doi.org/10.1137/100801731.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Eppler, Karsten, and Helmut Harbrecht. "Tracking Neumann Data for Stationary Free Boundary Problems." SIAM Journal on Control and Optimization 48, no. 5 (January 2010): 2901–16. http://dx.doi.org/10.1137/080733760.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Werner, K. D. "Boundary value control problems involving the bessel differential operator." Journal of the Australian Mathematical Society. Series B. Applied Mathematics 27, no. 4 (April 1986): 453–72. http://dx.doi.org/10.1017/s0334270000005075.

Повний текст джерела
Анотація:
AbstractIn this paper, we consider the hyperbolic partial differential equation wrr = wrr + 1/r wr − ν2 /r2w, where v ≥ 1/2 or ν = 0 is aprameter, with the Dirichlet, Neumann and mixed boundary conditions. The boundary controllability for such problems is investigated. The main resutl is that all “finite energy” intial states can be steered to the zero state in time T, using a control f ∈ L2 (0, T), provided T > 2. Furthermore, necessary conditions for controllability are also presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kowalewski, Adam, and Marek Miśkowicz. "Extremal Problems for Infinite Order Parabolic Systems with Boundary Conditions Involving Integral Time Lags." Pomiary Automatyka Robotyka 26, no. 4 (December 20, 2022): 37–42. http://dx.doi.org/10.14313/par_246/37.

Повний текст джерела
Анотація:
Extremal problems for integral time lag infinite order parabolic systems are studied in the paper. An optimal boundary control problem for distributed infinite order parabolic systems in which integral time lags appear in the Neumann boundary conditions is solved. Such equations constitute in a linear approximation a universal mathematical model for many diffusion processes (e.g., modeling and control of heat transfer processes). The time horizon is fixed. Using the Dubovicki-Milutin framework, the necessary and sufficient conditions of optimality for the Neumann problem with the quadratic performance indexes and constrained control are derived.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wong, Kar Hung. "On the computational algorithms for time-lag optimal control problems." Bulletin of the Australian Mathematical Society 32, no. 2 (October 1985): 309–11. http://dx.doi.org/10.1017/s0004972700009989.

Повний текст джерела
Анотація:
In this thesis we study the following two types of hereditary optimal control problems: (i) problems governed by systems of ordinary differential equations with discrete time-delayed arguments appearing in both the state and the control variables; (ii) problems governed by parabolic partial differential equations with Neumann boundary conditions involving time-delays.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Krumbiegel, K., and J. Pfefferer. "Superconvergence for Neumann boundary control problems governed by semilinear elliptic equations." Computational Optimization and Applications 61, no. 2 (December 2, 2014): 373–408. http://dx.doi.org/10.1007/s10589-014-9718-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Neumann boundary control problems"

1

Pfefferer, Johannes [Verfasser], Thomas [Akademischer Betreuer] Apel, and Arnd [Akademischer Betreuer] Rösch. "Numerical analysis for elliptic Neumann boundary control problems on polygonal domains / Johannes Pfefferer. Universität der Bundeswehr München, Fakultät für Bauingenieurwesen und Umweltwissenschaften. Gutachter: Thomas Apel ; Arnd Rösch. Betreuer: Thomas Apel." Neubiberg : Universitätsbibliothek der Universität der Bundeswehr München, 2014. http://d-nb.info/1054706824/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lu, Xing. "La contrôlabilité frontière exacte et la synchronisation frontière exacte pour un système couplé d’équations des ondes avec des contrôles frontières de Neumann et des contrôles frontières couplés de Robin." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAD013/document.

Повний текст джерела
Анотація:
Dans cette thèse, nous étudions la synchronisation, qui est un phénomène bien répandu dans la nature. Elle a été observée pour la première fois par Huygens en 1665. En se basant sur les résultats de la contrôlabilité frontière exacte, pour un système couplé d’équations des ondes avec des contrôles frontières de Neumann, nous considérons la synchronisation frontière exacte (par groupes), ainsi que la détermination de l’état de synchronisation. Ensuite, nous considérons la contrôlabilité exacte et la synchronisation exacte (par groupes) pour le système couplé avec des contrôles frontières couplés de Robin. A cause du manque de régularité de la solution, nous rencontrons beaucoup plus de difficultés. Afin de surmonter ces difficultés, on obtient un résultat sur la trace de la solution faible du problème de Robin grâce aux résultats de régularité optimale de Lasiecka-Triggiani sur le problème de Neumann. Ceci nous a permis d’établir la contrôlabilité exacte, et, par la méthode de la perturbation compacte, la non-contrôlabilité exacte du système. De plus, nous allons étudier la détermination de l’état de synchronisation, ainsi que la nécessité des conditions de compatibilité des matrices de couplage
This thesis studies the widespread natural phenomenon of synchronization, which was first observed by Huygens en 1665. On the basis of the results on the exact boundary controllability, for a coupled system of wave equations with Neumann boundary controls, we consider its exact boundary synchronization (by groups), as well as the determination of the state of synchronization. Then, we consider the exact boundary controllability and the exact boundary synchronization (by groups) for the coupled system with coupled Robin boundary controls. Due to difficulties from the lack of regularity of the solution, we have to face a bigger challenge. In order to overcome this difficulty, we take advantage of the regularity results for the mixed problem with Neumann boundary conditions (Lasiecka and Triggiani) to discuss the exact boundary controllability, and by the method of compact perturbation, to obtain the non-exact controllability for the system
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Winkler, Max [Verfasser], Thomas [Akademischer Betreuer] Apel, Olaf [Akademischer Betreuer] Steinbach, and Roland [Akademischer Betreuer] Herzog. "Finite Element Error Analysis for Neumann Boundary Control Problems on Polygonal and Polyhedral Domains / Max Winkler. Universität der Bundeswehr München, Fakultät für Bauingenieurwesen und Umweltwissenschaften. Betreuer: Thomas Apel. Gutachter: Thomas Apel ; Olaf Steinbach ; Roland Herzog." Neubiberg : Universitätsbibliothek der Universität der Bundeswehr München, 2015. http://d-nb.info/1077773129/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Alsaedy, Ammar, and Nikolai Tarkhanov. "Normally solvable nonlinear boundary value problems." Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2013/6507/.

Повний текст джерела
Анотація:
We study a boundary value problem for an overdetermined elliptic system of nonlinear first order differential equations with linear boundary operators. Such a problem is solvable for a small set of data, and so we pass to its variational formulation which consists in minimising the discrepancy. The Euler-Lagrange equations for the variational problem are far-reaching analogues of the classical Laplace equation. Within the framework of Euler-Lagrange equations we specify an operator on the boundary whose zero set consists precisely of those boundary data for which the initial problem is solvable. The construction of such operator has much in common with that of the familiar Dirichlet to Neumann operator. In the case of linear problems we establish complete results.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yang, Xue. "Neumann problems for second order elliptic operators with singular coefficients." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/neumann-problems-for-second-order-elliptic-operators-with-singular-coefficients(2e65b780-df58-4429-89df-6d87777843c8).html.

Повний текст джерела
Анотація:
In this thesis, we prove the existence and uniqueness of the solution to a Neumann boundary problem for an elliptic differential operator with singular coefficients, and reveal the relationship between the solution to the partial differential equation (PDE in abbreviation) and the solution to a kind of backward stochastic differential equations (BSDE in abbreviation).This study is motivated by the research on the Dirichlet problem for an elliptic operator (\cite{Z}). But it turns out that different methods are needed to deal with the reflecting diffusion on a bounded domain. For example, the integral with respect to the boundary local time, which is a nondecreasing process associated with the reflecting diffusion, needs to be estimated. This leads us to a detailed study of the reflecting diffusion. As a result, two-sided estimates on the heat kernels are established. We introduce a new type of backward differential equations with infinity horizon and prove the existence and uniqueness of both L2 and L1 solutions of the BSDEs. In this thesis, we use the BSDE to solve the semilinear Neumann boundary problem. However, this research on the BSDEs has its independent interest. Under certain conditions on both the "singular" coefficient of the elliptic operator and the "semilinear coefficient" in the deterministic differential equation, we find an explicit probabilistic solution to the Neumann problem, which supplies a L2 solution of a BSDE with infinite horizon. We also show that, less restrictive conditions on the coefficients are needed if the solution to the Neumann boundary problem only provides a L1 solution to the BSDE.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Orey, Maria de Serpa Salema Reis de. "Factorization of elliptic boundary value problems by invariant embedding and application to overdetermined problems." Doctoral thesis, Faculdade de Ciências e Tecnologia, 2011. http://hdl.handle.net/10362/8677.

Повний текст джерела
Анотація:
Dissertação para obtenção do Grau de Doutor em Matemática
The purpose of this thesis is the factorization of elliptic boundary value problems defined in cylindrical domains, in a system of decoupled first order initial value problems. We begin with the Poisson equation with mixed boundary conditions, and use the method of invariant embedding: we embed our initial problem in a family of similar problems, defined in sub-domains of the initial domain, with a moving boundary, and an additional condition in the moving boundary. This factorization is inspired by the technique of invariant temporal embedding used in Control Theory when computing the optimal feedback, for, in fact, as we show, our initial problem may be defined as an optimal control problem. The factorization thus obtained may be regarded as a generalized block Gauss LU factorization. From this procedure emerges an operator that can be either the Dirichlet-to-Neumann or the Neumann-to-Dirichlet operator, depending on which boundary data is given on the moving boundary. In any case this operator verifies a Riccati equation that is studied directly by using an Yosida regularization. Then we extend the former results to more general strongly elliptic operators. We also obtain a QR type factorization of the initial problem, where Q is an orthogonal operator and R is an upper triangular operator. This is related to a least mean squares formulation of the boundary value problem. In addition, we obtain the factorization of overdetermined boundary value problems, when we consider an additional Neumann boundary condition: if this data is not compatible with the initial data, then the problem has no solution. In order to solve it, we introduce a perturbation in the original problem and minimize the norm of this perturbation, under the hypothesis of existence of solution. We deduce the normal equations for the overdetermined problem and, as before, we apply the method of invariant embedding to factorize the normal equations in a system of decoupled first order initial value problems.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

López, Ríos Juan Carlos. "Water-wave equations and free boundary problems: inverse problems and control." Tesis, Universidad de Chile, 2015. http://repositorio.uchile.cl/handle/2250/135179.

Повний текст джерела
Анотація:
Doctor en Ciencias de la Ingeniería, Mención Modelación Matemática
En este trabajo se aborda el problema de existencia de algunos tipos de soluciones para las ecuaciones de ondas en el agua así como la relación que existe entre estas soluciones y la forma de un fondo impermeable sobre la que se desliza el fluido. Empezamos por describir las ecuaciones que modelan el fenómeno físico a partir de las leyes de conservación; el modelo general de las ecuaciones de ondas en el agua, escrito para la restricción de la velocidad potencial a la superficie libre, es \begin{equation*} \left\{ \begin{aligned} &\partial_t\zeta-G(\zeta,b)\psi=0, \\ &\partial_t\psi+g\zeta+\frac{1}{2}|\nabla_X\psi|^2-\frac{1}{2(1+|\nabla_X\zeta|^2)}(G(\zeta,b)\psi+\nabla_X\zeta\cdot\nabla_X\psi)^2=0, \end{aligned} \right. \end{equation*} donde $G=G(\zeta,b)\psi$ es el operador Dirichlet-Neumann, el cual contiene la información del fondo $b$, \begin{equation*} G(\zeta,b)\psi:=-\sqrt{1+|\nabla_X\zeta|^2}\partial_n\phi|_{y=\zeta(t,X)}, \end{equation*} y \begin{equation*} \left\{ \begin{array}{rl} & \Delta\phi=0, \quad \R\times(b,\zeta), \\ & \phi|_{y=\zeta}=\psi, \quad \partial_n \phi|_{y=b(X)}=0. \end{array} \right. \end{equation*} Después de describir las condiciones para un teorema de existencia y unicidad de soluciones de las ecuaciones de ondas en el agua, en espacios de Sobolev, nos preguntamos sobre el mínimo de datos necesarios, sobre la superficie libre, para identificar el fondo de manera única. Por la relación que existe entre el operador Dirichlet-Neumann y la velocidad dentro del fluido y utilizando la propiedad de continuación única de las funciones armónicas hemos probado que basta conocer el perfil, la velocidad potencial y la velocidad normal en un instante de tiempo dado y un abierto de $\R$, aún cuando nuestro sistema es de evolución. En la segunda parte se estudia la existencia de soluciones en forma de salto hidráulico para las ecuaciones estacionarias de ondas en el agua, en dimensión dos y su relación con la velocidad aguas arriba, caracterizada por un parámetro adimensional, llamado el número de Froude, $F$, como consecuencia de la existencia de ramas de bifurcación de la solución trivial para el problema \begin{equation*} \mathcal{F}(\eta,F)=\eta+F\widetilde{\psi}_{y^{\prime }}+\frac{\epsilon}{2}(% \widetilde{\psi}_{x^{\prime }}^2+\widetilde{\psi}_{y^{\prime }}^2)-\epsilon^2\eta_x\widetilde{\psi}_{x^{\prime }}\widetilde{\psi}% _{y^{\prime }}+\frac{\epsilon^3}{2}\eta_x^2\widetilde{\psi}_{y^{\prime }}^2; \end{equation*} donde \begin{equation*} \left\{ \begin{aligned} &\Delta\widetilde{\psi}=\epsilon G, && (-L,L)\times(0,1), \\ &\widetilde{\psi}_{x'}=0, && x'=-L,L, \\ &\widetilde{\psi}=0, && y'=0, \\ &\widetilde{\psi}=-F\eta, && y'=1. \end{aligned} \right. \end{equation*}
Стилі APA, Harvard, Vancouver, ISO та ін.
8

PERROTTA, Antea. "Differential Formulation coupled to the Dirichlet-to-Neumann operator for scattering problems." Doctoral thesis, Università degli studi di Cassino, 2020. http://hdl.handle.net/11580/75845.

Повний текст джерела
Анотація:
This Thesis proposes the use of the Dirichlet-to-Neumann (DtN) operator to improve the accuracy and the efficiency of the numerical solution of an electromagnetic scattering problem, described in terms of a differential formulation. From a general perspective, the DtN operator provides the “connection” (the mapping) between the Dirichlet and the Neumann data onto a proper closed surface. This allows truncation of the computational domain when treating a scattering problem in an unbounded media. Moreover, the DtN operator provides an exact boundary condition, in contrast to other methods such as Perfectly Matching Layer (PML) or Absorbing Boundary Conditions (ABC). In addition, when the surface where the DtN is introduced has a canonical shape, as in the present contribution, the DtN operator can be computed analytically. This thesis is focused on a 2D geometry under TM illumination. The numerical model combines a differential formulation with the DtN operator defined onto a canonical surface where it can be computed analytically. Test cases demonstrate the accuracy and the computational advantage of the proposed technique.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kulkarni, Mandar S. "Multi-coefficient Dirichlet Neumann type elliptic inverse problems with application to reflection seismology." Birmingham, Ala. : University of Alabama at Birmingham, 2009. https://www.mhsl.uab.edu/dt/2010r/kulkarni.pdf.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--University of Alabama at Birmingham, 2009.
Title from PDF t.p. (viewed July 21, 2010). Additional advisors: Thomas Jannett, Tsun-Zee Mai, S. S. Ravindran, Günter Stolz, Gilbert Weinstein. Includes bibliographical references (p. 59-64).
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kamyad, A. V. "Boundary control problems for the multi-dimensional diffusion equation." Thesis, University of Leeds, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Neumann boundary control problems"

1

Kunoth, Angela. Wavelet Methods — Elliptic Boundary Value Problems and Control Problems. Wiesbaden: Vieweg+Teubner Verlag, 2001. http://dx.doi.org/10.1007/978-3-322-80027-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kunoth, Angela. Wavelet Methods -- Elliptic Boundary Value Problems and Control Problems. Wiesbaden: Vieweg+Teubner Verlag, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

The [D-bar] Neumann problem and Schrödinger operators. Berlin: Walter de Gruyter, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Elliot, Tonkes, ed. On the nonlinear Neumann problem with critical and supercritical nonlinearities. Warszawa: Polska Akademia Nauk, Instytut Matematyczny, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

A, Soloviev Alexander, Shaposhnikova Tatyana, and SpringerLink (Online service), eds. Boundary Integral Equations on Contours with Peaks. Basel: Birkhäuser Basel, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Colli, Pierluigi, Angelo Favini, Elisabetta Rocca, Giulio Schimperna, and Jürgen Sprekels, eds. Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64489-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Benedek, Agnes Ilona. Remarks on a theorem of Å. Pleijel and related topics. Bahia Blanca, Argentina: INMABB-CONICET, Universidad Nacional del Sur, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pawłow, Irena. Analysis and control of evolution multi-phase problems with free boundaries. Wrocław: Zakład Narodowy im. Ossolińskich, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bratiĭchuk, N. S. Granichnye zadachi dli͡a︡ prot͡s︡essov s nezavisimymi prirashchenii͡a︡mi. Kiev: Nauk. dumka, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

J, Simon, ed. Control of boundaries and stabilization: Proceedings of the IFIP WG 7.2 Conference, Clermont Ferrand, France, June 20-23, 1988. Berlin: Springer-Verlag, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Neumann boundary control problems"

1

Nowakowski, Andrzej. "A Neumann Boundary Control for Multidimensional Parabolic “Minmax” Control Problems." In Advances in Dynamic Games and Their Applications, 1–13. Boston: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4834-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Takacs, Stefan, and Walter Zulehner. "Multigrid Methods for Elliptic Optimal Control Problems with Neumann Boundary Control." In Numerical Mathematics and Advanced Applications 2009, 855–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11795-4_92.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gonçalves, Etereldes, and Marcus Sarkis. "Robust Parameter-Free Multilevel Methods for Neumann Boundary Control Problems." In Lecture Notes in Computational Science and Engineering, 111–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35275-1_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bongarti, Marcelo, and Irena Lasiecka. "Boundary Stabilization of the Linear MGT Equation with Feedback Neumann Control." In Deterministic and Stochastic Optimal Control and Inverse Problems, 150–67. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003050575-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kogut, Peter I., and Günter R. Leugering. "Asymptotic Analysis of Elliptic Optimal Control Problems in Thick Multistructures with Dirichlet and Neumann Boundary Controls." In Optimal Control Problems for Partial Differential Equations on Reticulated Domains, 477–514. Boston: Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-8149-4_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

POP, NICOLAE, Luige Vladareanu, and Victor Vladareanu. "On the Neumann Boundary Optimal Control of a Frictional Quasistatic Contact Problem with Dry Friction." In Progress on Difference Equations and Discrete Dynamical Systems, 327–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60107-2_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Azevedo, A., J. F. Rodrigues, and L. Santos. "The N-membranes Problem with Neumann Type Boundary Condition." In Free Boundary Problems, 55–64. Basel: Birkhäuser Basel, 2006. http://dx.doi.org/10.1007/978-3-7643-7719-9_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Feltrin, Guglielmo. "Neumann and Periodic Boundary Conditions: Existence Results." In Positive Solutions to Indefinite Problems, 69–99. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94238-4_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Feltrin, Guglielmo. "Neumann and Periodic Boundary Conditions: Multiplicity Results." In Positive Solutions to Indefinite Problems, 101–30. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94238-4_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Adomian, George. "Decomposition Solutions for Neumann Boundary Conditions." In Solving Frontier Problems of Physics: The Decomposition Method, 190–95. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8289-6_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Neumann boundary control problems"

1

Sipin, Alexander S. "Random Walk on Balls for the Neumann Boundary Value Problem." In 2022 6th International Scientific Conference on Information, Control, and Communication Technologies (ICCT). IEEE, 2022. http://dx.doi.org/10.1109/icct56057.2022.9976762.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhao, Qing-hai, Xiao-kai Chen, Yi Lin, and Zheng-Dong Ma. "Linear Heat Conduction Equation Based Filtering Iteration for Topology Optimization." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87631.

Повний текст джерела
Анотація:
This paper deals with an alternative approach to density and sensitivity filtering based on the solution of the linear heat conduction equation which is proposed for eliminating checkerboard patterns and mesh dependence in topology optimization problems. In order to guarantee the existence, uniqueness and stability of the solution of PDE, Neumann boundary conditions are introduced. With the help of the existing computational framework of FEM, boundary points have been extended to satisfy Neumann boundary conditions, and together with finite difference method to solve this initial boundary value. In order to guarantee the stability, stability factor is introduced to control the deviation for the solution of the finite difference method. Then the filtering technique is directly applied to the design variables and the design sensitivities, respectively. Especially, different from previous methods based on convolution operation, filtering iteration is employed to ensure the function to eliminate numerical instability. When the value of stability factor is changed at setting range, the number of times of filtering is manually corresponding set. At last, using different test examples in 2D show the advantage and effectiveness of filtering iteration of the new filter method in compared with previous filter method.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Hui, Baoli Deng, Chunlei Liu, Jian Zou, and Huilong Ren. "Prediction of Wave-Induced Motions and Loads of Ships With Forward Speed by Matching Method." In ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-18614.

Повний текст джерела
Анотація:
Abstract A novel matching method has been developed to solve the wave-induced motions and loads of ships with forward speed. The fluid domain is divided into two subdomains by a cylindrical control surface: an interior domain and an exterior domain. Unlike the conventional domain decomposition strategy, the control surface is meshless in present method, on which the physical quantities are expanded into Fourier-Laguerre series. Based on forward speed Green function, the source distribution method is adopted to solve the exterior domain. The calculations of boundary integral equation about forward speed Green function over the control surface are performed analytically, and the solution of exterior domain provides a Dirichlet-to-Neumann (DN) relation on the control surface. In the interior domain, the boundary value problem is solved by Rankine source method. In order to be consistent with exterior solution, the control surface is kept meshless. The ship hull is discretized into constant panels. The free-surface is discretized into cubic B-splines to represent the high-order derivatives of velocity potential precisely. Then, the DN relation is used to close the equation system established in the interior domain. Comparisons with known experimental measurements show that the calculations achieve good accuracy. Furthermore, the influences of numerical method used in the exterior domain are described.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hasni, Mohd Mughti, Zanariah Abdul Majid, and Norazak Senu. "Solving linear Neumann boundary value problems using block methods." In PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES: Research in Mathematical Sciences: A Catalyst for Creativity and Innovation. AIP, 2013. http://dx.doi.org/10.1063/1.4801145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jahanshahi, M. "Reduction of Two Dimensional Neumann and Mixed Boundary Value Problems to Dirichlet Boundary Value Problems." In Proceedings of the 4th International ISAAC Congress. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701732_0017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gámez, José L. "Local bifurcation for elliptic problems: Neumann versus Dirichlet boundary conditions." In The First 60 Years of Nonlinear Analysis of Jean Mawhin. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702906_0006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bornia, Giorgio, and Saikanth Ratnavale. "Different approaches for Dirichlet and Neumann boundary optimal control." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5043899.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kuryliak, D. B., and Z. T. Nazarchuk. "Wave scattering by wedge with Dirichlet and Neumann boundary conditions." In Proceedings of III International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory. DIPED-98. IEEE, 1998. http://dx.doi.org/10.1109/diped.1998.730938.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ningning, Yan. "Boundary Element Method for Boundary Control Problems." In 2007 Chinese Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/chicc.2006.4346826.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hong, Keum S., and Joseph Bentsman. "Stability Criterion for a Linear Oscillatory Parabolic System with Neumann Boundary Conditions." In 1989 American Control Conference. IEEE, 1989. http://dx.doi.org/10.23919/acc.1989.4790367.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Neumann boundary control problems"

1

Seidman, Thomas I. Free Boundary Problems Arising in the Control of a Flexible Robot Arm,. Fort Belvoir, VA: Defense Technical Information Center, September 1987. http://dx.doi.org/10.21236/ada189124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hackbarth, Carolyn, and Rebeca Weissinger. Water quality in the Northern Colorado Plateau Network: Water years 2016–2018 (revised with cost estimate). National Park Service, November 2023. http://dx.doi.org/10.36967/nrr-2279508.

Повний текст джерела
Анотація:
Water-quality monitoring in National Park Service units of the Northern Colorado Plateau Network (NCPN) is made possible through partnerships between the National Park Service Inventory & Monitoring Division, individual park units, the U.S. Geological Survey, and the Utah Division of Water Quality. This report evaluates data from site visits at 62 different locations on streams, rivers, and reservoirs in or near ten NCPN park units between October 1, 2015 and September 30, 2018. Data are compared to state water-quality standards for the purpose of providing information to park managers about potential water-quality problems. The National Park Service does not determine the regulatory status of surface waters; state water quality agencies determine whether waters comply with the Clean Water Act. Evaluation of water-quality parameters relative to state water-quality standards indicated that 17,997 (96.8%) of the 18,583 total designated beneficial-use evaluations completed for the period covered in this report met state water-quality standards. The most common exceedances or indications of impairment, in order of abundance, were due to elevated nutrients, elevated bacteria (E. coli), elevated water temperature, elevated trace metals, elevated total dissolved solids (and sulfate), elevated pH, and low dissolved oxygen. While some exceedances were recurring and may have been caused by human activities in the watersheds, many were due to naturally occurring conditions characteristic of the geographic setting. This is most apparent with phosphorus, which can be introduced into surface water bodies at elevated levels by natural weathering of the geologic strata found throughout the Colorado Plateau. Higher phosphorus concentrations could also be attributed to anthropogenic activities that can accelerate erosion and transport of phosphorus. Some activities that can increase erosional processes include grazing, logging, mining, pasture irrigation, and off-highway vehicle (OHV) use. Exceedances for total phosphorus were common occurrences at nine out of ten NCPN park units, where at least one site in each of these parks had elevated phosphorus concentrations. At these sites, high levels of nutrients have not led to algal blooms or other signs of eutrophication. Sites monitored in Arches National Park (NP), Black Canyon of the Gunnison NP (BLCA), Bryce Canyon NP (BRCA), Capitol Reef NP (CARE), Curecanti National Recreation Area (CURE), Dinosaur National Monument (DINO), and Zion NP (ZION) all had E. coli ex-ceedances that could be addressed by management actions. While many of these sites already have management actions underway, some of the actions necessary to bring these waters into compliance are beyond the control of the National Park Service. Changes to agricultural practices to improve water quality involves voluntary participation by landowners and/or grazing permittees and their respective states. This could be the case with lands upstream of several parks with E. coli contamination issues, including Red Rock Canyon (BLCA); Sul-phur, Oak, and Pleasant creeks (CARE); Blue Creek and Cimarron River (CURE); Brush and Pot creeks (DINO); and North Fork Virgin River (ZION). Issues with E. coli contamination at Yellow Creek (BRCA) seemed to be resolved after the park boundary fence downstream of the site was repaired, keeping cattle out of the park. At North Fork Virgin River, E. coli exceedances have been less frequent since the State of Utah worked with landowners and grazing permittees to modify agricultural practices. Continued coordination between the National Park Service, state agencies, and local landowners will be necessary to further re-duce E. coli exceedances and, in turn, improve public health and safety in these streams. Selenium concentrations in Red Rock Canyon (BLCA) continued to exceed the state aquat-ic-life standard at both the upstream and downstream sites. Although selenium weathers naturally from bedrock and...
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії